Analysis of the electron paramagnetic resonance zero-field splitting for $Fe³⁺$ in sapphire

Kuang Xiao-Yu

Department of Chemistry, Sichuan Normal University, Chengdu 610066, China

(Received 29 August 1986)

The EPR zero-field splitting of Fe^{3+} in a trigonal-symmetry crystal field has been calculated on the basis of the complete matrices for ligand-field spin-orbit coupling of the $d⁵$ configuration with C_3 symmetry. The absorption spectrum, the EPR zero-field-splitting axial parameters D and F, and the cubic parameter a for the Fe^{3+} ion in sapphire have been interpreted uniformly

I. INTRODUCTION

Since Van Vleck and Penney¹ first discussed the origin of the zero-field splitting of the $6S$ state, many works have referred to it and great progress has been made.²⁻⁶ Sharma discussed various mechanisms and he found that for $6S$ -state ions the most important contribution to the zerofield splitting is the associated effect of a low-symmetry crystal field and the spin-orbit-coupling interaction among the sextet, quartets, and doublets. In the present paper, we perform a theoretical calculation of the ground-state EPR zero-field-spitting parameters D, F, and a for Fe^{3+}

in sapphire by employing the complete matrices for the ligand-field spin-orbit-coupling perturbation of the d^5 configurations with C_3 symmetry, which are Γ_4 , Γ_5 , and Γ_6 for the sextet, quartets, and doublets.

II. THEORETICAL ANALYSIS

A. EPR parameters D, F, and a

The EPR experimental spectrum of Fe^{3+} in a trigonal crystal field can be analyzed in terms of the spin Hamiltonian given by Bleaney and Trenam,

$$
\hat{H}_s = g\beta \mathbf{H} \cdot \mathbf{S} + D[S_z^2 - S(S+1)/3] + a[S_{\xi}^4 + S_{\eta}^4 + S_{\zeta}^4 - S(S+1)(3S^2 + 3S - 1)/5]/6
$$

+ $F[35S_z^4 - 30S(S+1)S_z^2 + 25S_z^2 - 6S(S+1) + 3S^2(2+1)^2]/180$. (1)

Parameters D and F are associated with second- and fourth-order spin operators, respectively, and represent a component of the crystalline electric field which is axially symmetric about the C_3 axis; parameter a is associated with a fourth-order spin operator and represents a cubic component of the crystalline electric field. From Eq. (1) the explicit expression for the $6S$ -state splitting energy can be written as

$$
E(\pm \frac{1}{2}) = D/3 - (a - F)/2
$$

\n
$$
- [(18D + a - F)^2 + 80a^2]^{1/2}/6 ,
$$

\n
$$
E(\pm \frac{3}{2}) = -2D/3 + (a - F) ,
$$

\n
$$
E(\pm \frac{5}{2}) = D/3 - (a - F)/2
$$

\n
$$
+ [(18D + a - F)^2 + 80a^2]^{1/2}/6 ,
$$

where $E(\pm \frac{3}{2})$ corresponds to the energy of the Γ_6 state, and $E(\pm \frac{1}{2})$ and $E(\pm \frac{5}{2})$ to Γ_4 or Γ_5 . The parameter D, F, and a for Fe^{3+} in sapphire can be determined by using Eq. (2) and taking a cubic approximation.

8. Energy matrices

Crystal-field spin-orbit-coupling matrices for the d^1 , d^2 , d^3 , d^4 , and d^5 configurations have been discussed by d^2 , d^3 , d^4 , and d^5 configurations have been discussed by many workers, 8^{-11} but there has been no work concerning the complete matrices for the d^5 configuration with C_3 symmetry. In this work Dunn's method and formulas are used to determine the matrix elements for the perturbation Hamiltonian

$$
\hat{H} = \frac{1}{2} \sum_{i,j} e^2 / r_{ij} + \zeta \sum_i l_i S_i + \sum_i V_i \tag{3}
$$

where ζ is the one-electron spin-orbit coupling coefficient and V_i is the ligand potential

$$
V_i = v_{20}r_i^2 Z_{20}(\theta_i, \phi_i) + v_{40}r_i^4 Z_{40}(\theta_i, \phi_i)
$$

= $D/3 - (a - F)/2$

$$
+ v_{43}^2 r_i^4 Z_{43}^c(\theta_i, \phi_i) + v_{43}^2 r_i^4 Z_{43}^s(\theta_i, \phi_i) . \tag{4}
$$

The matrix elements are composed of the Racah parameters B , C , the spin-orbit coupling-coefficient ζ , the Trees correction, ¹² the Racah correction, ¹³ and the crystal-field parameters which are of the form

$$
Y_1 = \frac{1}{7} (5/4\pi)^{1/2} v_{20} \langle r^2 \rangle, \quad Y_2 = \frac{1}{7} (1/4\pi)^{1/2} v_{40} \langle r^4 \rangle \ ,
$$

\n
$$
Y_3 = (5/28\pi)^{1/2} v_{43}^c \langle r^4 \rangle, \quad Y_4 = (5/28\pi)^{1/2} v_{43}^s \langle r^4 \rangle \ .
$$
 (5)

The parameters v_{kq}^{s} are of the same form as those used by Shen and Zhao, ¹⁴ $Z_{kq}(\theta_i, \phi_i)$ and $Z_{kq}(\theta_i, \phi_i)$ denote real spherical harmonic functions, and r_i , θ_i , ϕ_i are the coordinates of the d electrons.

III. d-d TRANSITION SPECTRUM AND EPR ZERO-FIELD SPLITTING OF $Fe³⁺$ IN SAPPHIRE

By using the average covalency parameter^{6,15} N, we have

$$
B = N^4 B_0, \ C = N^4 C_0, \ \zeta = N^2 \zeta_0, \ a = N^4 a_0, \ \beta = N^4 \beta_0 \ , \tag{6}
$$

All are units of 10^{-4} cm⁻¹.

0

346

TABLE I. Comparison between calculated and experimental values for the zero-field splitting (ZFS) of the ⁶S state of sapphire Al_2O_3 : Fe³⁺. All are in units of 10^{-4} cm⁻¹.

ZFS	Calc.	Expt.
$E(\pm \frac{5}{2}) - E(\pm \frac{1}{2})$	10307	10451 ^a
$E(\pm \frac{3}{2}) - E(\pm \frac{1}{2})$	3974	4014
D	1694	1719
a	259	236
$a-F$	343	339

'Lee, Brodbeeck, and Yang (Ref. 17).

where the Racah parameters $B_0 = 1050$ cm⁻¹, $C_0 = 3806$ cm⁻¹, the spin-orbit coupling coefficient ζ_0 =440 cm the Trees correction $\alpha_0 = 170$ cm⁻¹, and the Racah correction $\beta_0 = -131$ cm⁻¹ are determined by the spectrum of the free Fe³⁺ ion.¹⁶ We have obtained the EPR zero-field-splitting axial parameters D and $(a - F)$, the cubic parameter a , and the $d-d$ transition spectrum for Fe³⁺ in sapphire by diagonalizing the complete matrices The comparison between the theory and the experimental findings are given in Tables I and II, respectively.

IV. RESULT AND DISCUSSIGN

As remarked by Bleaney and Trenam,⁷ at 0° and 90° the magnetic field H is along a cubic axis of the crystal, where the effect of the first-order term in D in the splitting is zero, while that of the cubic-field term in a is large, assuming the axes of the cubic field nearly coincide with those of the crystal. We determine the cubic parameter a by employing a cubic approximation, in which R_i is equal to a constant and angle θ_i is equal to 54.74°. In this case, the theoretical values for D and F are equal to zero, respectively, so that the approximation is a reasonable one, corresponding to the experimental method.

1698

TABLE III. The influence of parameter a on D and $a - F$.

The EPR zero-field-splitting axial parameters D and F are due to the associated effect of the low-symmetry crystal field and the spin-orbit-coupling interaction among the sextet, quartets, and doublets; they are very sensitive to distortion of the octahedron,²⁰ and can be determined by the splitting energy. From Table III we see that the splitting parameters D and $(a - F)$ are insensitive to a change of the parameter a; therefore, in the general case, the parameters D and $(a - F)$ can be calculated by the following formulas:

6D+
$$
(a-F)/3 = E(\pm \frac{5}{2}) - E(\pm \frac{1}{2})
$$
,
2D+5 $(a-F)/3 = E(\pm \frac{3}{2}) - E(\pm \frac{1}{2})$. (7)

The absorption spectrum of Fe^{3+} given in Table II is only for the center of gravity as represented by Low and Rosengarten, $2¹$ and the spin-orbit coefficient used here is equal to 367.6 cm⁻¹ as defined by the relationship $\zeta = N^2 \zeta_0$, which is less than the experimental finding (440) cm^{-1}), and is also less than that used by Low and Rosen-

TABLE II. Comparison between calculated and experimental values for the $d-d$ transition of sapphire Al_2O_3 : Fe³⁺. All levels in units of cm⁻¹.

	Calc. (trigonal)		Calc. (cubic)	Expt.
${}^6S-{}^4A_2T_1(G)$ ${}^4ET_1(G)$	9224 ^a 9834	${}^4T_1(G)$	9697 ^b	9450 ^d 9450 ^c
$^{4}A_{1}T_{2}(G)$ ${}^4ET_2(G)$	14380 15238	${}^{4}T_{2}(G)$	14876	14350 14350
E E(G) $^{4}A_{1}A_{1}(G)$	22885 22981	$^{4}A_{1}(G)$ E(G)	22981	22 2 7 0 22120
$4ET_2(D)$ $^{4}A_{1}T_{2}(D)$	24 5 3 2 1 24647	${}^4T_2(D)$	24632	25680 25 5 10
E(E(D))	26350	E(D)	26449	26800 26570
$^{4}A_{2}T_{1}(P)$ ${}^{4}ET_{1}(P)$	32067 32354	${}^{4}T_{1}(P)$	32100	29 800 29 000

^aNonvanishing crystal parameters $Y_1 = 282.7117$, $Y_2 = -874.1319$, $Y_3 = 6968.309$ cm⁻¹.

^bNonvanishing crystal parameters $Y_2 = -957.2024$, $Y_3 = 6768.444$ cm⁻¹.

'Krebs and Maisch (Ref. 18).

dLehmann and Harder (Ref. 19).

garten²¹ (420 cm⁻¹); therefore, our result contradicts the expectation of Low and Rosengarten that it is possible to fit the optical spectrum and the initial ground-state splitting by assuming a spin-orbit coupling which is 20%-30% larger than the free-ion spin-orbit-coupling coefficient.

To conclude, a general procedure for calculating the

- 'J. M. Van Vleck and W. G. Penney, Philos. Mag. 17, 961 (1939).
- 2M. H. L. Pryce, Phys. Rev. 80, 1107 (1950).
- 3H. Watanabe, Prog. Theor. Phys. 18, 405 (1957).
- 4M. Blum and R. Orbach, Phys. Rev. 127, 1587 (1962).
- SR. R. Sharma and T. P. Dus, Phys. Rey. 149, 257 (1966); 151, 338 (1967); 171, 378 (1968); Phys. Rev. B 3, 76 (1971).
- ⁶M. L. Du and M. G. Zhao, J. Phys. C 18, 3241 (1985).
- 7B. Bleaney and R. S. Trenam, Proc. R. Soc. London, Ser. A 223, ¹ (1954).
- sA. D. Lieher, Mol. Phys. 2, 123 (1959).
- ${}^{9}C$. A. L. Beeker, D. W. Meek, and T. M. Dunn, J. Phys. Chem. 72, 3588 (1968).
¹⁰T. M. Dunn and W. K. Li, J. Chem. Phys. 47, 3783 (1967).
-
- ¹¹J. C. Hempel and M. E. Miller, J. Chem. Phys. 64, 4307 (1976).
- EPR zero-field-splitting parameters D, a, and $(a F)$ simultaneously is proposed on the basis of the complete matrices for ligand-field spin-orbit-coupling perturbation obtained by us, and the EPR spectrum and the absorption spectrum for $Fe³⁺$ in sapphire have been interpreted uniformly.
- ¹²R. E. Trees, Phys. Rev. **83**, 756 (1951).
- ¹³G. Racah, Phys. Rev. 85, 381 (1952).
- '4G. Y. Shen and M. G. Zhao, Phys. Rev. B 30, 3691 (1984).
- ⁵D. Curie, C. Barthon, and B. Canny, J. Chem. Phys. 61, 3048 (1974).
- ⁶C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 11, 165 (1982).
- 7 Sook Lee, C. M. Brodbeek, and C. C. Yuang, Phys. Rev. B 15, 2469 (1977).
- ¹⁸ J. J. Krebs and W. G. Maisch, Phys. Rev. B 4, 757 (1971).
- ¹⁹G. Lehmann and H. Harder, Am. Mineral. **55**, 98 (1970).
- ²⁰S. Geschwind, Phys. Rev. 121, 363 (1961).
- 'W. Low and G. Rosengarten, J. Mol. Spectrosc. 12, 319 (1964).