Analysis of the electron paramagnetic resonance zero-field splitting for Fe³⁺ in sapphire

Kuang Xiao-Yu

Department of Chemistry, Sichuan Normal University, Chengdu 610066, China

(Received 29 August 1986)

The EPR zero-field splitting of Fe^{3+} in a trigonal-symmetry crystal field has been calculated on the basis of the complete matrices for ligand-field spin-orbit coupling of the d^5 configuration with C_3 symmetry. The absorption spectrum, the EPR zero-field-splitting axial parameters D and F, and the cubic parameter a for the Fe^{3+} ion in sapphire have been interpreted uniformly.

I. INTRODUCTION

Since Van Vleck and Penney¹ first discussed the origin of the zero-field splitting of the ${}^{6}S$ state, many works have referred to it and great progress has been made.²⁻⁶ Sharma discussed various mechanisms and he found that for ${}^{6}S$ -state ions the most important contribution to the zerofield splitting is the associated effect of a low-symmetry crystal field and the spin-orbit-coupling interaction among the sextet, quartets, and doublets. In the present paper, we perform a theoretical calculation of the ground-state EPR zero-field-spitting parameters D, F, and a for Fe³⁺ in sapphire by employing the complete matrices for the ligand-field spin-orbit-coupling perturbation of the d^5 configurations with C_3 symmetry, which are Γ_4 , Γ_5 , and Γ_6 for the sextet, quartets, and doublets.

II. THEORETICAL ANALYSIS

A. EPR parameters D, F, and a

The EPR experimental spectrum of Fe^{3+} in a trigonal crystal field can be analyzed in terms of the spin Hamiltonian given by Bleaney and Trenam,⁷

$$\hat{H}_{s} = g\beta \mathbf{H} \cdot \mathbf{S} + D[S_{z}^{2} - S(S+1)/3] + a[S_{\xi}^{4} + S_{\eta}^{4} + S_{\zeta}^{4} - S(S+1)(3S^{2} + 3S-1)/5]/6$$

+ $F[35S_{z}^{4} - 30S(S+1)S_{z}^{2} + 25S_{z}^{2} - 6S(S+1) + 3S^{2}(2+1)^{2}]/180$. (1)

Parameters D and F are associated with second- and fourth-order spin operators, respectively, and represent a component of the crystalline electric field which is axially symmetric about the C_3 axis; parameter a is associated with a fourth-order spin operator and represents a cubic component of the crystalline electric field. From Eq. (1) the explicit expression for the ⁶S-state splitting energy can be written as

$$E(\pm \frac{1}{2}) = D/3 - (a - F)/2$$

- [(18D + a - F)² + 80a²]^{1/2}/6 ,
$$E(\pm \frac{3}{2}) = -2D/3 + (a - F) , \qquad (2)$$

$$E(\pm \frac{5}{2}) = D/3 - (a - F)/2$$

+ [(18D + a - F)² + 80a²]^{1/2}/6 ,

where $E(\pm \frac{3}{2})$ corresponds to the energy of the Γ_6 state, and $E(\pm \frac{1}{2})$ and $E(\pm \frac{5}{2})$ to Γ_4 or Γ_5 . The parameters *D*, *F*, and *a* for Fe³⁺ in sapphire can be determined by using Eq. (2) and taking a cubic approximation.

B. Energy matrices

Crystal-field spin-orbit-coupling matrices for the d^1 , d^2 , d^3 , d^4 , and d^5 configurations have been discussed by many workers,⁸⁻¹¹ but there has been no work concerning the complete matrices for the d^5 configuration with C_3 symmetry. In this work Dunn's method and formulas are used to determine the matrix elements for the perturba-

tion Hamiltonian

$$\hat{H} = \frac{1}{2} \sum_{i,j} e^2 / r_{ij} + \zeta \sum_i l_i S_i + \sum_i V_i \quad , \tag{3}$$

where ζ is the one-electron spin-orbit coupling coefficient and V_i is the ligand potential

$$V_{i} = v_{20}r_{i}^{2}Z_{20}(\theta_{i},\phi_{i}) + v_{40}r_{i}^{4}Z_{40}(\theta_{i},\phi_{i}) + v_{43}^{2}r_{4}^{4}Z_{43}^{2}(\theta_{i},\phi_{i}) + v_{43}^{2}r_{i}^{4}Z_{43}^{5}(\theta_{i},\phi_{i}) .$$
(4)

The matrix elements are composed of the Racah parameters B, C, the spin-orbit coupling-coefficient ζ , the Trees correction, ¹² the Racah correction, ¹³ and the crystal-field parameters which are of the form

$$Y_{1} = \frac{1}{7} (5/4\pi)^{1/2} v_{20} \langle r^{2} \rangle, \quad Y_{2} = \frac{1}{7} (1/4\pi)^{1/2} v_{40} \langle r^{4} \rangle,$$

$$Y_{3} = (5/28\pi)^{1/2} v_{43}^{c} \langle r^{4} \rangle, \quad Y_{4} = (5/28\pi)^{1/2} v_{43}^{s} \langle r^{4} \rangle.$$
(5)

The parameters v_{kq}^{ξ} are of the same form as those used by Shen and Zhao,¹⁴ $Z_{kq}^{\xi}(\theta_i, \phi_i)$ and $Z_{kq}^{\xi}(\theta_i, \phi_i)$ denote real spherical harmonic functions, and r_i , θ_i , ϕ_i are the coordinates of the *d* electrons.

III. *d-d* TRANSITION SPECTRUM AND EPR ZERO-FIELD SPLITTING OF Fe³⁺ IN SAPPHIRE

By using the average covalency parameter 6,15 N, we have

$$B = N^{4}B_{0}, \ C = N^{4}C_{0}, \ \zeta = N^{2}\zeta_{0}, \ \alpha = N^{4}\alpha_{0}, \ \beta = N^{4}\beta_{0} ,$$
(6)

712

All are units of 10^{-4} cm⁻¹.

0

713

346

TABLE I. Comparison between calculated and experimental values for the zero-field splitting (ZFS) of the ${}^{6}S$ state of sapphire Al₂O₃:Fe³⁺. All are in units of 10^{-4} cm⁻¹.

ZFS	Calc.	Expt.	
$\frac{1}{E(\pm\frac{5}{2})-E(\pm\frac{1}{2})}$	10 307		
$E(\pm \frac{3}{2}) - E(\pm \frac{1}{2})$	3974	4014	
D	1694	1719	
a	259	236	
a-F	343	339	

^aLee, Brodbeeck, and Yang (Ref. 17).

where the Racah parameters $B_0 = 1050 \text{ cm}^{-1}$, $C_0 = 3806 \text{ cm}^{-1}$, the spin-orbit coupling coefficient $\zeta_0 = 440 \text{ cm}^{-1}$, the Trees correction $a_0 = 170 \text{ cm}^{-1}$, and the Racah correction $\beta_0 = -131 \text{ cm}^{-1}$ are determined by the spectrum of the free Fe³⁺ ion.¹⁶ We have obtained the EPR zero-field-splitting axial parameters D and (a-F), the cubic parameter a, and the d-d transition spectrum for Fe³⁺ in sapphire by diagonalizing the complete matrices. The comparison between the theory and the experimental findings are given in Tables I and II, respectively.

IV. RESULT AND DISCUSSION

As remarked by Bleaney and Trenam,⁷ at 0° and 90° the magnetic field H is along a cubic axis of the crystal, where the effect of the first-order term in D in the splitting is zero, while that of the cubic-field term in a is large, assuming the axes of the cubic field nearly coincide with those of the crystal. We determine the cubic parameter aby employing a cubic approximation, in which R_j is equal to a constant and angle θ_j is equal to 54.74°. In this case, the theoretical values for D and F are equal to zero, respectively, so that the approximation is a reasonable one, corresponding to the experimental method.

а	D	a-F
500	1681	334
450	1684	337
400	1687	339
350	1690	340
300	1692	342
250	1694	343
200	1695	344
150	1697	345
100	1697	346
50	1698	346

1698

TABLE III. The influence of parameter a on D and a-F.

The EPR zero-field-splitting axial parameters D and Fare due to the associated effect of the low-symmetry crystal field and the spin-orbit-coupling interaction among the sextet, quartets, and doublets; they are very sensitive to distortion of the octahedron,²⁰ and can be determined by the splitting energy. From Table III we see that the splitting parameters D and (a-F) are insensitive to a change of the parameter a; therefore, in the general case, the parameters D and (a-F) can be calculated by the following formulas:

$$6D + (a - F)/3 = E(\pm \frac{5}{2}) - E(\pm \frac{1}{2}),$$

$$2D + 5(a - F)/3 = E(\pm \frac{3}{2}) - E(\pm \frac{1}{2}).$$
(7)

The absorption spectrum of Fe³⁺ given in Table II is only for the center of gravity as represented by Low and Rosengarten,²¹ and the spin-orbit coefficient used here is equal to 367.6 cm⁻¹ as defined by the relationship⁶ $\zeta = N^2 \zeta_0$, which is less than the experimental finding (440 cm⁻¹), and is also less than that used by Low and Rosen-

TABLE II. Comparison between calculated and experimental values for the *d*-*d* transition of sapphire Al_2O_3 : Fe³⁺. All levels in units of cm⁻¹.

	Calc. (trigonal)		Calc. (cubic)	Expt.
$\overline{{}^{6}S-{}^{4}A_{2}T_{1}(G)}{{}^{4}ET_{1}(G)}$	9224 ^a 9834	${}^{4}T_{1}(G)$	9697 ^b	9450° 9450 ^d
${}^{4}A_{1}T_{2}(G)$ ${}^{4}ET_{2}(G)$	14380 15238	${}^{4}T_{2}(G)$	14876	14350 14350
${}^{4}EE(G)$ ${}^{4}A_{1}A_{1}(G)$	22 885 22 981	$\left. \begin{array}{c} {}^{4}A_{1}(G) \\ {}^{4}E(G) \end{array} \right\}$	22981	22 270 22 1 20
${}^{4}ET_{2}(D)$ ${}^{4}A_{1}T_{2}(D)$	24 532 24 647	${}^{4}T_{2}(D)$	24632	25510 25680
$^{4}EE(D)$	26 350	${}^{4}E(D)$	26449	26800 26570
${}^{4}A_{2}T_{1}(P)$ ${}^{4}ET_{1}(P)$	32067 32354	${}^{4}T_{1}(P)$	32100	29800 29000

^aNonvanishing crystal parameters $Y_1 = 282.7117$, $Y_2 = -874.1319$, $Y_3 = 6968.309$ cm⁻¹.

^bNonvanishing crystal parameters $Y_2 = -957.2024$, $Y_3 = 6768.444$ cm⁻¹.

^cKrebs and Maisch (Ref. 18).

^dLehmann and Harder (Ref. 19).

garten²¹ (420 cm⁻¹); therefore, our result contradicts the expectation of Low and Rosengarten that it is possible to fit the optical spectrum and the initial ground-state splitting by assuming a spin-orbit coupling which is 20%-30% larger than the free-ion spin-orbit-coupling coefficient.

To conclude, a general procedure for calculating the

- ¹J. M. Van Vleck and W. G. Penney, Philos. Mag. **17**, 961 (1939).
- ²M. H. L. Pryce, Phys. Rev. 80, 1107 (1950).
- ³H. Watanabe, Prog. Theor. Phys. 18, 405 (1957).
- ⁴M. Blum and R. Orbach, Phys. Rev. 127, 1587 (1962).
- ⁵R. R. Sharma and T. P. Dus, Phys. Rev. 149, 257 (1966); 151, 338 (1967); 171, 378 (1968); Phys. Rev. B 3, 76 (1971).
- ⁶M. L. Du and M. G. Zhao, J. Phys. C 18, 3241 (1985).
- ⁷B. Bleaney and R. S. Trenam, Proc. R. Soc. London, Ser. A 223, 1 (1954).
- ⁸A. D. Lieher, Mol. Phys. 2, 123 (1959).
- ⁹C. A. L. Beeker, D. W. Meek, and T. M. Dunn, J. Phys. Chem. **72**, 3588 (1968).
- ¹⁰T. M. Dunn and W. K. Li, J. Chem. Phys. 47, 3783 (1967).
- ¹¹J. C. Hempel and M. E. Miller, J. Chem. Phys. **64**, 4307 (1976).

- EPR zero-field-splitting parameters D, a, and (a-F) simultaneously is proposed on the basis of the complete matrices for ligand-field spin-orbit-coupling perturbation obtained by us, and the EPR spectrum and the absorption spectrum for Fe³⁺ in sapphire have been interpreted uniformly.
- ¹²R. E. Trees, Phys. Rev. 83, 756 (1951).
- ¹³G. Racah, Phys. Rev. 85, 381 (1952).
- ¹⁴G. Y. Shen and M. G. Zhao, Phys. Rev. B 30, 3691 (1984).
- ¹⁵D. Curie, C. Barthon, and B. Canny, J. Chem. Phys. **61**, 3048 (1974).
- ¹⁶C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 11, 165 (1982).
- ¹⁷Sook Lee, C. M. Brodbeek, and C. C. Yuang, Phys. Rev. B 15, 2469 (1977).
- ¹⁸J. J. Krebs and W. G. Maisch, Phys. Rev. B 4, 757 (1971).
- ¹⁹G. Lehmann and H. Harder, Am. Mineral. 55, 98 (1970).
- ²⁰S. Geschwind, Phys. Rev. **121**, 363 (1961).
- ²¹W. Low and G. Rosengarten, J. Mol. Spectrosc. **12**, 319 (1964).