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A transfer-matrix representation in terms of Pauli spin matrices is used to perform a phenome-

nological renormalization and finite-size scaling analysis of two-dimensional spin models with

competing interactions in one direction. This enables us to obtain the leading eigenvalues of the

transfer matrix with a significative saving of computer time using the Lanczos scheme. The phase

diagrams of the axial next-nearest-neighbor Ising model and a model with competing two- and

four-spin couplings in one direction are studied. The order of the phase transitions was deter-

mined by examining the finite-size scaling behavior of the persistence length. Data for the normal-

ized scaled persistence length display scaling on the ferromagnetic-paramagnetic transition line for
both models.

I. INTRODUCTION

Two-dimensional spin systems with competing interac-
tions along one direction have been extensively studied
in recent years.

These models exhibit a variety of characteristic effects
which are reflected in the complexity of their phase dia-
grams.

The axial next-nearest-neighbor Ising (ANNNI) mod-
el' and a multispin model with competing two- and
four-spin couplings in one direction (2+4 model), intro-
duced recently by Penson, are two examples of such
models.

Many calculations have already been performed on
these models; examples of these are one-dimensional
quantum Hamiltonian versions using finite-size scaling
(FSS) methods, Monte Carlo simulations, interface
free-energy calculations, and a free-fermion approxima-
tion.

All of them display the same type of phases, although
the phase boundaries are conspicuously different, mainly
in the neighborhood of the point where the ground state
of these models is infinitely degenerate.

In this article we exploit an alternative derivation of
the transfer matrix, which was originally applied by
Schultz et al. to the two-dimensional Ising model. This
technique is easily generalized to two-dimensional mod-
els with complex interactions in one direction.

Using this methodology we present a phenomenologi-
cal renormalization (PR) and FSS analysis of the
ANNNI and the 2+4 models.

The third eigenvalue of the transfer matrix gives a
measure of the interface free energy between the
different phases which coexist at a transition line and
then provides information as to whether the transition is
continuous or first order.

II. THE TRANSFER MATRIX

In a classical paper, Schultz et al. solved the two-
dimensional Ising model by means of a free-fermion for-

@ANNNIIon) n I K2 g onon+2I K2 +
n

In the 2+4 or multispin model, 62+4 is written as

62+4Io"„;h„=OI= —K4 g o"„o"„+Io"„+2o"„+3,K4 &0 .
n

(3)
Following the method of Ref. 7, it is possible to write

the partition function in terms of a single-row state,
~
0 ), which has all their spins s = —1, as

z=(oi(v„v;V, V, ) io) . (4)

The result of Schultz et al. for the Ising model corre-
sponds to the case V0 ——1. The Vs are 2 &2 matrices
given by

VH = exp (H g o."„

n
r

V@ ——exp 8
VI ——exp 'KI go"„"„o+I

Vo ——(2 coshKo) (tanhK0)

mulation of the model. The heart of their method is an
alternative derivation of the transfer matrix.

We use this approach to write the partition function
of a general two-dimensional model system consisting of
M rows and N columns of spins s =+1 and interactions
J, , with Hamiltonian

0~ Ko g OmnOm+1, n KI g mnO nm+I
rn, n m, n

Hg o"—„—+ 8 Ia"„,h„ I, KI )0
m, n

where P= I/k&T, K; =13J;, and o"„ is the usual Pauli
spin matrix for the (m, n) site of the lattice, H is the re-
duced magnetic field, and 6 is a very general type of
rom interaction which can include any combination of
spins s and fields h on the same row and o.„ the Pauli
spin matrix for the n site of an arbitrary row.

In the ANNNI model we have
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where JV is the row number operator written in terms of
spin-raising and -lowering operators:

JV= g cr„+o„

If M ~ oo, it is clear that the free energy per spin, f, is

T lnZ
MX

T ink,
&

X as M~ oo,

where A,
&

is the maximum eigenvalue of T.
With this notation, the correlation function between

two spins in the same row is expressed as

( vl/2 x x v —1/2TM)

TI T

-(~..„~ v,'" "„~"„v "~&..„& -M-

For computational purposes it is convenient to rewrite
Zas

z=(oi v-'"(1) v'" io)
where T is the Hermitian transfer matrix:

T = V01/2VH Vovl V01i2

If there were other interactions between rows besides
the assumed nearest-neighbor constant coupling, the her-
miticity of T would be lost.

It is easy to show that in terms of the eigenfunctions

~ pj ) and eigenvalues A,, (A, » X2~ ) of the transfer
matrix Z can be written as

ygM~ (0~ ) ~2

We used this technique to implement the phenomeno-
logical renormalization and FSS analysis in the standard
form, for lattices up to X =12 with periodic boundary
conditions.

We were able to solve these models for X =12 with a
detailed study of their behavior as a function of tempera-
ture, using a few CPU hours on a VAX 11/780 comput-
er.

The transfer-matrix formulation is intrinsically richer
than the Hamiltonian formulation, because in the later
case, it is only possible to study a highly anisotropic lim-
it case.

Our phase diagrams have been studied mainly for
Kp /K i

= 1, but we also considered the behavior of these
models for Kp/K, =10, 50, and 100 for L ~0.5, where
X measures the degree of competition: X =K& /K,
(X=%4/K, ) for the ANNNI (2+4) model.

For the models we studied, there is a modulation
along the direction of competitive interactions. The
main drawback of our approach is due to the fact that
this direction is, unfortunately, the finite one. This lim-
its mainly our ability to study the wave vector of the
modulation. It should be noticed that we always deal
with 2 &2 matrices, while an implementation with the
modulation along the infinite direction has to deal with
4 ~4 and 8 ~8 matrices in the ANNNI and 2+4
models, respectively.

III. RESULTS

A. Calculated magnitudes

In this work we calculated the following five magni-
tudes.

(i) Correlation length,

(= I /In ( A, /A, 2 ) . (12)

where
~ p),„denotes the eigenvector corresponding to

the maximum eigenvalue.
In our case G~NNN, and 82+4, acting on any row state

~si, s~, . . . , sg, ), characterized by the z component of
the spins s (and H =0), flip an even number of them.
Hence, there are two invariant subspaces of dimension
2 ' containing, respectively, the eigenvalues X„k3, . . .
and kz, A,~, . . . . This represents an important saving of
computer time.

The main advantage of our approach with respect to
other implementations of the transfer-matrix method is
that we never need to actually construct the T matrix.
Instead, we have an operational representation of r in
terms of spin-raising and -lowering operators.

The Lanczos' scheme for searching the leading eigen-
values of T is highly e%cient when it is used with this
approach.

Hence we only need to keep proper track of all spin
(lips produced by applications of f' to any row state (see
the Appendix).

It is remarkable that, for X = 12, few iterations
(5 —15) of the I.anczos process are sufficient to obtain
the first three eigenvalues of T with acceptable accuracy
(10 —10 )

(ii) Scaling function, " Y(N, N'),

Y(N, N') =ln(g~/g~, )/ln(N!N'), (13)

/=1/ln(A, , /k3) . (14)

This magnitude is a measure of the interface free energy
between the different phases which coexist at a transition
line.

(iv) Specific heat,

C= —k T (15)

which was numerically obtained from our data of A. , (T).
%'e used 50 values of temperature in each determination.
Throughout this paper we use k~ T =J, /K „where J, is
the nearest-neighbor interaction along the x (or row)
direction.

(v) The critical exponent of the correlation length, v,

where g~ (g~ ) is the correlation length for a oo &&N

( oo &&N ) lattice. This magnitude is used to characterize
the different behaviors of the correlation length for the
different phases. In general, X'=X —1, but as explained
below, for X ~0.5 we used %'=X —4.

(iii) Persistence length g',
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B(N/g~ )
v = ln(N /N') /ln

aT
B(N'/g~ )

aT
(16)

Additionally, for the ANNNI model we used the
correlation function to gain a qualitative understanding
of the behavior of the different phases. In this case the
rather small lattice sizes we were able to study constitute
a serious limitation.

B. The ANNNI model

For X &0.5 the ordered phase boundaries were deter-
mined using phenomenological renormalization.

Figure 1 shows the finite-size behavior of the correla-
tion length for X=0.3. It can be observed that the tran-
sition temperature is rather insensitive to changes in the
lattice size.

On the other hand, the specific heat has a stronger
size dependence. If X &0.35 we found a single phase
transition; we show here (Fig. 2) the specific heat for

It is well known that if E0 & 0 the ground state of this
model for X &0.5 is ferromagnetic, while for X~0.5 it
is an antiferromagnetic state known as (2), character-
ized by a periodic arrangement consisting of two up
spins followed by two down spins along the x axis. The
spin arrangement along the y axis is always ferrornagnet-
ic. For X &0.5 the ground state is fourfold degenerate;
moreover, as its periodicity is 4, one must use lattices
with N =4, 8, 12, . . . to avoid introducing artificial inter-
faces.

1. X &0.5

X =0.45 to exhibit a case with both transitions. Figure
3 shows the scaling function Y as a function of tempera-
ture, for X=0.45. It is convenient to study its behavior
together with PR (see Fig. 4) for the same data.

We distinguish the following three regions.
(1) T &0.91. This corresponds to an ordered phase

whose correlation length grows exponentially with N.
We verified that in this case the scaling function grows
linearly with N, in agreement with the expected ex-
ponential growth of the correlation length. "

(2) T =0.912. This phase-transition point is found by
means of PR (Fig. 4), but it is interesting to see that it is
also clearly shown in the Y-versus-T curve.

(3) A region where Y is asymptotically independent of
N. This is consistent with a phase-transition point
where the correlation length grows algebraically with N.

2. X)0.5

For X &0.5 our results show that there are two phase
transitions. At low temperatures we verified that the
correlation function shows a behavior consistent with
the (2) phase; unfortunately, due to the structure of its
ground state, we are unable to use the correlation func-
tion to study the other phases.

The phase boundaries were determined using PR (see
Fig. 5). As a check we used the scaling function for
N =12 (Fig. 6). A true determination of the phase boun-
daries with this method requires another curve, for in-
stance, for N =16. We did not do this, for computation-
al reasons. Of course, we computed Y for N =8, but

0.55

0.45

Q. 35

Q. 25

Q. l5

0-63 0.65 0.67 0.69

FIG. l. Inverse correlation length as a function of inverse temperature for the ANNNI model, X =0.3. Data for N =5,7, 9, 11
are not shown in order to improve the clarity of the figure.
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here size effects are too large for this width. Rather, we
used the N =12 result by analogy with the behavior
shown by the same kind of function for X & 0.5 (Fig. 3).
Hence we are assuming that the lower transition hap-
pens for T & Tz, while the second transition occurs
around Tz. These estimates are in close agreement with
PR results.

2. 90

c/kB

2.32—

1. 74—

G. 58 —.

0.95

(

1.0 0

I

105

(

1.1 0 1.15

J,(k BT

0.55

C/k,

0.49—

0.4 3—

0.37—

0.31—

0.360 0.560
)

0.760 0.960
Jt kBT

FIG. 2. Specific heat as a function of inverse temperature
for the ANNNI model, X=0.45. In (a) we show the low-
temperature transition for N =6—12. It can be seen that it
converges to T, =0.86. The behavior at the high-temperature
transition (b) is rather different and these data cannot be used
to find the value of T„showing that, apparently, size effects
are more relevant at the second transition.

C. The 2+4 model

For K0 & 0 and X &0.5, the ground state of this model
is ferromagnetic, while for X &0.5 it is an octuplet con-
sisting of repeated patterns of spins, such that
sgn(s ~s2s3$4) = —1: (+ ———), ( —+ ——),
( —+ + + ) along the x axis. The spin arrangement
along the y axis is always ferromagnetic.

Kolb and Penson' used the quantum Hamiltonian
approach to study this model in the highly anisotropic
limit case K, ,K4 ~0, Ko ~ op with h /y,
=K, ' exp( —2KO), h/y2=K& ' exp( —2KO), where h is
a transverse magnetic field and y& and y2 are the quan-
turn interactions, and found that there is only one
phase-transition line for all values of X.

In our case, the determination of the transition point
for Ko/K& ——1, and small values of X, was almost in-
dependent of the size of the sample, as can be seen in
Fig. 7, while for X near 0.5 it has a pronounced depen-
dence with N. In the neighborhood of X &0.5 we get a
rough estimate of the size dependence comparing critical
temperatures obtained with N =10 and 12. We find two
different types of behavior, which are best described with
the help of the data for Y(T). At low temperatures Y
increases linearly with N (Fig. 8), implying an ordered
phase (exponential growth of the correlation length). "
At high temperatures, Y decreases exponentially with N,
as is the case for a disordered fiuid phase (correlation
length asymptotically independent of N). At T = l. 2
there is a critical point.

There is no evidence of another change, as was the
case for the ANNNI model, i.e., we did not find a modu-
lated phase, in agreement with Ref. 12.

D. Order of the transitions and phase diagrams

The order of the phase transitions was determined
with the help of the scaled persistence length in the fol-
lowing form. Once the transition line is determined, we
calculate g~/N for several values of N on this line.

If the scaled persistence length increases with N, then
the transition is first order. If g&/N decreases with N,
the transition is continuous.

For the lowest transition of the ANNNI model we
found that g~/N grows with N, implying that this tran-
sition is always first order, except for X =0 (the Ising
model). The same result is obtained for 2+4 model (see
Fig. 9).

We want to point out, however, that a determination
of the critical exponent v for both models and X &0.5

gives v = 1.00+0.01. Scaling relations then give
a =2 —d v =0.00+0.01. This seems to indicate that
these transitions belong to the Ising-model universality
class, implying that the transitions should be continuous.
This is also the main assumption of FSS methods, '

which for a critical point predict an algebraical growth
of the correlation length with N, as can be observed, for
instance, in Fig. 3 (at point L).

A more unreliable determination of o. obtained from
the specific-heat data gives a rather large value, suggest-
ing, on the contrary, that the transition could be first or-
der. At the second transition of the ANNNI model,
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YN
6.0-

X= O. I.5

L'
2. 0 A B C

0.0

—2.0

-4.0 '

0.85 0.90 0.95 1.00 1.05 1.10

FICr. 3. Scaling function Y vs T, X =0.45, for the ANNNI model. The system has a phase transition from the low-temperature

ferromagnetic phase to an intermediate, short-range-order phase, at point L (TL =0.912). If T & TI the scaling function Y grows
linearly with the width N of the strip, implying that the correlation length grows exponentially with N. Points D, C,B, A are suc-
cessive estimations of a second phase transition which takes place around T„=0.97, from the intermediate- to the high-
temperature paramagnetic phase. A qualitative determination of the correlation function in the paramagnetic phase indicates that
near T„ it has an oscillatory behavior superimposed on its exponential decay.

N/(N

0.55
X= O. L, 5 N/(~

0.SO

X= 0.55

0.40

0.35

0.25

0.30

0.15 0.20

0.0
Q. 95

I

0.99

I

1.03 1.07 1.15 0-10

J1/k T

FIG. 4. Inverse scaled correlation length vs inverse temper-
ature for the ANNNI model, X =0.45. The small region in-
side the square in the right-hand corner near TL ——1.10 has a
behavior similar to that shown in Fig. 1. The phase transition
at point L follows closely that shown in Fig. 3. Points
D, C,B, A are successive approximations of the second transi-
tion temperature, as determined by phenomenological renor-
malization. Note that points A —D are in correspondence with
the same points shown in Fig. 3.

0. "&

1.0L 1.12 1.20 1.2B 1.36 1. L4

J„/kBT

FICx. 5. Inverse correlation length as a function of inverse
temperature for the ANNNI model, X=0.55. For this value
of X it is necessary to use lattices with %=4,8, 12. . . due to
the ground-state structure and the use of periodic boundary
conditions. Points A and B denote our estimate of the first
and second transition temperatures.
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8.0

6.0—

4. 0

2. 0

0.0

-2.0

guish in a qualitative form a region without modulation
(q =0), just above the ferromagnetic phase, and a region
with q&0, above it.

We have been unable to study the intermediate phase
for X & 0. 5 in any detail, with the exception of the deter-
mination of its phase boundaries.

The phase diagrams of the 2+4 model has some simi-
larities with the diagram of the ANNNI model, having a
ferromagnetic (F) and a degenerate phase (D) in
correspondence with the F and ( 2 ) phases of the previ-
ous model. On the other hand, we found no evidence of
modulated phases or disorder lines, as was the case in
the ANNNI model.

As a by-product of our analysis of the behavior of the
persistence length preliminary results seem to show that
the normalized and scaled persistence length,

-8.0
0.75 0.85 0.95 i.05

I I

1.15

kBT!J)
l. 25 1.35

gz/N decreases with X, indicating that it is always con-
tinuous. All this information is summarized in the phase
diagrams of the models (see Figs. 10 and 11).

The ferromagnetic (F) and (2) phases of the ANNNI
model have long-range order. The paramagnetic phase
( ) has short-range-order correlations; we can distin-(P) h

FIG. 6. Scaling function Y' vs temperature, X =0.55, for the
ANNNI model. The estimations of the first and second transi-
tion temperatures, points 3 and B, respectively, agree with the
determination made in Fig. 5. Size eft'ects are too large to con-
sider the N =8 curve.

I~=[/~(KO, K, ,X)/X]/[g~ (KO, K,X)/Xo],

scales on the lower transition line, for X & 0.5 and
E0/E& ——1, 10, 50, and 100, for both models. Our re-
sults (Fig. 12) show that the phase transition is first or-
der for all these values of the ratio K0/E]. The scaling
property is lost for X &0.5.

I
h

t is perhaps interesting to remark once more that tha e

p ase boundaries were determined by the use of FSS
methods, the validity of which is widely accepted for
continuous transitions. On the other hand, we have used
the persistence-length criteria to find regions of these
boundaries where the transitions are first order.

This inconsistency is shared with all recent works
published on first-order phase transitions studied with

Q. 65

N/fN

Q. 60

0.55

0.50

0.45

0.520 0.525 0.530 0.530

J)/kBT

FIG. 7. IG. 7. Inverse correlation length vs inverse temperature for th 2+4 d l, —0.2.
order to improve the clarity of the figure.

e mo e, x= . . Datafor N=579 11ar nare not shown in
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X= 0.45

k T

J,
ANNN I model

6. 0

L q-0',

4.5

1.0-
(2)

3.0

1.5

0. 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x K,
K,

1.5

%kggg

i 1

2. 50

FIG. 10. Phase diagram of the ANNNI model. Size effects
are negligible on the lower transition line, and very difficult to
estimate along the second transition line.

k T/'J,

FIG. 8. Scaling function Y vs temperature T, X =0.45, for
the 2+4 model.

0.30

FSS and PR techniques, and is a point which deserves
further investigation.
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10 APPENDIX

0.25—

The purpose of this appendix is to illustrate how the
action of the transfer matrix on any row state can be re-
duced to a simple spin-flip process. We describe the pro-
cedure for the ANNNE model, but it can be carried out
in the same way for any other model with complex in-
teractions in one direction.

Let
~

tti) be any row state expressed as a linear com-

k T

J,

1 P

2+4 model

0.20—
2.0

1.672 1.738 1.891 1.989 2.089 2.193 "BT
(X=0.3' (X=0.25 ) (X= 0. 2 ) ( X=0.15) ( X=0.10 ) ( X=0.05 ) J

FIG. 9. Scaled persistence correlation length (g/X) vs tran-
sition temperatures for the 2+4 model. At its lower transition
temperature, the ANNNI model exhibits a similar behavior.
This figure implies a first-order transition. At X =0 (the Ising
model) pe� /N decreases with N, as it should for a continuous
transition.

)0-

G. 0 I

'3. 0 '.3. l

I

0.2 0. 4

/
/

D
I
I
I
I
I

I

i I i

G. 5 0.5 0.7 0. 8 G. 9 1.0

x Ki

K,

FIG. 11. Phase diagram of the 2+4 model. Size effects are
only noticeable around X =0.5. For X =0.47 and 0.49 we also
show the transition temperature for N =10 (symbol X) as a

rough estimate of the size dependence.
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ip I-
(A4)

(A5)

X X X X+N+1 ~1~ +N+2 ~2

The application of Vo ——( tanhKo) to any state
I it )

gives

n /2
where u~'=( tanhKo) ' u~, and n~ is the number of up
spins of

I p, )
The action of any P„on an arbitrary state

I
it ) can be

written as

N=S N-"
(A6)

FIG. 12. Normalized scaled persistence length,
I~ = [g~(Kp, K&,X)/NJ /[g'~ (Kp, K(X)/Xp J, for cVo = 12 and

X =0.3. Data for Ko/KJ ——1 10, 50, and 100 on the transition
line separating the ferromagnetic and paramagnetic phases for
both models, can be fitted by a single curve, showing a scaling
property of I&. For X & 0.5 we found that this property is lost.
The continuous line is only a guide to the eye.

where

0j 2 coskK o cosLE ) cos11K2

X(u, + tanhK, u, („„+,(+ tanhK, u, („„+~)
+ tanhK, tanhK2u („+,„+2I), (A7)

where
I g, ) =

I s,', . . . , s,
' ) .

According to Eq. (8), the transfer matrix of the
ANNNI model can be written as

T—Vo &N Vo (A2)

where

n =1

P„=2coshKo coshE
&

coshE2

X (1+tanhK(cr„o'„+ i+ tanhK2o „o'„+p

+ tanhKi tanhK2o „,r+„()+,2
V('i ——( tanhKo )

(A3)

and A' is the row number operator. A simply counts the
number of up spins of any state.

Periodic boundary conditions are expressed as

bination of 2 row states quantized along the z direction.
2N

(A 1)

and j(ni, n2) is the index of the row state
I yj(„„~)

obtained by Gipping the spins sj „,sj „ofthe row state

This is clearly seen by remembering that

(A8)

Repeating this calculation scheme N times for each of
the N generated vectors, one can compute the effect of
P~ on any state

I
f).

Applying the operator V o again in the way ex-
plained above, one can finally compute the total effect of
the transfer matrix on any initial state

I
g).

To accon1plish this purpose it is only necessary to con-
struct a vector n=(n, , . . . , n ~) whose components nj
are the number of up spins of the

I y ) state, and a
2 &N matrix whose elements N, give the index of the
state obtained by flipping the s, spin of the state

I y ).
Hence, by this method we never need to actually con-
struct the transfer matrix.

Note that the type of interaction of the model is
defined in Eq. (A7), which, in our computer program, is
merely a simple subroutine.

It is ~orth~hile to point out that the Lanczos scheme
provides not only the leading eigenvalues, but also it is
possible to obtain

I y ),„, the eigenvector corresponding
to the maximum eigenvalue, and then obtain information
about the correlation function.
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