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The theory of a ferromagnetic resonance (FMR) method for determining the magnetic surface
anisotropy of amorphous films is presented. This method enables one to deduce the surface anisot-
ropy constant K, of an amorphous material from the dependence of the magnetic resonance field
on the film thickness. The analysis includes spin-wave modes and surface-induced modes, perpen-
dicular and parallel FMR configurations, and thin as well as ultrathin films. No approximations
are made other than the linearization of the equation of motion and the assumption that skin-
depth effects and electromagnetic propagation effects are negligible. Good agreement is found be-
tween the theory of the method and experimental FMR data on ultrathin films of amorphous Fe-B
alloys. The reliability of the K, values deduced by means of the theory from experimental FMR
and superconducting quantum-interference device data is briefiy discussed.

I. INTRODUCTION

In a recent paper' we reported on ferromagnetic reso-
nance (FMR) measurements of the magnetic surface an-
isotropy energy of amorphous films. The method used
in interpreting the measurements includes an adaptation
to amorphous materials of a theory which treats the
effects of surface anisotropy on the FMR in ultrathin
monocrystalline films. This adaptation makes it possible
to deduce the surface anisotropy constant K, of an
amorphous material from the dependence of the magnet-
ic resonance field H„, on the film thickness 2L.

The main purpose of the present paper is to derive
and discuss the theory of our FMR method for deter-
mining the surface anisotropy of amorphous films. Since
Ref. 1 was subject to the length restrictions of a confer-
ence paper, its treatment of the theory was confined to a
mere listing of the final equations for H„,. Although
the theory for amorphous media is somewhat analogous
to that developed for monocrystals, we believe that it is
worth presenting the former for its own interest and for
the purpose of treating several subjects omitted in the
latter. These subjects include (a) spin-wave modes rather
than just surface-induced modes, (b) perpendicular rath-
er than just parallel FMR configurations, and (c) thin
rather than just ultrathin ferromagnetic films. Our for-
rnulation of the theory is, moreover, relatively compact
and unified but nevertheless suitable for further exten-
sions.

Also included in the present paper is a more extensive
comparison of theory and experiment than was possible
in Ref. 1. In particular, we are now in a position to ana-
lyze the reliability of the FMR method for measuring
K, . This analysis makes use of our recently obtained ex-
perimental magnetization data based on a superconduct-
ing quantum-interference device (SQUID) experiment on
the alloys used in the FMR experiments.

As to previous work, we note that the literature con-

tains several theoretical and experimental investigations
of surface anisotropy and that these have been reviewed
by Puszkarski and by Gradmann. In the present paper
we report a different method for experimentally deter-
mining K, in amorphous films. Because of the two
features discussed below, we believe that this method is
more reliable than previous methods. Firstly, we use
several values of the film thickness 2L for any given ma-
terial. This means that if we obtain-from measurements
of H„, the same value of K, for several values of 2L, as
we do in this paper, then our deduced K, is independent
of 2L and thus represents a true surface property of the
material under investigation. Secondly, we show in this
paper that both the FMR data and the SQUID data in-
dicate the magnetization to be homogeneous. Our de-
duced K, value represents, therefore, a true surface an-
isotropy rather than a simulated surface anisotropy
caused by an inhomogeneous volume magnetization. We
believe that in some previous methods it is the absence
of these two features which has led to questionable K,
measurements.

u X [V„E,—2A (Bu/tin )]=0 (2)

where u=M/M is a unit vector along the magnetization
M. The symbols E, and E, denote the volume and sur-
face density, respectively, of the total energy other than
ferromagnetic exchange. Each of the quantities y,
V„, and 8/Bn is defined in Ref. 2, and the coordinate
system to be used is depicted in Fig. 1. The damping of

II. THEORY

A. Magnetization equations and boundary conditions

The calculations which follow are based on the equa-
tion of motion of the magnetization

( I/y)(t)u/Bt ) =uX [ —( I/M )V„E,+(2A /M)V~u] (I)

and on the general exchange boundary condition
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(M/y )(slile)(a(()/at ) +aE, /ae

+ A (sin28)(VQ) —2A V 8=0, (4)

and from Eq. (2) the 8 and P component equations

BE, /BP —2A (sin 8)(ap/Bn ) =0,
aE, /ao —2A (ao/an ) =0 .

We then introduce the decompositions

0=HO+0),

4=40+%i

(7)

(8)

where the subscripts 0 and 1 denote the static and time-
dependent components, respectively. After substitution
of Eqs. (7) and (8) into Eqs. (3)—(6) we retain, at this
point, only those terms which do not contain either L9& or

This leads to the static magnetization equations

( BE, /Bp )0 —2 A ( sin28 )( Veo Vp )

—2A (sin 80)V2PO —0, (9)

the magnetization is neglected, and it is assumed that
the ferromagnetic film is sufficiently thin for skin-depth
effects and electromagnetic propagation effects to be
negligible.

By means of a straightforward calculation, we obtain
from Eq. (1) the 8 and P component equations

—(M /y )(sine)(ae/Bt ) +BE, /BP

—2A (sin28)(V'8 VP) —2A (sin 8)V' /=0, (3)

and to the static boundary conditions

(BE, /BP) —2A (sin 8 )(BP /Bn ) =0,
(BE, /Be) —2A (Be /Bn ) =0 . (12)

as the necessary and sufficient condition for the static
magnetization to be uniform.

Returning to the equations obtained upon substituting
Eqs. (7) and (8) into Eqs. (3)—(6), we now retain only
those terms which are of first order in 8& and P&. The
resulting equations will not be presented explicitly be-
cause we immediately begin to simplify them by assum-
ing the static magnetization orientations to be uniform.
Thus we equate to zero all terms containing Veo, V/0,
V $0, and BPO/Bn. This yields the dynamical magnetiza-
tion equations

—(M /y )(sine, )(ae, /at )+ (a'E„/ae ay), e,

+(B E, /BP ) P, —2A(sin 8 )V $, =0,
(M/y)(sine )(BpiIBt)+(B E, /Boa/)opi

(14)

Next we seek those orientations of the static magneti-
zation which are spatially uniform. These orientations
are of particular interest because it is only for a spatially
uniform static magnetization that the dynamic magneti-
zation can be described relatively simply, namely by
differential equations with constant coefficients. By in-
spection of Eqs. (9)—(12) we obtain

(BE„/ay), =(BE,/ao), =(aE, Iay), =(BE, /ao), =0

(13)

(BE, /Be)0+ A (sin2eo)(V/0) —2A V 80 —0, (10) +(B E, Iae )oei —2A V Oi ——0, (15)

and the dynamical boundary conditions

(B E, /BP )ogi —2A(sin Oo)(api/Bn )

+(a'E, Iaeay) 8, =0, (16)

(B E, /Be ) 8, —2A(ae, /att )+(a'E, Iaeay), y, =o .

(17)

FIG. 1. Orientation of the Cartesian-coordinate system used
in the calculations. The amorphous film is bounded by the
planes y =+L but unbounded along the x and z axes. The ap-
plied static magnetic field H and the instantaneous magnetiza-
tion M are also shown.

E, = —MH(cositj sine cosP+ sing sine sing

+2~M sin Osin P), (18)

To show that the static magnetization is indeed uniform,
as assumed in Eqs. (14)—(16), we must still use the neces-
sary and sufficient condition which is embodied in Eq.
(13) and thus depends on the expression chosen for E„
and E, . Before doing that, however, we note that each
of the quantities 8, and P, will be assumed to be propor-
tional to exp(icot+ky), where co is the circular frequency
and k is the (as yet unknown) propagation constant. As
shown below, k must be purely real, corresponding to
surface waves, or purely imaginary, corresponding to
spin waves.

Any significant progress beyond this point requires the
use of Eq. (13) and hence the specification of explicit ex-
pressions for E, and E, . With a view toward the experi-
ments of Ref. I we assume that E„ is given by
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i.e., by the sum of a Zeeman term and a demagnetizing
term. We neglect terms arising from crystalline volume
anisotropy because the films under consideration are
amorphous. If the method of film preparation gives rise
to a deposition-induced volume anisotropy, then an addi-
tional term can easily be added to Eq. (18).

We assume that even near the film surface the magne-
tization is homogeneous. We further assume that E, is
given by

E, = —K, sin 8sin P, (19)

i.e., solely by the lowest-order term of the surface anisot-
ropy energy density allowed by symmetry. According to
Eq. (19) the y axis is the easy or hard axis of the surface
anisotropy depending on whether E, is positive or nega-
tive. Since H is in the xy plane, as shown in Fig. 1,
there is no reason for the spatially uniform static magne-
tization to have a component along the z axis. Thus we
take the value of 8o to be vr/2 and find that Eq. (13)
yields the two solutions

/=0 8o=n/2 Co=0

g =~/2, 8o ——~/2, Po
——ir/2,

(20)

(21)

which represent the only spatially uniform orientations
of the static magnetization. It is just these experimental
arrangements (/=0 and ir/2) which were used in Ref. l.

B.Parallel FMR configuration

To treat the parallel FMR configuration we substitute
Eqs. (18)—(20) into Eqs. (14)—(17). In this way we obtain
the particularized form of the dynamical magnetization
equations

(i co/y )M8I —(MH+4vrM 2Ak )P&
—0—,

(MH —2Ak )8, +(ico/y )Mctp) ——0,
(22)

(23)

(25)

In order that Eqs. (22) and (23) possess a nonvanishing
solution, the secular determinant of their coefficients
must vanish. This requirement yields the dispersion re-
lation

co/y= {[H—(2Ak /M)][H+4~M —(2Ak /M)]j'~

and the particularized form of the dynamical boundary
conditions

(24)

obtain the amplitude ratio

v =P)/8i ——(iy/co)[H —(2A /M)k ], (29)

which may be combined with Eqs. (27) and (28) to give

u, 2=(iy/co)[[(2vrM) +(cu/y) ]' —2aM j,
v3~ ———(iy/cu)[[(2m. M) +( co/y) ]'~ +2aM j,

(30)

(31)

+ C&sinh(k3y ),
P )

——C) v ) cosh(k (y ) + C2v3cosh(k 3y )

+ C3 u
&
sinh( k &y ) +C4 u 3 sinh( k &y )

(32)

(33)

where Ci, C2, C3, and C4 are unknown coefficients, k&

and k3 are the positive roots of Eqs. (27) and (28), re-
spectively, and the factor exp(icot) is suppressed. The
expressions (32) and (33) must now be made to satisfy
the boundary condition Eqs. (24) and (25) at each of the
film surfaces y =+I,. But if the boundary conditions are
symmetric, as we assume in this paper, then they need
be satisfied by only those parts of 8& and P& which are
symmetric. The secular equation arising from the
boundary conditions has the solution

Ak&k3[1 —(ui /u ~ )]sinh(k, L )sinh(k3L )

=K, [k&sinh(k3L )cosh(k &L )

—(v /3v )kisiihn(k&L )cosh(k3L )], (34)

which may be used with the help of Eqs. (27) and (28)
for calculating the desired resonance field H =H„, cor-
responding to the parallel FMR configuration. Another
form of Eq. (34) can be obtained in two special cases. In
one of these cases k& and k3 are purely real, and in the
other case k

&
and k3 are purely imaginary with

cosh(k, L )+0 and cosh(k3L )&0. For either of these
cases we can express Eq. (34) in the form

2 A ( I+ b, )k ~
k t 3ha(nk

&
L )tanh( k 3L )

K3[(2+6 )kitanh(k, L )+(b, ) kta3hn(k3L )], (35)

where 6 is defined by

where U„ is the value of U for k =k„. The modes corre-
sponding to Eqs. (30) and (31), i.e., to Eqs. (27) and (28),
represent an elliptical precession of the magnetization in
the Larmor and anti-Larmor sense, respectively.

The general solutions of Eqs. (22) and (23) are

8i ——C&cosh(k &y )+Czcosh(k3y )+C3sinh(k, y )

(26) b, =[1+(co/2rrMy) ]'i —1 . (36)

which is quadratic in k and has the two pairs of roots

(2A /M)k f 2 =H+2~M —[(2aM) +(co/y) ]'

(2A /M)k34 H+2~M+——[(2aM) +(cu/y) ]'
(27)

(28)

which correspond to two modes degenerate in energy.
Since the frequency co is a real number (because we con-
tinue to neglect damping), we see from Eqs. (27) and (28)
that each of the quantities k

& z and k3 4 must be purely
real or purely imaginary. From Eq. (22) or Eq. (23) we

It was the set of Eqs. (27), (28), (35), and (36) which we
presented in Ref. 1 for the parallel FMR configuration
without proof or discussion. In that reference we used
Eqs. (27) and (28) to calculate H~~„ from Eq. (34) rather
than from the Eq. (35) presented there.

Turning now to the nature of the dynamic magnetiza-
tion in the parallel FMR configuration, we begin by con-
sidering Eqs. (27) and (28). From Eq. (27) we see that
k

& 2 may be positive or negative, depending on the mag-
nitude of H. If k& 2 is positive, then k& 2 is real, which
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corresponds to surface modes, but if k& 2 is negative,
then k& 2 is imaginary, which corresponds to spin-wave
modes. From Eq. (28), on the other hand, it follows that
k 3 g is always positive so that k 3 4 is always real and cor-
responds to surface modes. To determine whether k& 2

is real or imaginary we must consider Eq. (34). The
quantity v&/vi appearing in this equation is always nega-
tive, as shown by Eqs. (30) and (31). Thus Eq. (34)
shows that if K, is positive then the mode corresponding
to k i is either a (unique) surface mode or some
(nonunique) spin-wave mode. If, however, K, is negative
then k, can correspond to a (nonunique) spin-wave mode
only. We emphasize, at this point, that if K, is not zero
then the k

&
and k3 modes are both needed to satisfy the

boundary conditions. If K, vanishes then only the k&

mode can exist.

C. Perpendicular FMR configuration

Ak tanh(kL)= —K, , (46)

III. DETERMINATION OF THE SURFACE
ANISOTROPY

which may be used in conjunction with Eq. (41) for cal-
culating the desired resonance field H =H„,. It was the
Eqs. (41) and (42) which we presented in Ref. 1 for the
perpendicular FMR configuration without proof or dis-
cussion.

The nature of the dynamic magnetization in the per-
pendicular FMR configuration can be discussed by a
method analogous to that used for the parallel FMR
configuration. We find, on the basis of Eq. (46), that if
K, is positive then k can only correspond to a (unique)
spin-wave mode, and that if K, is negative then k can
correspond either to a (unique) surface mode or to a
(nonunique) spin-wave mode.

The treatment of the perpendicular FMR config-
uration involves substitution of Eqs. (18), (19), and (21)
into Eqs. (14)—(17). This leads to the particularized
form of the dynamical equations,

(ice/y )MOi (MH 4—mM —2Ak —)P, =0,
(MH 4aM 2—A k. )8,—+ (i co /y )M Q )

——0, (38)

and the particularized form of the dynamical boundary
conditions,

K,P, —A BP, /Bn =0,
K, Oi —ABOi/Bn =0 .

(39)

(40)

The requirement that Eqs. (46) and (47) possess a non-
vanishing solution yields the dispersion relation

co/y=H —4aM —2Ak /M . (41)

u =P, /8, =(i@/cu)(H —4aM —2Ak /M),
which may be combined with Eq. (41) to give

(42)

(43)

Thus the precession of the magnetization is circular and
there are no degenerate modes.

The general solutions of Eqs. (37) and (38) are

Oi D& cosh(ky)+D2——sinh(ky),

Pi D i ucosh(ky)+D2vsinh——(ky),

(44)

(45)

which are analogous to Eqs. (32) and (33). Here D~ and
D2 are unknown coefficients and the factor exp(idiot) is
suppressed. The expressions (44) and (45), of course,
must be made to satisfy the boundary conditions (39)
and (40) at each of the film surfaces y =+L. For
reasons explained just after Eq. (33), however, the
boundary conditions need be satisfied by only the sym-
metric parts of Oi and )l)&. This requirement leads to

Since co is a real number (because we continue to neglect
damping), Eq. (41) shows that k must be purely real or
purely imaginary. From Eq. (37) or (38) we obtain the
amplitude ratio

In this section we use the theory of Sec. II and the ex-
perimental FMR data of Ref. 1 to determine the surface
anisotropy constant K, of amorphous films of
Fe Bj oo „. Since the preparation of the films and the
method of measurement have already been discussed in
Ref. 1, we now turn directly to the experimental and
theoretical results. For the x =50 films the data corre-
sponding to the parallel FMR configuration were taken
at 9.52 and 24.03 GHz, and the data corresponding to
the perpendicular configuration were taken at 9.52 GHz.
The experimental points and theoretical lines for the
parallel configuration are shown in the upper part of
Fig. 2 and for the perpendicular configuration in the
lower part of Fig. 2. We note that both experimentally
and theoretically the sign of the slope of H„, versus
1/(2L) is opposite in the two configurations. For the
x =70 films the parallel configuration only was used for
both the 9.52- and 24.03-GHz data, and the correspond-
ing experimental points and theoretical curves are shown
in Fig. 3.

Since the thicknesses 2L of our Fe B&oo „ films are
known from direct measurements, we may calculate H„,
as a function of 1/L by substituting Eqs. (27) and (28)
into Eq. (34). Such a calculation clearly requires that all
the other quantities appearing in these equations be
known. Actually, however, the values of K, are un-
known and the values of M are known for bulk samples
only. Although the parameters g and 2 are not well

known, we can approximate g by the value 2.09 ap-
propriate for metallic iron, and 3 by the values
5.5& 10 erg/cm for x =50 and 1.38& 10 erg/cm for
x =70 derived in the Appendix from published values of
the Curie temperature.

To determine the values of K, and M for a given x we
fitted suitable theoretical curves of H~~„versus 1/L to
the experimental points shown in Fig. 2. Specifically, we
began by assuming a reasonable value for M and then
calculating K, from Eq. (34). For x=50, for example,
we used the initial value M=450 emu previously mea-
sured for x =48. In this way we calculated a K, value
corresponding to each of the six L values. Next we
varied the initial M value in steps of 10 emu until we at-
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JOO
i

2L (A~)
50 so

7.0

tained that final M for which the root-mean-square devi-
ation of the six calculated K, values from their average
became a minimum. The average K, value correspond-
ing to this minimum root-mean-square deviation was
then adopted together with the final M value as being
the "best-fit values" of K, and M. These latter values,
namely K, =0.20 erg/cm and M=570 emu, were then
used for calculating H,"„as a function of 1/L from Eqs.
(27), (28), and (34). For the x =70 films we started with
the value M = 1300 emu previously measured for
x =71. %'e thus obtained the best-fit values E, =0.53
erg/cm and M =1240 emu, which we then used in Eqs.
(27), (28), and (34) to calculate H„"„as a function of 1/L.
For the perpendicular FMR configuration these same
best-fit values of K, and M for x =50 were then substi-
tuted into Eqs. (41) and (46) in order to calculate the
1/L dependence of H„,.

Figures 2 and 3 show that in almost all cases the

agreement between theory and experiment is quite good
at both frequencies and both FMR configurations. The
best-fit values of EC, and M are seen to predict 16 of the
18 experimental values of H„, in the case of x =50 and
all 10 experimental values of H„, in the case of x =70.
For x =50 the H„, values of the two thinnest films do
show some discrepancy between theory and experiment.
This is easily understood, however, because in those
cases H„, is smaller than 4~M so that the films are not
saturated su%ciently. Et should also be noted that the
generally good agreement between theory and experi-
ment does not seem to be invalidated by uncertainties in
the values of A. This is shown most clearly by the fact
that a change of as much as a factor of 2 in the value of
3 gives rise to deviations of less than 3% in the best-fit
values of K, and M.

Next we offer some comments on the E, values and M
values determined in this paper. We note, first of all,
that for a given x the experimental values of Hrr„shown
in Figs. 2 and 3 are larger than the value of H calculated
from Eq. (26) for k =0, i.e., for the uniform mode. This
means, according to Eq (27)., that k f 2 is positive. Thus
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FIG. 2. FMR in Fe5OB5o.. Experiment (data points) and
theory (lines based on the best-fit values Kq ——0.20 erg/cm' and
M =570 emu, and on the estimated values A = 5.5)& 10
erg/cm and g =2.09).

FIG. 3. FMR in Fe7OB3o, Experiment (data points) and
theory (lines based on the best fit values E, =0.53 erg/cm' and
M=1240 emu, and on the estimated values A =1.38&10
erg/cm and g =2.09).
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k& 2 is real so that our definition [see the text following
Eq. (33)] requires k~ to be positive. Since Eq. (28) shows
that k34 is always positive, k34 is necessarily real and,
hence, k3 is positive. Equation (34) shows, therefore,
that in our experiments involving H~~„ the value of K,
must be positive, in agreement with the results of the
curve-fitting procedure described above. Analogous con-
siderations based on Eqs. (41) and (46) show that our ex-
perimental values of H„, require K, to be positive in the
perpendicular FMR configuration also.

Secondly, we note that the use of two adjustable pa-
rameters (namely K, and M) in our curve-fitting pro-
cedure may conceivably cause the agreement between
theory and experiment to be accidental, especially since
the value of M may well be L dependent. To investigate
this possibility we used SQUID magnetometry to mea-
sure directly the M values of the films used in the FMR
work. We found that these values are essentially in-
dependent of L and that they confirm adequately the M
values obtained by fitting theoretical curves to experi-
mental FMR data. Accordingly, we used the directly
measured M values for calculating K„ the only adjust-
able parameter in this case. By requiring this E, to fit,
within the +10% experimental error in 2I, all the ex-
perimental data for the ultrathin films used in the FMR
experiments, we estimated that the error associated with
the values K, =0.20 and 0.53 erg/cm determined above
is +0.06 and +0. 16 erg/cm, respectively. Thus the re-
sults of the direct measurements of M provide substan-
tial support for the reliability of the FMR method
presented in this paper for determinations of K, and M.

APPENDIX

In this Appendix we estimate the values of the ex-
change stiffness constant 3 for Fe B]oo „by using pub-
lished values of the Curie temperature Tc. Directly
measured values of A do not seem to be available for
these alloys.

We begin with the approximate empirical expression'

ks Tc jJ= —,', (z —1)[11S (S + 1)—1], (Al)

3 =—'JNzS r (A2)

which relates Tc to the exchange integral J. Here kz is
Boltzmann's constant, S is the spin per magnetic atom,
and z is the number of nearest neighbors of a magnetic
atom. To relate J to 3 we use the equation"

where r is the most probable distance between nearest-
neighbor magnetic atoms and cV is the total number of
atoms per unit volume. By combining Eqs. (Al) and
(A2) we obtain

kaTcXzS r

(z —1)[11S(S+ 1)—1]
(A3)

c! xP(z) =
z!(c—z)! 100

1—
100

(A4)

which gives the probability of finding z neighboring Fe
atoms (z =0, 1,2, . . . , c) in amorphous Fe, B&oo „hav-
ing the coordination number c. Next we assume' the
value c =12 and determine z by maximizing P(z) with
respect to z. In this way we obtain z =6 for x =50 and
z =9 for x =70.

For the value of 4 of Fe B&00 „we use

( 100)d„NQ
2V=

x A p, + ( 100—x ) A B
(A5)

where Xo is Avogadro's number, AF, and AB are the
atomic masses of Fe and B, respectively, and d is the
density. The latter may be approximated by

[xAp, +(100—x)AB]dp, dB
d =

x 3 p, dB + (100—x) A Bdp,
(A6)

where dF, and dB denote, respectively, the density of Fe
and B. For the estimates which follow we use the tabu-
lated values AF, ——55.86, AB ——5, dF, ——7.86 g/cm, and
d z ——2. 34 g/cm, as well as the rough estimate
r=2. 6X10 cm (based on the crystalline counterpart
of Fe~oB3o) which we used for Fe50B5o as well as for
FezoB30. In addition, we use several values inferred from
experiments, namely S= —,

' (Ref. 14) and Tc ——530 K
(Ref. 15) for x =50 and S =1 (Ref. 13), and Tc ——750 K
(Ref. 15) for x =70. On this basis Eq. (A3) yields
3 =55)&10 and 1.38&10 erg/cm for x =50 and 70,
respectively. These estimates of 2 clearly involve
several assumptions, and for an arbitrary material a
better method of estimating 3 may well be developed.
It is fortunate, therefore, that H„, does not depend on
3 very sensitively, as shown quantitatively in Sec. III.

as the desired relation between A and T~. To find the
value of z we adopt the dense random-packing model'
and use the binomial distribution function

z C —Z
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