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Thermomagnetic transport coefFicients: Solitons in an easy-plane magnetic chain
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Using a simple model, we calculate the transport properties of a one-dimensional easy-plane fer-
romagnet in the presence of an in-plane magnetic field. The model incorporates the combined
effects of a magnetic field gradient and a temperature gradient acting on a gas of solitons and spin
waves. Suggestions are made for experiments capable of measuring these effects in materials such
as CsNiF3 and {C6H»NH3jCuBr3. We also discuss their use as another type of probe for solitons.

I. INTRODUCTION

Long-range order cannot exist in one dimension (1D);
however, short-range order is possible. For the particu-
lar case of one-dimensional magnets, ' the spins interact
largely along a specific chain direction. The interaction
between the chains is weak and leads to three-
dimensional ordering at some low temperature T, . For
T ~ T„ there is a wide range of temperature (depending
on the ratio of in-chain and interchain exchange con-
stants) where spins display short-range order along the
chains. The ordered regions are separated by domain
walls. These walls are dynamic objects and in an easy-
plane system, their properties are similar to those of
sine-Gordon (SG) solitons. The thermodynamics above
T, is then determined by the linear waves (magnons) and
solitons. An extensive series of neutron scattering, sus-
ceptibility, specific heat, and spin relaxation measure-
ments lend qualitative, occasionally even quantitative,
support to this picture, for materials such as CsNiF3
(Ref. 1) and (C6H~~NH3)CuBr3 (CHAB) (Ref. 4) and also
for antiferromagnets such as (CD3)&NMnC1, (TMMC)
(Ref. 2).

The object here is to investigate whether the waves
and soliton picture from equilibrium thermodynamics
can be extended to transport phenomena, in terms of
weakly coupled soliton and magnon ideal gases, subject-
ed to gradients of temperature and applied field. Also,
we look into the possibility of analogs of two well-known
eff'ects in semiconductors (where the carriers are de-
scribed semiclassically). ln a semiconductor, carriers
can be moved by application of either an electric field or
a temperature gradient. Application of one of them
leads to, under proper circuit conditions, appearance of
the other. The equivalent quantities here are the mag-
netic field gradient and the temperature gradient. The
former directly changes the energy of the soliton while
the latter affects the thermal population. Thus a field
gradient can cause the soliton (or magnon) population to
increase at one end of the sample, leading to an effective
increase in temperature and vice versa. In as much as
an easy-plane ferromagnetic chain can be described by
sine-Gordon theory, and that an ideal-gas-like descrip-

tion of the SG model is feasible, it should be possible to
study this and other transport effects in a 1D magnetic
system.

The calculations described below are in the ideal-gas
view of thermodynamics. An obvious improvement of
this work will be to address the well-known difficulties
(quantum spins and excursions off the easy plane) of the
SG description, and include more precisely the interac-
tions between solitons and between solitions and rnag-
nons. Here the effects of the magnons upon the solitons
are grossly taken into account via an appropriate nor-
malization of the equilibrium soliton distribution func-
tion f, as taken from Ref. 3 [Currie, Krumhansl,
Bishop, and Trullinger (CKBT)]. We calculate the mag-
non response treating them as a degenerate boson gas
while keeping the solitons nondegenerate. We have also
assumed a single relaxation time. Again, in semiconduc-
tors, the relaxation times for mass or charge current and
for the heat current are different. We expect the relaxa-
tion times for mass and heat currents of solitons to be
different as well. Yet, we expect the calculations report-
ed below to be qualitatively correct. Indeed an experi-
ment would provide invaluable help in constructing
transport theory of nonlinear excitations.

II. TRANSPORT FORMALISM

The ferromagnetic Hamiltonian for the spin degrees of
freedom of a single chain is taken to be

N
%= g [ —JS„S„+)+A(S„') HS„] . —

n=1

Here J is the nearest-neighbor exchange coupling, A ~0
is the single-ion anisotropy, the S„are classical spin vec-
tors, and the applied field H (=gp, ttB) is in the easy
(x,y) plane; g and p~ are the Lande g factor and Bohr
magneton, respectively. Using spherical coordinates

S„=S(cos8cosP, cos8 sing, sin8),

and assuming H/2AS «1, a continuum limit approxi-
mately produces a sine-Gordon equation of motion for
the in-plane angle P:

36 7063 1987 The American Physical Society



7064 G. M. WYSIN AND P. KUMAR 36

cpP„—P„=cppsinP, 8=(A'/2AS)P,

with

(2a)

cp ——2/I JS a /fi, cop 2A——HS/R (2b)

E=Epy, y=(1 —v /cp)

Ep ——8(JHS')', mp ——Ep/cp,

(4a)

(4b)

but for simplicity we shall use the nonrelativistic limit
for y, y=1+ —,'(v /cp). The solitons will be treated us-

ing classical Maxwell-Boltzmann statistics.
The dispersion relation for the linear modes, or mag-

nons in the present context, as a function of wave vector
kis

Ek
——Ep+ (A'cpk )

1/2

8S
c.o ——Aa)o —— 2A

J

(Sa)

(Sb)

The relative anisotropy 2A/J =0.38 for spin-1 CsNiF3,
so typically the energy gap for magnons is much smaller
than for the solitons (Ep/Ep=0. 07). The magnons will
be treated usi. ng Bose-Einstein statistics.

Breather states are bound soliton-antisolition pairs
with an internal frequency. Their contributions are
neglected in this calculation. The low-energy breather
states can be thought of as bound magnon states, depen-
dent on the interaction between magnons, and as such
represent a correction term to the soliton-magnon ideal-
gas theory. In the simplest equilibrium thermodynamics
theory their effects can be neglected. Similarly, we ex-
pect that the neglect of breather states in this transport
calculation introduces relatively small errors, especially
in a parameter regime where solitons are important.

The model used here to calculate the transport prop-
erties of this easy-plane ferromagnetic chain consists of a
two-component ideal gas of magnons and solitons. Any
interaction between magnons and solitons leads to (a)
normalization of their energies and (b) a relaxation time
r representing approach to equilibrium. This picture is
exact within SG theory which is completely integrable.

where a is the lattice spacing and z is the position on the
chain. This SG limit has essentially converted the out-
of-plane degree of freedom 0 to the momentum conju-
gate to P—this linearization of a nonlinear degree of
freedom is a substantial part of the error introduced in
approximating the full equations of motion by a SG
equation. The SG equation has well-known soliton,
breather, and low-amplitude linear modes, and we re-
view some of their properties needed here.

The solitons are traveling-wave rotations of the spins
through 2~ within the easy plane, with the spin tilting
out of the easy plane being proportional to the soliton
velocity U & co. This rotation occurs over a characteris-
tic length dp, determined by the applied field (for veloci-
ties v «cp)

dp ——cp/cop ——&JS/H

The energy is that of a relativistic particle of rest mass
mo and rest energy Eo,

If we stay close to the field and temperature region
where the SG picture is approximately valid, we are al-
lowed to assume that the interaction corrections are
negligible. More precisely, we assume that the approach
to equilibrium is caused by an extrinsic mechanism, e.g.,
magnetoelastic coupling leading to scattering of mag-
nons and solitons by phonons. The intrinsic relaxation
rate for scattering of solitons by magnons is assumed to
be neglible as compared to the extrinsic relaxation ratio.
This also means that a Matthiessen's-type rule exists,
namely, the soliton and magnon transport currents are
additive. In the following the soliton and magnon
currents are calculated separately.

The nonequilibrium thermodynamics of both solitons
and magnons is described by a linearized Boltzmann
equation. In a steady state, the change in distribution
function 5f (z,p ) from its equilibrium value f (z,p)
satisfies (in the relaxation-time approximation),

5f BE Bf Bf
Bp Bz Bp

(6)

where E(z,p) is the energy of the carriers, dependent on
position due to the applied temperature and field gra-
dients, and dependent on momentum p. The applied
force I' represents the effect of the field gradient.

In principle, Eq. (6) should be derived from a micro-
scopic field theory of the Hamiltonian in Eq. (1). Such a
derivation is beyond the scope of this paper. One ex-
pects that such a calculation will lead to a Boltzmann
equation with terms corresponding individually to renor-
malized solitons and magnons together with relatively
small interaction terms, accounting for soliton-soliton,
soliton-magnon, and magnon-magnon (or also breather
states) interactions. As a lowest-order calculation we
presently ignore these interaction terms, except for the
modification of the soliton equilibrium distribution by
the magnons (see Sec. II A). Then, with this approxima-
tion, the soliton and magnons are effectively treated as
independent ideal gases. This simplified calculation
offers a much clearer view of the kinetic physical pro-
cesses involved, avoiding the mathematical difBculties, at
the expense of some accuracy. These higher-order in-
teraction effects are known to improve agreement be-
tween theory and experiment for some equilibrium prop-
erties (e.g. , specific-heat peaks of CsNiF3 and CHAB),
but principally only by rescaling various parameters
while leaving the functional form intact. We might ex-
pect similar behavior for the transport properties.

The effect of the field gradient will be treated as fol-
lows. We assume that the length scale 1H =H/(BH/Bz)
over which the field changes is very large compared to
the solition width do. Generally do may be anywhere
from a few to tens of lattice spacings, while the field gra-
dient length scale IH is macroscopic, making this as-
sumption very easily satisfied. Locally, then, the SG sol-
itons are adequate solutions to the equations of motion.
But as they move in the slowly changing field, they ex-
perience its effect as a mild force towards the region of
lower soliton energy (which is towards the lower-field re-
gion), being adiabatically modified and exchanging ener-
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F =—
S

BE BE BH 'E VH
Bz BH Bz H

(7)

Similarly, the force on a magnon of wave vector k is tak-
en to be

gy with the applied field. Thus the force F, on a soliton
it taken to be

n = dU U (13)

Combining the different expressions for M and U, Eqs.
(10) and (11), results in consistency conditions involving
m (u), Q (v), and f (u),

integration over f (u) should give the total number den-
sity of solitons and antisolitons:

BE,
Bz

2
Ep k&T =m(u)f (v),

BII
(14a)

In the semiconductor context the physically observ-
able transported quantities are the charge current and
heat current. For this magnetic chain, the solitions and
magnons similarly carry heat current, but the closest
analog to the charge current is a magnetization current.
In particular, there will be only an x component of mag-
netization current (parallel to the field); the y and z com-
ponents average out to zero for both solitons and mag-
nons. Below we treat the different transport properties
of solitons and magnons separately.

A. Solitons

The magnetization current j and heat current j„will
be given by integrals of contributions from solitons of all
velocities (less than co), over the distribution which has
been perturbed from equilibrium by the applied driving
"forces,"

j = J du v m(v)5f(v),

j„= dvvu U6 U

(9a)

(9b)

Here u =dE /Bp represents the velocity; we consider 5f a
function of velocity instead of momentum. The func-
tions m (v) and Q (v) represent the effective magnetiza-
tion and "heat" or internal energy carried by a soliton or
antisoliton of velocity U. These functions are determined
by requiring that the equilibrium magnetization M and
internal energy U due to the solitons, as given in Ref. 3,
can also be written as integra1s over the equilibrium dis-
tribution f (v),

M = f du m (u)f (u),

U= dvu v v

(10a)

(lob)

Fp" ———k~ Tn "', (1 la)

dF sol

U= (PFo '),
Ba ' (1 lb)

where P=(kT) '. The total number density of solitons
and antisolitons, n'", is

1/2
4 PEo pEtOt e

dp 27T
(12)

with do and Eo as defined in Eqs. (3) and (4). Certainly

M and U are given from the soliton and antisoliton equi-
librium free energy Fp",

= —Q(v)j (v) . (14b)

Ap

Cpdp

tPl p

h
(16)

With this assumed form for f (v), Eqs. (12) and (13)
determine the chemical potential p necessary to recover
the CKBT result for total soliton number density (also
assuming nonrelativistic dispersion E =Eo+ —,m ou ),

1p= —ln
2PEo
m. Ap

(17)

and thus f (v) has been specified.
Some comments are in order related to the chemical

potential. The quantity p appears explicitly in Eq. (15)
as a chemical potential, and indeed will appear in the
Boltzmann equation again as a chemical potential [Eq.
(23)]. Effectively the factor e~" provides the appropriate
normalization for f, such that we can reproduce the
CKBT results for n"', M, U, and so on, while at the
same time putting f in a familiar standard form.

If p is taken to represent a real effective chemical po-
tential, then it is interesting to consider its effects on
quantum degeneracy. Typically quantum degeneracy is
expected to become important when p passes through
zero, thereby implying that each soliton is confined to an
area approaching h or less in phase space. Equation (17)
then gives a corresponding degeneracy temperature Tq
defined by

1/2
kgT =4hcop —— Ep .

2S

One finds k&Tq = —, Ep for either CsNiF3, or CHAB, i.e.,
rather larger than expected when compared to Ep.
However, one of the assumptions of the classical ideal-

To completely determine m ( u) and Q ( v ) we need to
specify f (u). Because we assume the solitons obey clas-
sical statistics, f can be written as

j0( ) e
—p(E —p)Ap

Cpdp

where the factor cpdp gives the correct dimensions, Ap
is a dimensionless constant, and a chemical potentia1 p
has been introduced in order to write f in a standard
form. The constant A 0 is required for proper phase-
space counting; the phase-space integral is normalized
by Planck's constant, 1/h, f dp/h ~ f du(mo/h ), and
thus Ap is set by
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) k~T
m(v) = — (E —p)+-

QH 2 H

u (v) = [P(E—p)]=E —kt1 T .
B

a

—,'E —k~ T
(19a)

(19b)

It can be easily verified that these reproduce the known
low-temperature limit PEo & 1 equilibrium quantities,

gas soliton thermodynamics is that k&T &&Eo, and we
see that there appears to be a limited range of tempera-
tures over which the classical approach wi11 be valid.
Usually one would attempt to correct this situation by
considering the quantum corrections for the statistical
mechanics of the SG equation. This viewpoint will not
be adopted here. Instead, we recall that the classical
sine-Gordon thermodynamics does remarkably well in
describing equilibrium experimental data for both
CsNiF3 and CHAB, even for temperatures well below
the predicted T~ (for instance, as low as k~T~ = ,'Eo). —

In view of such experimental evidence available, it seems
reasonable to attempt to use the same classical SG ther-
modynamics also to describe transport in these easy-
plane ferromagnets, and for the present to ignore any
difficulties which may be implied by the relatively high
Tq. And, of course, it is not clear whether we can really
treat p as a true chemical potential anyway. Indeed, the
locations of the quantum and classical regimes for these
materials, for both equilibrium and nonequilibrium prob-
lems, is an issue yet to be resolved.

Then, with f (v) as already specified, the consistency
conditions (14) determine m ( v ) and u ( v ) as

locities cannot give the known equilibrium magnetiza-
tion. This observation originally led to the present self-
consistent method for determining m (v) and u(v).

To completely specify the currents, we rewrite 5f in
terms of the applied temperature and field gradients, and
the force F,

of Bf
BE

VT(E —P ) — —Vl2+FT (23)

Since p is a function of T and H, we can eliminate Vp in
favor of VT and VH,

j„=K„'p( VT/T)—+K„'H'( —VH /H ),
j =K"T( VT/T)+—K "8( VH/H), —

(25a)

(25b)

with transport coefficients

T o lro[(pE0) +(pE0)+ ]

K'H'=o
1 ro[(pEO) +4pEO+ '4 ]

T o2IO[(pE0) + ]

K "H =a 210 [(PE0 )'+ 3PE0 .' ]——

(26a)

(26b)

where

Vp=(k~T p)( V—T/T—) ktt T( ——VH/H) . (24)

Thus the soliton transport results are determined only by
VT and VH. Again, using the nonrelativistic energy re-
lationship, we obtain

U"'=n""(Eo —~ ka T) .

(20a)

(20b)
Io ——

7co 7co
p2 p2 2H

1/2

(pE )1/2 o

(27a)

(27b)
It should be mentioned that m(v) and u (v) include the
leading-order effects of the linear modes acting on the
solitons, as obtained in equilibrium. The number density
used here includes the self-energy effects of scattering
events of the linear modes with solitons. To see this in a
different manner, consider the magnetization pulse car-
ried by a single unperturbed moving SG soliton. The x
component of the soliton profile is a pulse deviating
from the aligned ground state, with characteristic width
do~a

Aside from some prefactors these results depend only on
pEo. There is no Onsager symmetry relationship relat-
ing K"T and K„'0, due to the fact that the field gradient
creates velocity dependent f-orces (recall F-E), thereby
eliminating any Onsager symmetry. K "T and K "~ are
both negative since the soliton magnetization is always a
deviation from the aligned ground-state configuration.

S =S[1—2sech'(yz/do)] . (21)
B. Magnons

Relative to the ground state, the total x magnetization
carried is

m = f dz(S —S)= —4Sdo/y . (22)

This result shows that for faster-moving solitons, which
get narrower due to the relativistic contraction, the ab-
solute value of the magnetization carried decreases with
increasing velocity. This is in contrast to the previous
result for m(v), Eq. (19a), including temperature and
linear modes acting on the soliton, where

~

m ( v )
~

in-
creases with increasing velocity (for PEo & 2). This
rejects the effective soliton mass increase induced by the
linear modes. In any case integration of m over all ve-

2
~om(k)=-

2H cI,

u(k)=8k .

The equilibrium distribution is assumed to be

(28a)

(28b)

The general approach used for magnons is the same as
for the solitons, with some minor differences. They will
be described by Bose-Einstein statistics, with zero chemi-
cal potential, and the phase-space integrals will be over
wave vectors k instead of velocity. Again the presence
of velocity-dependent forces implies a lack of Onsager
symmetry. The magnetization and heat carried by a
magnon of wave vector k are



36 THERMOMAGNETIC TRANSPORT COEFFICIENTS: SOLITONS. . . 7067

0
k

1

e —1

(29)
AE„T ——

Cp

2 [s2(Peo) —s2(0)]

then we obtain the following magnon transport
coefficients,

+sol A

2S 2m

' 1/2

0(pE )
1/2

K T =a i (pEo) $2(peo), K H a i peo 0(peo)
X [(PEo )'+PEo+ —', ] (32)

2g=a2PEoso(Peo), K j=a2 —,'(PEo) s 2(Peo),

with the functions s„(xo) defined by the integral

(30b)
and recall that so=(a/8S)Eo. In Fig. 2 we show the
respective magnon and soliton contributions to AK„T,
and the total due to both, assuming equal relaxation
times. In a case where v.„~))v

g we can ignore the
magnon contribution. The soliton contribution to hK„T

s„(xo)= dx x" '(x —xo)' /sinh ( —,'x) . (30c)
4m &o

III. RESULTS
(a)

Some typical results for these transport coefficients
versus field at fixed temperature and versus temperature
at fixed field are shown in Fig. 1, for parameters ap-
propriate to CsNiF3. Note that to obtain the overa11
scale of these curves we would need reasonable estimates
of the relaxation times ~„& and ~ g

Also note that
these are results for a single chain, and must be multi-
plied by the chain number density per unit area to ob-
tain conductivities for the bulk medium. As mentioned
in the Introduction, the total currents will be given as
the sum of soliton and magnon contributions —the rela-
tive contributions being directly proportional to the
respective relaxation times.

It would be useful to identify a quantity which might
serve as a signature of soliton flux. In equilibrium exper-
iments attempting to identify soliton contributions, the
typical approach has been to make measurements with
and without the applied easy-plane field, thereby observ-
ing cases with and without SG solitons present, and at-
tributing the differences mostly to the solitons and partly
to higher-order magnon processes. For example, doing
this for the specific heat ' predicts a peak in the
specific heat versus field, whose position and height are
proportional to T and T, respectively, assuming SG sol-
itons are responsible. We can attempt the same ap-
proach here. If the field is set to zero no SCx solitons are
present. Then only magnons contribute to the currents,
and if we also have VH=0, then the magnetization
current is identically zero. In this case the heat current
simplifies to

CO
CO

CO

~ O

CO

0.0

0.0

2.0

2.0

)
I

4.0
T(K)

6.0

4.0 6.0
T(K}

8.0

8.0

(b)

10.0

10.0

+magco
( )

V T
Q 2 2 (31)

where s2(0) = 1.0472. Now if a uniform field is turned on
(still with VH =0), the soliton contributions are added,
such that the net change in the total thermal conductivi-
ty, hX», is given by

FIG. 1. (a) Calculated transport coefficients K„T and K„H
normalized by a, =rco/(P ), for CsNiF, parameters J=23.6K,
3=4.5K, g=2.4, vs temperature T in K. The curves corre-
spond to K„'T (solid), K„'H (dashed), K„T (dotted), and K„H
(dashed-dotted); (b) Transport coefficients K T and K H, nor-
malized by a2 = —a

&
/2H, for CsNiF3 parameters. The curves

correspond to K"r (solid), K "H (dashed), K Tg (dotted), and
K g (dashed-dotted)
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(a)
CO

0.0
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I
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taken alone has a peak at a field given by (PEo)~„k
=1.6654. This in turn then predicts that the field at
which the peak occurs is proportional to T; similarly so
will be the height of the peak. Peaks can still occur for

r——,s, as in Fig 2. (c), but the positions are shifted
from the pure soliton peaks to lower fields. This is
shown in Fig. 3, where the peak position Hz„k versus T
is plotted for ~„~/~,g= op, 10.0, and 1.0, for 3(T(15
K. Perhaps this effect would provide an experimental
means for approximately determining the ratio of the
two relaxation times, provided it is not too different
from 1. Also note that even for ~„i——~,g, the height of
the peaks in AK„T is still very closely proportional to T
[Fig. 2(c)].

Another quantity which could be measured is an
effective thermopower-like coeScient, i.e., the ratio of
temperature gradient generated to a given applied field
gradient, assuming either the magnetization current or
heat current can experimentally be set to zero. Some
typical results for (VT/T)/(VH/M), combining soliton
and magnon contributions, are shown in Figs. 4 and 5,
for various lifetime ratios ~„&/~,g. Once again it would
be extremely useful to assign an approximate value to
this ratio.

IV. DISCUSSION

We can contrast this calculation with others relating
to nonequilibrium 10 soliton dynamics. Other theoreti-
cal studies have included the following: (i) numerical
calculation of spin dynamics for the easy-plane fer-
romagnet, in combined dc and ac arbitrary driving fields,
and including damping;" (ii) similar numerical studies of
the dynamics of the damped driven SG system (iii)
Fokker-Planck and other treatments of the overdamped
SG system and (iv) other less closely related problems
involving transport, such as in polyacetylene. The first
two of these have involved spatially uniform driving, and

—----~5K
---+3K

CO

CO

CO

--. 9K

7K

Pg (C)

0.0 1.0

3K

I

FIG. 2. The change in thermal conductivity
hK„~ ——K„T{H)—K„T(0), using CsNiF3 parameters as in Fig. 1,
and normalized by al vs the applied field H for a series of tem-
peratures. The soliton contribution is shown in (a), the mag-
non contribution is shown in (b), and the total is shown in (c)
for &sot =&nag

o
I 1

I
I

I
I

0.0 50.0 100.0 150.0 200.0 250.0

FIG. 3. Positions of the peaks in the total hK„&, vs T, for
'T l/7,.

g
= oo (solid), 10.0 (dotted), and 1.0 (dashed), for CsNiF3

parameters.
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studying transitions of the system as a whole to chaotic
dynamics, rather than transport. They have emphasized
as a general concept the idea that spatially coherent
structures present in nonchaotic regimes compete with
the tendencies of the individual particles of the systems
to move onto chaotic trajectories, and thus transitions to
chaos occur at different control parameter values for the
coupled system compared to the individual particles.
The Fokker-Planck studies of SG systems have not
stressed any particular physical context such as the
easy-plane ferromagnet, and generally have treated only
the large damping limit.

This calculation is an attempt to estimate the leading
order behavior of soliton transport for the easy-plane
ferromagnet, and it should be emphasized that it has a
number of limitations. First of all, the continuing con-

troversy over classical mechanics versus quantum
mechanics' for an equilibrium description of low-spin
systems must be just as relevant for nonequilibrium
properties. Classical statistical mechanics of the SG
model is in fair agreement with some experiments for
easy-plane ferromagnets and antiferromagnets, but in-
consistencies persist. If the system could be described
entirely using classical mechanics, one should then use
the solitons of the classical easy-plane ferromagnetic
Hamiltonian, including the complete effects of the out-
of-plane degree of freedom. But these solitons are
known to have dynamics strongly different from SCs soli-
tons, including an instability field, ' instability with
respect to collisions, and E(v) not single valued. ' In
particular any effects of an instability have not been seen
in experiments. Also, classical transfer-matrix calcula-

~g o—

x
O

I
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I
I

I
I

I

I

I
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I
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I
I

I
I
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I
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I
I

g COZo
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0.0

1
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I
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12.0 16.0 20.0

o
CQo

(b) (b)

x o

E- M

xE~Zo
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O

0.0 2.0 4.0 6.0
H{kG)

8.0 10.0 0.0 2.0 4.0 6.0
H(kG)

8.0 10.0

FIG. 4. Ratios of total K„~/K„T, equivalent to
—(V T/T)/(VH/H) at zero heat current, for CsNiF3 parame-
ters, and lifetime ratios ~„~/~,g=0. 1 (dotted), 1.0 (solid), and
10.0 (dashed). Part (a) shows the temperature dependence at
H=5.0 kG, part (b) shows the field dependence (H in kG) at
T=5.0 K.

FIG. 5. Ratios of total K ~ /K T, equivalent to
( —V T /T )/( VH /H ) at zero magnetization current, for
CsNiF3 parameters, and lifetime ratios ~, &/~, g 0 1 (dotted),
1.0 (solid), and 10.0 (dashed). Part (a) shows the temperature
depedence at H=5.0 kG; part (b) shows the field dependence
(H in kG) at T=5.0 K.
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tions' using the easy-plane ferromagnetic Hamiltonian
greatly overestimate the peak heights in the specific
heat, when compared to classical SG theory or experi-
ment. Recent "numerically exact" quantum transfer-
matrix calculations' for a spin- —,

' easy-plane ferromagnet
also give lower values for the specific-heat peak heights,
but not entirely consistent with experimental data ' for
CHAB. However, the various classical transfer-matrix
calculations, ' ' including and excluding the out-of-
plane degree of freedom (i.e., easy-plane magnet versus
SG) when compared with the various quantum calcula-
tions available, ' ' have allowed a reasonable explana-
tion of how classical SG theory can be applicable. The
consensus seems to be that quantum effects strongly re-
strict the spins to the easy plane, thereby competing
with (or eliminating) the tendency for out-of-plane
motion, and allowing classical SG theory to be valid
even for a fundamentally strongly quantum (5 = —,') sys-
tem. For the nonequilibrium calculation presented here
this is the viewpoint we must assume. However, at some
later stage it may be instructive to investigate transport
for the distorted classical solitons of the full easy-plane
ferromagnetic Hamiltonian, to extend the contrast be-
tween it and the SG system.

Lacking specific knowledge about the dynamics of the
relaxation processes, we have used only the relaxation
time approximate solution to the linearized Boltzmann
equation. Obviously, more detailed information would
help in estimating ~„& and 7 g

which would then set an
absolute scale to our results. Finally, we also have ig-
nored contributions due to breather states and other
higher-order interaction terms. In spite of these
difficulties, there may be some range of adequately low
field and temperature over which these results are appl-
icable. Clearly, a nonequilibrium transport experiment
will help to determine the relative importance of carrier
interactions, and also whether a nonequilibrium soliton
picture is reasonable, for materials such as CsNiF3 and
CHAB.
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