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Tiling model for glass formation with incremental domain-size kinetics
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The equilibrium and kinetic properties of the square-tiling model proposed by Stillinger and
Weber had been studied previously by Monte Carlo simulation using a set of kinetic transition-rate
rules which allowed only those aggregation and fragmentation processes which involved a minimal
number of square arrays of square tiles. In the present work a new set of transition-rate rules is
studied which allows fragmentation and aggregation to occur at the boundary by the shedding or
addition of L-shaped arrays of unit squares. The equilibrium properties of the model at tempera-
tures above the condensation point are found to be in excellent agreement with those found using
the minimal-aggregation transition-rate rules. The kinetic properties are found to differ
significantly. The current model is found to relax substantially more rapidly and to produce a
somewhat different texture of tiles in the low-temperature glass. The relaxation of the potential
autocorrelation function (as before) is found to be nonexponential and can be described by the
Kohlrausch-Williams-Watts equation with a temperature-dependent fractional exponent. In addi-
tion the system still exhibits non-Arrhenius temperature dependence of the average relaxation rate.

I. INTRODUCTION

The thermodynamic and kinetic properties of super-
cooled liquids and the glasses they form show a rich
diversity of phenomena including very-low-temperature
anomalies, cooling-rate dependencies, nonexponential re-
laxation behavior, and strong hysteresis effects. ' The
quantitative details of the behavior of a material in the
vicinity of its glass transition depend of course upon
atomic and molecular interactions of the glass former.
In an attempt to understand and explain the properties
of glasses, however, theorists have responded by study-
ing a large number of "models" some of which are pure-
ly phenomenological while others attempt to quantify
the relevant atomic and molecular processes which are
involved in the macroscopic observables.

We have recently introduced a simple tiling model for
glass formation which precisely identifies the energy of
various states and which allows dynamical transitions
between states in an ergodic manner. ' ' Through a
combination of both an analytical approach and the re-
sults from Monte Carlo simulations we were able to ac-
curately determine the equilibrium thermodynamical
properties of this model at temperatures greater than the
glass transition.

In the first simulations of this tiling model, the
dynamical transition rates which specify the kinetic
properties of the model were chosen according to a prin-
ciple of minimal aggregation or fragmentation. '

Specifically, in the two-dimensional implementation of
the model, a square tile was allowed to fragment only
into the cluster of the smallest number of squares all of
the same size. Thus, for example, a 6&(6 square could
fragment into four 3)&3 squares but not into nine 2&2
squares. The reverse process occurred by allowing only
those aggregations of squares which could have been
produced by a single fragmentation process.

In this paper we investigate another set of dynamical
transition rates for the square-tiling model, namely,
boundary aggregation or fragmentation. In the present
case a square is allowed to shrink into a square whose
side length is one unit smaller, thereby shedding an L-
shaped assemblage of unit squares. Thus, for example, a
6X6 square could fragment into a 5&5 square and 11
unit squares. The allowed aggregation processes are
merely the reverse of the allowed fragmentations (shrink-
ages). The point of introducing this new kinetic variant
is to see how sensitive low-temperature relaxations are to
details of the fundamental kinetic processes allowed.

Section II defines the "tiling model" and dynamical
transition rates used to specify both the minimal frag-
mentation and boundary shift models. Section III pro-
vides details of the Monte Carlo simulation and presents
the equilibrium thermodynamic properties deduced from
the simulations. The kinetic rate processes and relaxa-
tion behavior as revealed through simulations are dis-
cussed in Sec. IV. The closing section, V, summarizes
the differences observed in the kinetic properties of the
model due to the choice of two distinctly different sets of
dynamical transition rates.

II. TILING MODELS

In previous molecular-dynamics simulations of simple
liquids, we have created mechanically stable amorphous
packings using a mass-weighted steepest-descent tech-
nique starting from the hot liquid. ' These packings
represent local minima of the potential energy hypersur-
face. It is the discrete set of these mechanically stable
packings which uniquely determine the properties of the
supercooled liquid or glass. For the most part the local
vibrational deformations away from these potential ener-
gy minima may be disregarded at very low temperature.

A careful study of the amorphous packings produced
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from these rapid quenches shows that there is substantial
variability in the size and local geometry of such regions.
For example, the local stress is found to be highly aniso-
tropic due to defects in local coordination geometry and
in the strength of bonding within a region. '

These observations provide the justification for the til-
ing model of glass formation. In this model the glass is
characterized as an ensemble of domains of various sizes.
Within the interior of a domain there are well-bonded,
well-coordinated atoms or molecules. The domain boun-
daries themselves are the sites of local strain caused by
geometric frustration. This strain may be due to bonds
weakened because of steric effects or due to problems in
coordination number, involving either too few or too
many atoms or molecules.

The tiling model then represents the statistical
mechanics of the way domains are joined together, and
of the kinetics of interconversion of differing domain
patterns. The following simplifying assumptions have
been invoked to make the simulations of this model
manageable. (a) The system is two dimensional. (b)
Domains are represented as squares with integer side
length. (c) All domain sizes are allowed. (d) Periodic
boundary conditions apply.

The potential energy 4 of a tiling is taken to be pro-
portional to the total length of interdomain boundary
times A, , a positive energy per unit length of boundary.
Therefore @ is given by

(2.1)

where n, is the number of square domains of size j)&j.
The total area of the system is fixed at N, which requires
that the potential energy N of any configuration fall
within the following bounds:

(pq) X (pq) domain has been chosen as

r, (pq) =v oa ~~'~ (2.3)

where vo is a fundamental attempt frequency and a is a
rate parameter in the range

0&a&1 . (2.4)

The exponent of a in Eq. (2.3) is the length of domain
wall which is removed by the aggregation process. De-
tailed balance then requires that the fragmentation rate
be

r&(pq) =r, (pq)exp( —I3b,&b), (2.5)

where

and

P=(ks T) (2.6)

b&=2Apq(p —1) . (2.7)

In the boundary-shift model a domain of size
(p+1)X(p+ 1) fragments into a domain of size p Xp
and 2p + 1 domains of unit squares. The L-shaped array
of unit squares produced by the fragmentation may of
course occur in any of four different orientations. Simi-
larly, aggregation occurs when an l.-shaped arrangement
of unit squares is combined with a domain of size p&p
to form a domain of size (p+1)X(p+ 1). Again this
choice of transition rates will lead to ergodic behavior
since all domain configurations are connected to the
configuration where each domain has unit size.

The rate of aggregation for the formation of a domain
of size (p+1)X(p+ 1) is assigned as

(2.2) I"a =Van
4 (2.8)

A configuration consisting all of unit squares has the
maximum potential energy. A configuration of one
system-spanning square with area X has the minimum
potential energy.

In chosing a set of dynamical transition rates for the
tiling model, two properties must be considered. Firstly,
the rates must be consistent with ergodic behavior,
which means that any configuration must be accessible
from any other by a finite set of transitions. Secondly,
the allowed transitions must be suSciently sparse so that
system configurations manifest glasslike behavior on
cooling to low temperature rather than going directly to
the global minimum-energy state.

In the previously studied minimal-aggregation or
-fragmentation model, ' domains of size (pq)X(pq) are
allowed to fragment into p q &q squares if and only if p
is the smallest prime factor of pq. Conversely, a square
arrangement of p domains of size q Xq may aggregate
to form a (pq) X (pq) domain if and only if p is the small-
est prime factor of pq. Clearly this choice of transition
rates maintains ergodic behavior since all configurations
are connected to the configuration where every domain
is a square of size unity.

The aggregation rate for this model to form a

where vo and n are as defined previously. The rate of
fragmentation of a domain of size (p+1)X(p+ 1) then
must be

r~(p + 1)=r, (p + 1)exp( —4Pkp) . (2.9)

The length of domain boundary which disappears upon
aggregation and which forms on fragmentation in both
cases is 4p.

As the temperature is lowered, the equilibrium aver-
age size of domains increases in the tiling model. Also
the basic transition rates of aggregation in both dynami-
cal models [see Eqs. (2.3) and (2.8)] decrease as the
domain sizes increase. In addition, as the domains be-
come larger, it becomes increasingly unlikely that
domains of proper geometric arrangement will be found
available for aggregation. Therefore both the previous
and the present choices for the transition rates produce a
kinetic slow-down which will lead to glasslike behavior.
Note that the equilibrium properties of the tiling model
are independent of which of the two transition options is
chosen. Only the kinetic features are affected, and we
wish to establish how the relaxation behavior changes in
passing from one option to the other.
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III. MONTE CARLO SIMULATIONS

The Monte Carlo simulation of any glass presents a
formidable problem since as the temperature is lowered
toward the glass transition, longer and longer times are
required to equilibrate and sample the material ade-
quately. In the standard Monte Carlo formulation due
to Metropolis et al. , the number of moves which are
rejected also increases dramatically at low temperatures
which further exacerbates the equilibration problem. To
overcome this difficulty a scheme similar to that
developed by Bortz, Kalos, and Lebowitz ' was used in
the simulations reported here.

The algorithm is constructed by making a list of all
possible aggregation and fragmentation transitions for a
given configuration along with their respective transition
rates. The total transition rate is then the sum over all
of these individua1 rates

R =1/bt = g rg, (3.1)

where At is the expected lifetime of the configuration.
The Monte Carlo procedure then selects which square to
modify and whether the move is a fragmentation or ag-
gregation by chosing a random number between 0 and
R. A square is chosen for a change if the partial sum of
all previous rates in the list of possible moves is less than
the random number and the partial sum of rates includ-
ing this move is greater than the random number. This
algorithm guarantees that every contemplated move is
successful. In addition, moves with smaller rates are
chosen less frequently because they contribute a smaller
fraction to the total rate.

The natural time unit for this problem is I/vo, the re-
ciprocal of the fundamental attempt frequency. The rate
parameter o. which controls the onset of glasslike behav-
ior has been chosen as

as the starting configuration. Runs were executed in this
fashion to a maximum PA, value of 1.00, which is much
lower than the condensation temperature. The run at
PA, =O.OO was initiated from the end of the run at
PA, =0.10. The run at PA, =O.OS was started from the
end of the run at PA, =O.OO. Both static and dynamic
properties of the tiling model with the boundary-shift
transition rates were evaluated at the temperatures of in-
terest by sampling very long runs, typically 4 times
longer than the equilibration runs.

IV. ENERGY AND ENTROPY

PF(P)/N =2PA, —x + —,'x —'~x +O(x ),
where

(4.1)

x =exp(4PX) .

It is then easy to show that

(4.2)

The average potential energy for various values of PA.
determined from the Monte Carlo simulation of the
boundary shift model is listed in Table I. At negative or
small values of Pi, the average potential energies deter-
mined from both transition-rate models agree within the
statistical uncertainties of the simulations. At higher Pk
values, near to but below the condensation point at
(PA, ), =0.271, the current calculations consistently give a
lower average potential energy indicating that the
boundary-shift transition-rate model does not fall out of
equilibrium as rapidly as the other model. Beyond the
condensation point both models fa11 out of equilibrium
although in a somewhat different fashion.

%'e have previously developed a series expansion for
the free energy F in the limit PA, ~—ao, viz. ,

a =0.98 (3.2) (4)/NA, =2 —4x+36x —400x +O(x ) . (4.3)

in both the minimal aggregation model and the
boundary-shift model.

Once a move has been made, the list of possible transi-
tions must be modified appropriately. However, only
the local environment near the change requires relisting
of possible transitions and their rates. Thus only a mod-
est number of transition rates need be modified at each
stage of the simulation.

In our previous Monte Carlo simulations of the
minimal-aggregation model, ' we found that the equilib-
rium results obtained for a system of size of 100&&100
(N =10 ) were substantially identical to those obtained
for a system of size SOXSO (N =2.5X10 ). Therefore
only the 50&50 system was studied in the calculations
on the boundary-shift model reported here.

The simulations were initiated from a configuration
consisting entirely of unit squares at PA, =0.10. This
temperature is well above the condensation point (see
below) so that the system equilibrated rapidly. Then a
long run of over a million moves was made to sample
the equilibrium and kinetic properties of the system.
The next lower-temperature (higher Pk) run was equili-
brated using the end point of the previous sampling run

NA,

2+26.284x +52.000x 2 —5.693x 3

1+15.142x +38.284x +1.167x
(4.4)

Figure 1 shows the excellent agreement between the
simulation data and the [3/3] Pade approximant. The
diamonds in the figure are the data points from the
simulation of the tiling model using the minimal-
aggregation transition-rate rules. The squares are the
new points determined using the boundary-shift rules for
the transition rates The pole. s of Eq. (4.4) all lie on the
negative-real axis, at —32.404, —0.316, and —0.0837.

The free energy and entropy of the tiling model may
be found from the thermodynamic relationships,

A very accurate [3/3] Pade approximant was
developed for (4) /NA, by using the Monte Carlo simu-
lation data of Table I, while simultaneously constraining
the Pade coefficients to obey the expansion Eq. (4.3) for
small x. The data from the prior minimal-aggregation
model from PA, = —0.30 to —0.05 were combined with
the data from the boundary-shift model from PA, =O.O to
0.20, and the three free parameters of the [3/3] Pade ap-
proximant were determined using a nonlinear least-
squares fit. The following approximant was determined:
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TABLE I. Mean values of the potential energy for the tiling
model at various temperatures. =2PA, +f,—2 d(PX)' (4.5)

—0.30
—0.20
—0.10
—0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.268
0.30
0.35
0.40
0.45
0.50
1.00

10.00

(4) /NA;

1.340
1.286
1.225
1.157
1.076
0.964
0.920
0.848
0.707
0.576
0.511
0.472
0.433

(C )yNzb

1.598
1.522
1.437
1.392
1.342
1.280
1.225
1.170
1.092
1.015

0.890
0.716
0.593
0.486
0.440
0.409
0.405

and

S
kg%

(4.6)

Equation (4.5) was integrated numerically using the Pade
approximant of Eq. (4.4) to determine the free energy.
Figure 2 shows the result as a function of PA, . The free
energy is a monotonically increasing function of PA, in
the range shown, and goes to zero at the condensation
point: (PA, ), =0.271. This value had been estimated
previously to be 0.268 from the simulations of the tiling
model using the minimal-aggregation transition rate
rules.

The entropy of the model as a function of /3k is shown
in Fig. 3. The total number of square tilings is given by
the entropy at infinite temperature, i.e. , pA. =O and is
thereby found to be

'Results using the boundary-shift transition-rate rules, Eqs.
(2.8) and (2.9).
Results using the minimal-aggregation transition-rate rules,

Eqs. (2.3)—(2.7).

Q„,=exp(0. 3156K) . (4.7)

This is in excellent agreement with the previously calcu-
lated value.

We have analytically shown previously that at temper-
atures above the condensation point, the equilibrium
concentration of domains of size j &j monotonically de-
creases with size and in. addition that the concentration
to good approximation obeys the following equation:

O
Al

ln(nj IX)= —Kj Lj —M . — (4.8)

At temperatures higher than the condensation tempera-
ture the parameters E and I are both positive and refer,
respectively, to the interior and the boundary free energy

o
NX o

o

IA

o
o
I

.271

o
o

-D. 2 D. D 0 2 O. 4

P o
N

Pl

o
I

FIG. 1. Comparison of the Monte Carlo simulation data for
the square-tiling model with the Pad e approximate (solid
curve) given in Eq. (4.4). The transition rate rules using the
minimal-aggregation model are plotted as squares, and using
the boundary-shift model are plotted as diamonds. Both mod-
els are in excellent agreement with each other and the Fade
method at temperatures above the condensation point, (pA. ), to
the left of the dashed line. The Fade result and both models
di8'er significantly below the condensation temperature.

o
I

lA

o
I -0 1 O. 0 D 1 O. 2 o. 3

FICr. 2. The free energy for the square-tiling model [Eqs.
(4.4) and (4.5)] as a function of PA, . The free energy vanishes at
(PA, ), =0.271.
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TABLE II. 1ne(l) = —Kl2 —Ll —M.

O

o

m

o

lO
Al

O

Ii
I I
g

1

I 1
1

ll

0.00
0.05
0.10
0.15
0.20
0.25
0.268
0.30
0.35
0.40
0.45
0.50
1.00

0.304
0.223
0.160
0.116
0.073
0.023

—0.006
—0.036
—0.069
—0.101
—0.099
—0.078

0.001

0.398
0.615
0.727
0.771
0.814
0.917
1.034
1.117
1.174
1.251
1.154
0.918
0.176

0.211
0.146
0.211
0.352
0.523
0.686
0.660
0.760
1.107
1.507
1.958
2.562
4.081

-O. 1 0. 0 0 1 0 2 O. 3

FICx. 3. The entropy for the square-tiling model [Eqs.
(4.4) —(4.6)] as a function of PA, .

for the medium in which the j &(j domain is inserted.
The average concentrations of domains as determined

from the computer simulations were fitted by least
squares to Eq. (4.8). Figure 4 shows a plot of the loga-
rithm of the domain concentration versus the domain
edge length at PA, =0.2, and the fitting function so deter-
mined. Because of the small number of largest sized
domains, and therefore the uncertainty in their average
concentration, that value was not used in the least-
squares fit. The coeKcients K, L, and I determined
from the fits as a function of pk are given in Table II.

As expected the leading coefficient K decreases mono-
tonically as the temperature is lowered toward the con-
densation point. Very close to the value of (pA, ), deter-
mined from the free energy, we see that K becomes 0
(Fig. 5).

There is excellent agreement between the values for
the number of tilings at infinite temperature as estimated
for the two kinetic models for the transition rates. This
further supports our previous conclusion of a first-order
thermodynamic phase transition for the tiling model at
(pA, )„providing strict equilibration obtains. The main
interest in both kinetic versions of the tiling model con-
cerns the failure to achieve equilibration at and below
the condensation point.

O Pl

o

Al

Cl

z

tD
I

O

n
O

O
I a

I

O. 0 O. 2 o. 4 o. 6 O. 8 1.0

FICx. 4. The logarithm of the concentration of j&j squares
as a function of j at temperature PE=0.2. The solid curve is a
least-squares fit of the data, excluding the last point, to Eq.
(4.8).

FIG. 5. A plot of the area coefficient K as a function of PA„
see Eq. (4.8). An estimate of the condensation temperature is
given by the point at which K goes to zero.
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V. RELAXATION RATES

The high-temperature equilibrium properties of the
square-tiling model are in substantial agreement for both
transition rate models. However, the dynamical proper-
ties of the two models are expected to differ significantly
depending upon the choice of transition rate rules. In an
attempt to investigate the linear dynamical response, we
have evaluated the potential energy autocorrelation
function, defined by

(5.1)

P(t) =exp[ (t/r„)"], — (5.2)

where ~ and p are the adjustable parameters deter-
mined by a nonlinear least-squares fit to the data. Fig-
ure 6 shows the autocorrelation function obtained from
the simulation and the KWW fit to the data at pA, =0.05.
Figure 7 shows a similar plot for a lower-temperature
run at pA, =0.20. In both cases the KWW fit is in good
agreement with the data. However the p parameters
differ substantially, 0.560 and 0.401, respectively, indi-

6)
O

lO

O

For the minimal aggregation model, we found that only
the short-to-intermediate-time decay for values of
pA, (0.1 could be obtained with reasonable accuracy.
For the boundary-shift model, we have been able to ex-
tend the temperature range closer to the condensation
temperature, and still accurately calculate the relaxation
behavior. Using the Monte Carlo simulation data from
the long equilibrium runs, we have calculated the auto-
correlation function Eq. (5.1) from the chain of
configurations saved at various times.

The resulting numerical autocorrelation functions
were then fitted to the Kohlrauch-Williams-Watts
(KWW) function

0
C)

ZO 25

FIG. 7. A plot of the potential-energy autocorrelation func-
tion, Eq. (5.1), vs time for pal=0. 20. The solid curve is a fit to
the data using the KWW function, Eq. (5.2).

has been our preferred method to compare relaxation
rates as a function of temperature. The average relaxa-
tion times calculated for both transition rate models are
also listed in Table III. It is immediately evident that
the boundary shift model relaxes more quickly, a factor
of 4 times faster at pA, =O, than the minimal aggregation
model.

Figure 8 shows an Arrhenius plot of the logarithm of

TABLE III. Values of the average relaxation time as a func-
tion of temperature.

cating not only that a single exponential would not have
yielded a good fit, but that the discrepancy magnifies as
temperature declines.

The values of the KWW parameters obtained from the
fits are listed in Table III. Due to the uncertainties in
the autocorrelation-function data obtained from the
simulations and in the least-squares fits themselves, the
average relaxation time defined by

(5.3)

Al

O

O
O

0.00
0.05
0.10
0.15
0.20
0.25
0.268

0.145
0.309
0.660
1.532
6.223

22.169
48.161

0.804
0.560
0.571
0.521
0.401
0.638
0.354

0.164
0.512
1.064
2.848

20.600
30.925

295.200

0.65
1.5
5.6

FIG. 6. A plot of the potential-energy autocorrelation func-
tion, Eq. (5.1), vs time for pA, =0.05. The solid curve is a fit to
the data using the KWW function, Eq. (5.2).

'Results using the boundary-shift transition-rate rules, Eqs.
(2.8) and (2.9).
Results using the minimal-aggregation transition-rate rules,

Eqs. (2.3)—(2.7).
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D 0

-0. 1 O. 0 O. 2 O. 3 —O. 5 0. 5

P), kB N/S
1. 0

FIG. 8. An Arrhenius plot of the average relaxation time
[Eq. (5.3)] for the potential energy. The diamonds are the new
data obtained using the boundary-shift model. The squares are
the data of the minimal-aggregation model. The slope or ac-
tivation energy increases as the temperature is lowered (PA, in-
creased).

the average relaxation time for the boundary-shift
transition-rate version of the square-tiling model. The
apparent energy of activation is seen to increase as the
temperature decreases toward the condensation tempera-
ture, as would be expected for a material approaching its
glass transition. ' Previously we had investigated
whether the properties of the square-tiling model obeyed
the Adam-Gibbs hypothesis, viz. , the energy of activa-
tion is inversely proportional to the entropy. Figure 9
shows a plot of 1 (nr) versus 13kk~NiS. As with the
minimal aggregation model, the apparent curvature in
the present plot (Fig. 9) indicates that the kinetics of the
boundary shift model do not strictly obey the Adam-
Gibbs equation.

VI. DISCUSSION

Both the minimal-aggregation and the boundary-shift
models rapidly approach equilibrium at temperatures
well above the condensation temperature. However, as
the temperature is lowered through the condensation
temperature the minimal-aggregation model falls out of
equilibrium sooner than the boundary-shift model. At
temperatures much lower than the condensation temper-
ature the minimal-aggregation model has a lower aver-
age potential energy implying a closer approach to equi-
librium although both models are still far from equilibri-
um.

The ability to reach equilibrium in the square-tiling
model is inherent in the basic kinetic assumptions used
respectively for the two cases. At high to moderate tem-

FIG. 9. Adam-Gibbs correlation for the square-tiling model.
The diamonds are the new data obtained from simulation using
the boundary-shift model. The squares are the data from the
minimal-aggregation model.

peratures where the number of unit squares is substan-
tial, larger squares may form by aggregation using either
set of transition rate rules. Thus the concentrations of
domains of size greater than unity will attain their equi-
librium values readily.

As the temperature is lowered toward the condensa-
tion temperature, the concentration of unit squares de-
creases. The formation of larger squares in the
boundary-shift mode is then slowed because of the lack
of unit squares in the proper arrangement to aggregate
with existing domains. In this kinetic version, unit
squares must be created by the fragmentation of neigh-
boring domains which can then aggregate with another
domain to form a larger domain. Equilibrium concen-
trations of larger domains may only be obtained by frag-
mentation processes followed by aggregation.

However, with the minimal-aggregation-model
transition-rate rules, tilings may eliminate boundaries
whenever any domains of the same size find themselves
in a square arrangement. Thus four large squares in
proper registry may form a still larger square. This pro-
cess can still occur even at the lowest temperatures pro-
vided the concentrations of domains of the same size are
great enough. Thus the minimal-aggregation model may
be able to lower its average potential energy at very low
temperatures while the boundary-shift model is unable to
lower its energy because of the low concentration of unit
squares in proper alignment.

Not surprisingly, perhaps, we find that the patterns, or
textures, of square tiles in the low-temperature glasses
produced with the two kinetic alternatives are subtly
different. With the minimal-aggregation rules,
significant collineations of unit squares become trapped
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in the matrix of large squares. These are substantially
absent in the glasses formed with incremental aggrega-
tion. In addition, tiles of the prime-number size 7&7
form with greater difficulty (and so appear in lower con-
centration) with the minimal aggregation rules in com-
parison with incremental aggregation rules. If comput-
ing resources were available to cool several orders of
magnitude more slowly than thus far possible, we expect
that even larger prime-number squares (11X 11,13 X 13,
. . . ) would be observed with incremental domain kinet-
ics, whereas the one-step formation of these prime-
number tiles required by the minimal kinetics would be
extremely unlikely.

The kinetics of both models have been fitted empiri-
cally with the KWW functional form. This function has
been found to adequately model the short to moderate
time relaxational behavior of the square-tiling model.
We have shown that the very-long-time relaxational be-
havior of the KWW functional form decays to zero fas-
ter than the true relaxational behavior. ' Similar argu-
ments may be applied to the boundary shift model to
show that the KWW form, though certainly useful as a
fitting tool, does not possess the correct very-long-time
behavior.

Both kinetic variants have been shown to have non-
Arrhenius behavior. The activation energy increases as
the temperature is lowered as would be expected for a

material approaching a glass transition. In addition, the
Adam-Gibbs hypothesis is found not to be accurately
obeyed in both the minimal-aggregation and boundary-
shift cases.

One of the distinctive features of the square-tiling
models is the ability to define a coherence length which
may be associated with the size of a tile. This length
should diverge as the temperature is lowered if equilibri-
um is achievable, as the tiles grow to encompass the en-
tire sample; however, it does not because the glass tran-
sition intervenes.

There are many possible variants of the transition rate
rules which could be used to study the square-tiling
model. The two studied to date represent opposite
geometric extremes of possible aggregation and fragmen-
tation. Both show a failure to reach equilibrium as the
temperature is lowered through the transition tempera-
ture. However the rates at which, and the extents by
which, the tiling model falls out of equilibrium depend
significantly on the allowed set of fundamental transi-
tions. Furthermore, the final spatial patterns of domains
in the glass as temperature goes to zero likewise depend
on the allowed set of transitions in subtle ways not ex-
plainable by a simple shift in effective time scales.

We conclude that it will be valuable to expand the
range of kinetic models and sets of allowed transitions to
sharpen general understanding of these complex effects.
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