PHYSICAL REVIEW B

VOLUME 36, NUMBER 13

1 NOVEMBER 1987

Magnetic behavior of the diluted magnetic semiconductor Zn,; _, Mn, Se

A. Twardowski,* H. J. M. Swagten, and W. J. M. de Jonge
Department of Physics, Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands

M. Demianiuk
Institute of Technical Physics, Wojskowa Akademia Techniczna, Warsaw, Poland
(Received 26 March 1987)

The magnetic susceptibility and specific heat of the diluted magnetic semiconductor
Zn,_,Mn, Se have been measured in the temperature range 10 mK < T <40 K for 0.01 <x <0.53.
A paramagnetic—spin-glass transition was observed in the whole concentration range. The con-
centration dependence of the freezing temperature T, was found to be compatible with a radial
dependence of the exchange interaction between manganese ions of the type J(R)~R ~%8 Based
on this observation, we calculated thermodynamic properties with the extended nearest-neighbor
pair approximation. It appears that this approximation provides a good simultaneous description
of the specific heat and high-field magnetization and reproduces Curie-Weiss temperature for pa-
rameters Jo/kg=—13 K (nearest-neighbor interaction) and J;(R)/kz=—7/R%% K (distant-
neighbor interaction). A comparison is made with other dilute magnetic semiconductors, and the
possible origin of the exchange mechanism is then discussed.

I. INTRODUCTION

During the past years extensive investigations have
been performed on the magnetic behavior of diluted
magnetic semiconductors (DMS’s) (i.e., II-VI or II-V
compounds containing controlled quantities of randomly
substituted magnetic ions).! So far data have been ob-
tained almost exclusively on systems of the type
A,_ MnB, such as Hg,_,Mn,Te, Cd,_,Mn,Te,
Cd,_,Mn,Se, Zn,_,Mn,Te, (Cd,_,Mn,);As,, and
(Zn,_,Mn, );As,.2® From these data, as far as avail-
able, a rather typical behavior is observed. This behav-
ior can be characterized as follows.

(1) Curie-Weiss behavior of the magnetic susceptibility
X at high temperatures indicating antiferromagnetic
(AF) Mn-Mn interactions.

(2) A cusp or kink in the low-temperature X indicating
a spin-glass-like transition at a temperature depending
on the Mn concentration x.

(3) A magnetic contribution to the specific heat C,,
with a broad maximum shifting to higher T with x.

(4) A field dependence of the magnetization M indicat-
ing AF interactions, usually accompanied with steps in
high fields.

Originally this magnetic behavior was interpreted as
arising from interactions between Mn ions situated at
the nearest-neighbor (NN) sites in the host lattice.*>
This conjecture was strongly supported by the original
observation of the spin-glass (SG) transition only above
the percolation limit (x,) of the host lattice.*> It was
suggested then that the SG transition was brought about
by short-range [nearest-neighbor (NN)] AF interaction
causing topological frustration effects due to the high
symmetry of the host lattice. Recent results, however,
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for low Mn concentrations in Hg,_,Mn,Te,!
(Cd,_,Mn, );As,2 (Zn,_,Mn, );As,*> Cd,_,Mn,Te,®
Cd,_,Mn,Se,” and very recently Zn, ,Mn,Te and
Zn,_,Mn,Se,® reveal the existence of a SG phase also
below x.. The situation for (Cd;_,Mn, );As, is even
more pronounced since in this case for x >x, the NN
frustration mechanism is also excluded due to the
simple-cubic symmetry of the host lattice.> Moreover,
subsequent calculations on the basis of NN interactions
only gave rise to a wide spread of exchange parameters
deduced from various sets of data and the need to adjust
the random distribution of the magnetic ions. To our
knowledge no consistent set of parameters explaining all
the data simultaneously has been obtained on this basis.

It is our claim that these discrepancies are mainly due
to the fact that the long-range character of the interac-
tions is not taken into account, as we have shown recent-
ly for (Cd,_,Mn, );As, (Ref. 2) and, though less exten-
sive, for some other systems as well.” Moreover, as we
argued before,'” detailed knowledge about the range or
radial dependence of this long-range interaction might
yield valuable information about the driving physical
mechanisms behind the Mn-Mn interaction in DMS’s.
In view of this we thought it worthwhile to study the
magnetic properties of Zn;_,Mn,Se in some detail.
Preliminary results have been reported recently.® We
will report susceptibility and specific-heat results in a
wide composition range (0.1 <x <0.53) and we will try
to interpret these data (together with magnetization'!
data and high-temperature susceptibility'?) simultaneous-
ly on the basis of one model incorporating short-range as
well as long-range interaction in a random array.

II. EXPERIMENTAL RESULTS

The samples of Zn;_,Mn,Se were grown by the
modified Bridgman method under the pressure of a neu-
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tral gas. The crystalline structure of this material was
reported'> to be cubic for x <0.06, polytypic for
0.06 <x <0.12, and hexagonal for x >0.12. In a previ-
ous magneto-optical investigation'* of this material no
essential influence of polytypism was found, although
some scattering of energy gap for x > 0.2 was reported.'’

The Mn concentrations x of the investigated samples
as measured by microprobe analysis were 0.01410.001,
0.023+0.002, 0.056+0.002, 0.06410.006, 0.103£0.005,
0.1541+0.004, 0.254+0.003, and 0.53+0.02. Generally
these actual concentrations were considerably larger
(typically 50%) than the nominal concentrations of the
starting materials.

A. Low-temperature susceptibility

The ac susceptibility was measured with a convention-
al mutual inductance bridge operating in the region 100
< f <2000 Hz and fields less than 1 G. Some represen-
tative susceptibility data for various x are shown in Fig.
1. The results below 1.5 were obtained in a dilution re-
frigerator for which no adequate absolute calibration of
X was available, which may result in some deviation of
the data at low temperatures. Figure 1 clearly shows an
anomalous behavior of the susceptibility at a certain
temperature T, (freezing temperature) depending on the
concentration of Mn ions (see Table I). The anomalies
are cusplike for high concentrations and kinklike for low
concentrations. A similar situation was reported for
(Cdy_,Mn, )Te, where a well-pronounced cusp for
x >0.3 (Ref. 4) and a kink for x <0.15 (Ref. 6) was ob-
served. In contrast to the susceptibility, as we will see
later on, no anomalous behavior can be detected in the
specific heat.

dc susceptibility data, field-cooled as well as zero-
field-cooled, are shown in Fig. 2 for concentrations
above and below the percolation limit. This characteris-
tic behavior supports the interpretation of the anomaly
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FIG. 1. ac susceptibility of Zn,_,Mn,Se [x=0.023 (@),

0.064 (0), 0.154 (V), 0.245 (O), and 0.53 (X)] as a function of
temperature for different Mn compositions. The arrows indi-
cate the freezing temperatures T,. Note the different vertical
scales; the data are multiplied by the factor indicated in the
figure.
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FIG. 2. dc susceptibility of Zn, g4Mny ;s4Se measured after
zero-field cooling (ZFC, H <1 G) and field cooling (FC, H =20
G) as a function of temperature. The arrow indicates freezing
temperature T, as obtained from ac susceptibility. Inset: simi-
lar data for Zny .,Mng 55Se (Ref. 12).
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FIG. 3. Phase diagram for Zn;_,Mn,Se (®, our data; O,
Ref. 12). The dashed line is a guide to the eye only.
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TABLE 1. Freezing temperatures T, for Zn,_,Mn,Se.

T, (K) x
0.022 0.023
0.225 0.064
0.55 0.103
1.7 0.154
5.7 0.245

24 0.53

in the susceptibility as a transition to a spin-glass state.
The resulting phase diagram, T;-x, in the range
0.023 <x <0.53, is shown in Fig. 3. Inspection of this
phase diagram shows that 7, —0 when x —0. From
this experimental observation one may already conjec-
ture that the interactions including this spin-glass transi-
tion are relatively long ranged, since otherwise no freez-
ing should have been observed for x below the percola-
tion limit, which amounts to x, =0.18 in this case.

B. Specific heat

Specific-heat data were obtained with a conventional
adiabatic heat-pulse calorimeter in the temperature
range 0.4 <T <20 K. The magnetic contribution C,, to
the specific heat was obtained by subtraction of the lat-
tice contribution of pure ZnSe and the nuclear hyperfine
contribution of the Mn ions.

The results for C,, in zero external magnetic field are
shown in Fig. 4. As quoted above, no anomaly was ob-
served at the temperature T, indicated by arrows in the
figure. The overall behavior of C,, is similar to that ob-
served for the other DMS’s: a broad maximum shifting
to higher temperatures with increasing x. In our case

0.154/
A—AZ”*{
L

8
T(K)

specific heat Cp, (J/ mole K)
o
N
T

*,

& %, .
L L1,

; =%
v
&~

01 i
’ &

- ”‘“ e
0.01422s
L

AR v it

LLLYYYVYYY
4088888 88088885, AMAPAALMS B8 B2,

1
temperature (K)

FIG. 4. Magnetic specific heat of Zn,_,Mn,Se [x=0.014
(), 0.023 (+), 0.056 (x), 0.103 (O), and 0.154 ({)]. Inset:
magnetic specific heat of Zn,_,Mn,Se (x=0.154 and 0.245 as
well as specific heat of pure ZnSe). The arrows indicate the
freezing temperatures T.
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FIG. 5. Magnetic field dependence of the magnetic specific
heat of Zng ¢36Mng 014Se for B =0.00, 0.494, 0.857, 1.03, 2.04,
and 2.80 T. The solid lines are obtained from the ENNPA us-
ing Jo/kg=—13K and J; /ky=—7/R%® K.

this maximum is not observed for x <0.06 since it is lo-
cated at temperatures lower than 0.4 K. In the presence
of a magnetic field the specific-heat data show a shift of
the maximum to higher temperatures with increasing
field, as shown in Fig. 5 for Zng ¢gsMng g14Se. These data
look very similar to earlier results'® in the temperature
range 0.3<7T <3.5 K on Zn,;_,Mn,Se with a nominal
Mn concentration of 0.01. Quantitative comparison is,
however, difficult since the actual Mn concentration is
not known.

C. High-temperature susceptibility
and magnetization

The magnetization has been measured up to 15 kOe
and was reported earlier by one of the present authors.!!
For comparison some selected result will be shown later
on. The high-temperature susceptibility results'? show a
Curie-Weiss behavior with ®=—45 K for x =0.05 at
high temperatures, indicating AF interactions between
the Mn?* ions. Moreover, ® was found to be a linear
function of the concentration'? suggesting a random dis-
tribution of the Mn?* ions.

III. INTERPRETATION

A. The spin-glass transition

Among the data reported above, the existence of a
spin-glass transition for vanishingly small concentrations
of x is the most obvious indication of the existence of
long-range interactions between the Mn2* ions.

As a basis for the interpretation we would like to
focus our attention on this freezing transition since the
concentration dependence of this transition can be con-
sidered as a probe of the radial dependence of the in-
teraction strength between the impurities.'°

In this respect it is relevant to note that the experi-
mental data on the transition strongly support the spin-
glass nature of the transition. These data include the
cusp or kink in the ac susceptibility, the continuous be-
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havior of the specific heat, and the hysterises observed in
the dc susceptibility. These observations match perfectly
the phenomenological characteristics which are com-
monly applied to define a transition to a canonical spin
glass.!’

If one accepts the nature of the transition as a spin-
glass freezing (which is, however, disputed as we will ar-
gue in the discussion), then a scaling analysis should be
applicable. Such a scaling analysis generally exploits the
fact that for a continuous random distribution it is as-
sumed that R Sx =const, where R;; denotes a typical dis-
tance between the ions. Implementation of this expres-
sion in a model for spin-glass freezing, given a known
functional form for the radial dependence of the ex-
change interaction, then yields a theoretical prediction
for T,(x) which can be compared with experimental
data.

This procedure is elaborated in the Appendix for a
continuous as well as a discrete distribution of ions. In
the spirit of earlier analyses,'®!° the spin-glass—freezing
condition is based on the existence of a critical fraction
of blocked or frozen ions at the freezing temperature.
The fraction of these ions is determined by the probabili-
ty of finding at least one ion within a sphere of radius
R;(T), implicitly given by J(R;)S*=kgzT. The results
demonstrate the applicability of this approach also out-
side the limit of the very dilute regime to which it is usu-
ally restricted. Given a powerlike or exponential radial
dependence of the interaction, the concentration depen-
dence of T, can be expressed as

lan~%lnx for J(R)=JoR ~"

or
InT;~ax ~' for J(R)=Jyexp(—aR) .

In Fig. 6 the experimental data T,(x) for
Zn,_ . Mn,Se are plotted in the coordinates suitable for
power and exponential dependence, respectively. A
comparison between these shows that the simple power
dependence J(R)~R ~" seems to describe the data in
the whole concentration range better than the exponen-
tial decay [J(R)~e ~°R]. The exponent n deduced from
Fig. 6 is ~6.8. We would like to stress here that al-
though it is clear that a power law yields a better fit to
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FIG. 6. Natural logarithm of the freezing temperature T, as
a function of (a) Inx and (b) x ~'/3 for Zn;_,Mn,Se (®, our
data; O, Ref. 12). The straight solid lines have slopes of (a) 2.3
and (b) —4.1.
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the experimental data than an exponential decay in the
concentration range from far below to far above the per-
colation limit, one should not exclude the possibility that
the x dependence of freezing temperature T, can be
different above and below the percolation limit. There-
fore one should be careful in drawing definite con-
clusions from Fig. 6.

B. Magnetic properties

It follows from the inspection of the experimental data
and the analysis of the spin-glass transition that the
Mn-Mn interaction in Zn;_,Mn,Se is AF and that it is
rather long ranged, decaying as R ~%%. The relevant
thermodynamic properties can be described with the so-
called pair-approximation model, which is an approxi-
mative calculation method, particularly useful for ran-
dom arrays with long-ranged interaction. It has been in-
troduced by Matho®® for canonical metallic SG’s and
was recently successfully used for DMS’s as well.>>°
This approximation is based on the assumption that the
partition function of the system can be factorized into
contributions of pairs of spins. We will consider two
models in some detail: the extended nearest-neighbor
pair approximation’ (ENNPA) and the hierarchy pair
approximation (HPA) of Rosso.?! In the ENNPA each
spin is considered to be coupled by an exchange interac-
tion J; only to its nearest magnetic neighbor, which may
be located anywhere at a distance R; from a reference
site. The statistical weight of these pair configurations
with various R; (which can only take on discrete values
depending on the symmetry of the host lattice) is as-
sumed to be determined by the random distribution of
the ions.

The Hamiltonian for a pair is given by

ﬂ,‘:—ZJI'S['Sj—gIJrB(Siz"—SjZ)BZ, (1)

where J;=J(R;) and R; denotes the distance between
the sites i and j. If N; is the number of lattice sites in a
shell with radius R; and using n; = 2§=1Nj for j >0
and ny=0, the probability for a pair formation can be
taken as the probability of finding at least one nearest
spin in the ith shell (assuming all j </ shells empty) and
reads for a random distribution as

N;

Pix)=(1—x)"""[1—(1—x)"]

n;

=(1—x)""—(1—x) @)

On the other hand, in the HPA the spins are arranged
in a collection of separate pairs ordered by decreasing in-
teractions.?! The calculation of the probability distribu-
tion for pairs in this case is similar to that used in the
ENNPA: P;(x) is a product of (a) the probability for a
spin to have a magnetic neighbor at a distance R;, and
(b) the probability that both spins do not belong to a
pair with a shorter R;. We then obtain

n; 2
Px)=[1—-1—-x)"1[1— 3 Pix)| , 3)
=1

j=
(JER,)
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where the summation runs over sites in the sphere R;;
some sites are skipped in the summation because the
probabilities that ions i and j do not belong to a pair
with shorter R; are not independent.?! The principal
difference between the ENNPA and HPA is shown in
Fig. 7 for a system of four ions. The calculated proba-
bility distributions for x =0.023 in both models are
shown in Fig. 8. As could be expected, the number of
pairs with small R; (i <7) is enhanced in the ENNPA,
with respect to the HPA. This situation is reversed for
more distant pairs. Since the probability distributions
are known, the total partition function and other ther-
modynamic properties can be obtained by summing the
respective pair contributions:

Z=3S ZP(x)/2, )

i=1

Cr=3 CpiP(x)/2. (5)

i=1

Each pair contribution (Z;, C,,;, and so on) contains the
exchange parameter J;. Following the results of the
preceding section, we take J;=J,/R®8%, where R; is in
units of the NN distance in the host lattice.

The summation over the shells i is carried up to shell i’
for which 3!_,P,;>0.995. For low concentrations
(x <0.03) usually 7 <20, being even less for higher con-
centrations.

The results of the specific-heat calculation for both the
ENNPA and HPA are shown in Fig. 9 together with the
experimental data. For J, (i.e., NN interaction) we have
taken —13 K as indicated by high-field magnetization
data.?? Recent inelastic-neutron-scattering data® yield-

(a)

ENNPA

(b)

HPA

FIG. 7. Pair formation in the (a) ENNPA and (b) HPA.
The arrows represent spin-spin interactions.
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FIG. 8. Probability of finding at least one magnetic neigh-
bor in shell i/ represented by the blank histogram [Eq. (2)], and
probability for a spin to have at least one magnetic neighbor in
shell i under the condition that both spins do not belong to a
pair with a shorter distance [Eq. (3)] represented by the shaded
histogram.

ed a comparable value, although slightly lower. One can
notice that at low temperatures (T'<0.2 K) the HPA
gives larger values than the ENNPA, whereas for higher
temperatures the situation is reversed. This results from
the discussed difference in probability distributions (Fig.
8). The difference is much more significant for higher
concentrations (x ~0.06) than for lower ones (x ~0.01),
for which the ENNPA and HPA nearly coincide. It
should be stressed that the specific-heat curves shown in
Fig. 9 were simply calculated with no fitting to the ex-
perimental data. Presumably a better agreement will be
obtained if J; values are treated as adjustable parame-
ters. Since the nearest-neighbor interaction J, is in-
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FIG. 9. Zero-field magnetic specific heat calculated in the
ENNPA (solid lines) and HPA (dashed lines) together with ex-
perimental data.
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FIG. 10. Magnetic specific heat of Zn;_,Mn,Se. The
dashed lines represent calculations with the ENNPA as de-
scribed in the text using Jo/kz=—13 K and J; /ky = —7/R*®8
K. The solid lines represent the ENNPA with triples included.
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ferred from independent experiments and the radial
dependence from T,(x), we inserted J, as a constant
value (= — 13 K) and assumed for further neighbors that
J;=J,/R®% (i >0), where J, is the only adjustable pa-
rameter. J, was chosen to obtain the best overall agree-
ment for all three experimental quantities: C,,, M, and
X. For the final calculations we have extended our
ENNPA in a similar way as for (CdMn);As, (Ref. 2) and
(ZnMn);As, (Ref. 3); we considered not only pairs but
also ““triples” (i.e., configurations in which two spins are
located at the same distance from the reference site).

The results of ENNPA calculations with Jo=—13 K
and J; = —7 K are shown in Figs. 5 and 10 (C,,), 11 (M),
and 12 (M). The high-temperature susceptibility calcula-
tions for Zng 9sMng ogsSe yield a Curie-Weiss temperature
®= —45 K which is in perfect agreement with the ex-
periment.'? The high-field magnetization, shown in Fig.
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FIG. 11. High-field magnetization of Zng¢sMngosSe. The

solid lines represent calculations with the ENNPA using
Jo/kp=—13K and J; /ky=—7/R** K.
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magnetization (Bohr magnetons)

20+
Znggs Mg o5 Se
T=18K
L_ 1 1 1 1 1 1 1 i
0 10 20 30

magnetic field (T)

FIG. 12. Steplike magnetization of Zng ¢sMn, osSe (Ref. 24)
together with the ENNPA prediction (solid line, J,/kp = — 12
K and J,/kz=—7/R%® K, dashed line, J,/kz=—13 K and
J;/kg=—7/R%8 K). Since no absolute value of magnetization
is given in Ref. 24 the magnetization was scaled at 25 T.

12, has been recently fitted with a model including a
nearest-neighbor interaction Jo=—9.9 K and a mean
field.”* Our results also show that a satisfactory descrip-
tion can be obtained with the same set of parameters as
used for the other thermodynamic quantities.

The ENNPA may be further extended by combining it
with a mean-field approximation to account for the aver-
age interaction of a spin with the other spins not belong-
ing to a pair (i.e., spins with i >7). The results generally
confirm this conjecture, although the obtained correction
is rather small. We conclude that, although these exten-
sions do not significantly improve the results and some
systematic deviations remain, the general agreement
shows that it is, in principle, possible to explain the be-
havior of specific heat, magnetization, and susceptibility
simultaneously, without the need to adjust the random
distribution of the Mn ions. As we quoted before, some
C,, data on Zn,_,Mn,Se with a nominal Mn concentra-
tion of x =0.01 were recently published by Keesom.'®
Assuming only contributions from singles, pairs, and tri-
ples he was able to describe the data rather well. How-
ever, since essentially both the total Mn concentration as
well as the statistical distribution were used as a fitting
parameter, a comparison with these results does not
seem very significant.

IV. DISCUSSION

The analysis of the concentration dependence of the
freezing temperature, as performed for Zn,_,Mn,Se in
the preceding section, can also be applied to other
DMS’s. The available data on T,(x) for a number of
them are gathered in Fig. 13. In all cases it appears that
a description of T,(x) based on a power-law dependence
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FIG. 13. Freezing temperature 7, as a function of the Mn
concentration x for various DMS’s on logarithmic scale. The
straight lines are fitted to the data yielding the power depen-
dence J(R)~R ~" as tabulated in Table II. References on the
origin of the data are given in the text.

of J(R)=JyR ~" fits the data in the whole concentration
range rather well, in contrast to the description based on
an exponential decay of J(R). Whether this is indicative
of a specific mechanism remains to be seen, however,
since (as was argued before®) it is not a priori clear
whether the same mechanism is responsible for the spin-
glass freezing below and above the percolation limit.

The exponents n deduced from Fig. 13 are tabulated
in Table II. The various systems in Table II are ar-
ranged in order of decreasing gap. Reviewing the table
gives rise to the following comments. The considerable
increase of the range (~1/n) of the interaction going
from wide-band-gap materials to small-band-gap materi-
als is obvious. This fact is not inconsistent with the ex-
pectations based on the Bloembergen-Rowland exchange
interaction? as the driving mechanism behind the spin-
glass freezing. In this case, however, an exponential de-
crease [J(R)~e ~°R] should have been expected and the
apparent universal range of the exchange for the II-VI
compounds, irrespective of the appreciable variation of

the gap magnitude, is somewhat surprising. Moreover,
if superexchange was the driving mechanism, as suggest-
ed by Larson et al.,?® at least for the nearest-neighbor
interactions, an increasing range of the interaction
would be related to an increasing covalent character of
the bonding.?® Roughly speaking, such an increasing co-
valence may indeed by expected when the II-VI systems
are compared with II-V and IV-VI systems. More de-
tailed information can be obtained from the location of
the energy of the Mn d levels with respect to the top of
the valence band. Recently Taniguchi et al.?’ obtained
information about the Mn 3d density of states and p-d
hybridization in the series Cd,;_,Mn,Y (Y =S, Se, and
Te). They concluded that for this series the degree of p-
d hybridization increases upon going from Te to S.
However, the data tabulated in Table II do not reflect
the expected systematic change in range of the interac-
tion.

In fact, a most remarkable feature of the data on T,
versus x as shown in Fig. 13 is the surprising universal
behavior of the II-VI wide-band-gap materials. Not only
is the concentration dependence analogous (and thus the
range 1/n), but the absolute magnitude of the freezing
temperature is also the same, taking into account the
scattering of the data. In view of the fact that consider-
able differences exist between the lattice parameters of
the II-VI compounds in this series (up to 20%), a varia-
tion of the freezing temperature by a factor of 2 or 3
might have been anticipated within the concept of our
model, given the pronounced radial dependence of the
interaction strength J(R). The data apparently do not
support this conjecture. This might be considered an in-
dication that, besides the interaction strength, the freez-
ing process is also determined by topological criteria.

As we quoted in the Introduction, the overall charac-
teristics of DMS’s, include, among others, AF long-
ranged interactions and spin-glass formation for a wide
range of concentrations. It has been questioned whether
real spin-glass formation is possible in a random diluted
array coupled by long-range isotropic AF interactions
only, since in that case the driving mechanisms of frus-
tration or competition would not be effective.!” To start
with, we would like to emphasize that the present exper-

TABLE II. Type, concentration range, band gap, nearest-neighbor distance, and exponent n of various DMS’s.

NN distance (A)

Material Type Xx range E,; (eV) (for x =0) n Ref.
Zn;_,Mn,S I1I-VI 0.3-0.4 ~3.8 3.83 ~6.8 31
Zn,_,Mn,Se 1I-V1 0.02-0.5 2.8-3 4.00 6.8 This paper, 12
Zn;_,Mn,Te II-VI 0.07-0.6 2.4-2.8 4.31 6.8 8, 32
Cd,_,Mn, Se 1I-VI 0.05-0.5 1.8-2.6 4.28 ~6.8 7, 30
Cd;_,Mn,Te II-VI 0.01-0.6 1.6-2.5 4.58 ~6.8 4, 19, 6, 33
Hg,_.Mn,Te II-VI 0.02-0.5 ~0-1.1 4.55 ~5 5,34,35
Hg, .Mn,Se 1I-VI 0.02-0.3 ~0 4.30 ~5.0 37
(Zn, _.Mn, );As, 1I-V 0.005-0.1 ~1 2.94 4.5 3
(Cdy_,Mn, );As, I1I-vV 0.005-0.2 0-0.2 3.17 35 2
Pb;_,Mn, Te 1V-VI 0.03-0.1 0.2-0.4 4.56 3 36




7020

iments on Zn;_,Mn,Se did yield the observation of typ-
ical spin-glass characteristics. These include the cusp in
the susceptibility, a continuous specific heat, and a
difference in zero-field-cooled and field-cooled magneti-
zations, both for concentrations above as well as below
the percolation limit. We feel that with these data the
canonical spin-glass nature of the transition is strongly
supported.!’

With respect to the fundamental question about the
spin-glass freezing in DMS’s as such, we would like to
point out that the anisotropy might play an important
role. From Monte Carlo calculations and renormal-
ization-group treatments,?®2° it has been suggested that,
in general, an additional anisotropy in an isotropic sys-
tem will lower the critical dimension and a small anisot-
ropy is needed to activate a clearcut transition. More
specifically, it was suggested for impurity spins in III-V
semiconductors that the random anisotropy of the in-
direct exchange is the driving force towards a spin-glass
state, irrespective of the sign of the exchange integral.’

Experimental evidence of such an additional anisotro-
py in DMS’s is scarce, however, though not completely
absent. For the present compound Zn,;_,Mn,Se,
electron-spin-resonance results were reported for dilute
samples, indicating a uniaxial single-ion anisotropy
D =0.1 K.** Moreover, inspection of the specific-heat
data as shown in Fig. 4 indicates an increase in C,, at
the lowest temperatures, which is not reflected in the
calculations. This is by no means unique for
Zn,_,Mn,Se and has been observed in a number of
DMS’s.  Earlier attempts have been made in
Cd,_,Mn,Se to explain this behavior in terms of a
single-ion anisotropy, although in that case no single-ion
splitting was observed in ESR experiments.’® For
Zn,_,Mn_Se, the reported value of D ~0.1 K can, as
calculations of the resulting Schottky anomaly have
shown, explain, in principle, the increase of the low-
temperature C,,. Further direct evidence on this anisot-
ropy is, however, difficult to obtain. Preliminary experi-
ments on a single crystal with 1 at. % Mn?™ in an exter-
nal field applied along the principal axis showed no mac-
roscopic preferred direction. This, however, can be un-
derstood by assuming random local axes, in agreement
with the ESR results.’® In order to establish the pres-
ence of these anisotropic terms and their influence on
the freezing process, further research is necessary.
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APPENDIX

In this appendix we present a simple model which cor-
roborates the usefulness of the scaling analysis relating
the freezing temperature to the concentration. This
model is based generally on the idea of Smith!® and
Escorne et al.,'® defining the SG freezing as the process
of cluster blocking.

We consider a particular magnetic ion which may be
blocked (frozen) by coupling with its magnetic neighbors
if the exchange energy J (R)S? is larger than the thermal
energy kg T. On the other hand, an ion is considered to
be “free” (i.e., freely responding to the external magnetic
field) if it has no magnetic neighbor inside the sphere of
radius R; defined by

J(R;)S?=kyT . (A1)

The probability that a particular ion is free is given by

n;

Phee=(1—x)"", (A2)

where n; is the total number of lattice sites inside a
sphere with volume $7R 2

Equation (A1) relates R; to the temperature and Pge,
may be calculated directly for a particular lattice, as we
will show below. Before that we consider the approxi-
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FIG. 14. Exchange constant J(R) and radial dependence for
J(R)~R~7 (@ and J(R)~e >R (0). The prefactors are
chosen so that J(Ryy)=J,. Arrows indicate nearest neighbors
(IN), next nearest neighbors (2N), and so on. For comparison,
J(R)~R 3, corresponding to dipole-dipole interaction, is also
shown. The prefactor for this case was chosen to be 0.01Jy, an
overestimation of the dipole-dipole interaction in DMS’s.
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FIG. 15. Probability that a magnetic ion in a fcc lattice is
not blocked for x =0.01, 0.05, and 0.10 as a function of tem-
perature for continuous distributions. Solid line, J (R)~e ~!%
(A5b)]; dashed line, J(R)~R ~7 [(A5a)]. Temperature is in J,
units, where J, is the interaction value for the nearest neigh-
bors.
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FIG. 16. Probability that a magnetic ion in a fcc lattice is
not blocked as a function of temperature for x =0.05. Solid
line, J(R)~e~>'R; dashed line, J(R)~R ~7; dotted line,
J(R)~R ~* All interactions are chosen so that all have the
same value (J,) at nearest-neighbor distance.
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FIG. 17. Probability that a magnetic ion in a fcc lattice is
not blocked as a function of temperature for J(R)~R ~7 and
x =0.01, 0.05, 0.10, 0.20, and 0.30. At the nearest-neighbor
distance J(R)=J,.

temperature (Jo)

FIG. 18. Probability that a magnetic ion in a fcc lattice is
not blocked for x =0.05 and J(R)~R ~7. Solid steplike line,
distribution the same as in Fig. 17; solid line, the same distri-
bution but convoluted with exponential function with
v =0.4J,; dashed line, continuous approximation [Egs. (AS5)
and (A6)].

mation for a very dilute system which results in analyti-
cal solution. For a very dilute system (i.e., semicontinu-
ous distribution of ions) we have

n=4mR>/4 , (A3)

3 for

where A4 is volume per one lattice site (4 =a
simple-cubic structure and 4 =1a? for fcc structure).
For DMS materials the exchange constant is supposed
to be relatively long ranged (i.e., extending also for fur-
ther, not only the nearest, neighbors) and depending on

distance as

J(R)=JyR ™" (Ada)

In x
FIG. 19. Logarithm of the freezing temperature resulting
from probability distribution (as discussed in the text) as a
function of logarithm of concentration for J(R)=J,R ",
n =7, for different freezing probabilities P,=0.01, 0.05, and
0.10. The slope of the lines yields an exponent n =6.8.
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TABLE III. Freezing temperatures 7 (in units of J,S?) for various P, values and concentrations.

Concentration

J(R) Plree 0.01 0.02 0.05 0.10 0.15 0.20 0.30

0.10 3.77x10~° 1.39x 104 4.62x1073 2.45x1072 0.0773 0.139 0.208

e IR 0.05 8.11x 1077 3.49x 1073 1.58x1073 1.19x 1072 0.0284 0.0619 0.105
0.01 3.94x 108 2.69x 10 1.95x10~* 2.18x 1073 0.00615 0.119 0.0228

0.10 1.31x107* 6.55x 104 5.41x1073 0.0218 0.0657 0.127 0.205

1/R7 0.05 5.82x 1073 2.90x107* 2.38x1073 0.0106 0.0249 0.0549 0.103
0.01 1.25x 1073 5.90x107° 4.88x10~* 0.00225 0.00542 0.0105 0.0221
or a=5.1, n=7) both dependencies are practically the
, same (cf. Fig. 14). It is also evident that for a longer-

J(R)=Jpe R . (Adb) & 8

In Fig. 14 both relations (A4a) and (A5b) are shown for
n=7 and a=5.1 as proposed for wide-band-gap
DMS’s.%? Finally, we get, from (A1)—(A4),

(47 /3)(JoS2/T)3/"

Piee=(1—x) , (ASa)

(4m/3)[1/aln(J (S2/T)]?

Ppee=(1—x) (A5b)

The obtained distributions are shown in Fig. 15 for a fcc
lattice, showing a gradual decrease of the probability
that an ion is not frozen with decreasing temperature.
We assume that for a sufficiently small Py =P/, where
P, is an arbitrarily chosen constant depending on the
specific mechanism, the ion system may be considered
frozen, the temperature at which P, is reached defined
as the freezing temperature T, [Pgee(T;)=P;]. Then,
from (AS5), one may obtain the following scaling laws:

InT, ~ %lnx for (Ada) , (A6a)

InT; ~ax ~'7 for (Adb) . (A6b)
These relations have also been reported by other au-
thors'® and are applied in this article.

We now abandon the limitation to the very dilute case
(continuous distribution assumption) and extend our
model to higher x. In Fig. 16 the probability distribu-
tion versus temperature is shown for x =0.05 for both
interactions (A4a) and (A4b). As can be noticed, there is
only a slight difference between the power (A4a) and ex-
ponential decay (A4b), since for 7T >0.003J, (and

range interaction (such as R ~%) the ion system freezes
faster at higher temperatures than for a shorter-range in-
teraction (such as R ~7). The steplike structure of the
P, distribution is a consequence of the “sharp” freez-
ing condition (A1). The steps correspond to the passing
through consecutive discrete coordination spheres. In
Fig. 17 the Pg.. distributions are shown for 0.01 <x
<0.30. It follows from this figure that for low concen-
trations (x <0.05) the ion system freezes gradually,
whereas for higher x (x >0.10) rather abrupt freezing
may be observed. For x >0.3 (i.e., exceeding the validi-
ty of our model) the Pg.. distribution practically does
not depend on x, as could be expected. To obtain a
more realistic model we may ‘“‘smooth” the freezing con-
dition (A1) by convoluting the obtained distributions
with a Gaussian, Lorentz, or exponential function. The
result for an exponential function [fexp(— |log, (T | /v),
where 7 is the full width at half maximum parameter], is
shown in Fig. 18 for x =0.05 and arbitrarily chosen as
y=0.4J,. Freezing temperatures 7, found from this
convoluted distributions are tabulated in Table III for
various P, values. It may be noticed that the T, values
obtained for P;=0.05 are well comparable with experi-
mental results for Zn; _,Mn,Se (Jo=—13 K and S=3).
They also obey formulas (A6) quite well. An example is
shown in Fig. 19 for J(R)=J,R ~7 for P;=0.10, 0.05,
and 0.01. Good linearity may be observed for x <0.20.
The n value deduced from the slope is ~6.8, which
compares favorably with the inserted value n =7. We
therefore feel confident in using scaling laws in the form
(A6) to describe our data, even for a discrete lattice and
at somewhat higher concentrations.
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