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The retarded modes of a superlattice comprising alternating layers of two magnetic media
characterized by a gyrotropic permeability tensor are investigated. The transfer matrix and
dispersion relation are given in general form; a number of previous results are included as special
cases. An effective-medium description, valid for long wavelengths, is derived first by expansion of
the general result and second by general continuity arguments. Some numerical illustration of the

effective-medium theory is given.

I. INTRODUCTION

The increasing interest in superlattice structures, in
which successive layers of two different component
media are deposited to form a specimen with a long
period A in one direction, has led to a need to under-
stand the way in which the elementary excitation spec-
trum is modified by the introduction of a new Brillouin-
zone edge at m/A. This paper addresses this question
for long-wavelength excitations in a superlattice com-
posed of two alternating magnetic media.

The dominant restoring force for the magnetic excita-
tions in a bulk medium depends upon the wave number
k. The different regimes were pointed out by Auld,' and
a brief discussion is given by Sarmento and Tilley.> For
short wavelengths k ~1/a, where a is an interatomic
spacing, only the exchange interaction between adjacent
spins contributes, and the resulting modes are called spin
waves. Some results for the spin-wave spectrum of a
magnetic superlattice were given by Albuquerque et al.’

For smaller k the electromagnetic coupling between
spins some distance apart must be taken into account.
There is an important intermediate range of k values in
which the electromagnetic coupling can be treated
within a magnetostatic approximation, so that the mag-
netic dipole-dipole interaction, without retardation, is
added to the exchange interaction. This magnetostatic
regime has proved of particular importance for the
modes on the surface of a semi-infinite bulk specimen or
in a thin film. The original theoretical work is due to
Damon and Eshbach,* and magnetostatic surface modes
on ferromagnets have been extensively investigated by
Brillouin scattering; a review is given by Tilley.® The
magnetostatic modes of a superlattice consisting of alter-
nate layers of a magnetic and a nonmagnetic medium
were discussed theoretically by Camley er al.® and by
Griinberg and Mika.” Of particular interest is their con-
clusion concerning the existence of a surface magneto-
static mode of the Damon-Eshbach type on a semi-
infinite superlattice. This mode is predicted to exist for
dyv >dnm, but not for dy <dnm, where dy and dyym
are the thicknesses of the magnetic and nonmagnetic
layers.

For small k roughly k ~1/A, where A is the free-space
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wavelength, retardation of the electromagnetic coupling
becomes important, and Maxwell’s equations in their full
form must be employed. Fortunately the exchange cou-
pling is important only in that it determines the equilib-
rium value of the magnetization, so macroscopic equa-
tions are adequate. The resulting modes are usually
called magnetic polaritons. Considerable theoretical
effort has been devoted to surface and thin-film magnetic
polaritons; see the reviews by Sarmento and Tilley? and
Tilley.® Camley and Mills® predict that the surface mag-
netic polariton on a semi-infinite antiferromagnet should
be observable by attenuated total reflection (ATR), but
no experiments have been reported to date. Indirect evi-
dence for the existence of these modes comes from the
reflectivity measurements of Remer et al.’

Magnetic polaritons in superlattices were first dis-
cussed by Barnas;'® he restricted attention to a system in
which magnetic and nonmagnetic layers alternate, so
that he has generalized the results of Camley er al.® and
Griinberg and Mika’ to include retardation. In this pa-
per we go further by considering a superlattice of alter-
nating magnetic layers. We derive expressions for the
magnetic polaritons in the Voigt configuration, in which
the plane of propagation is normal to the magnetic field
configuration. Each medium is characterized by a gyro-
tropic permeability tensor, so that the formal results ap-
ply equally to antiferromagnets and to ferromagnets. In
addition to the general dispersion equation for polari-
tons, we give a simplified result for the long-wavelength
limit A >> A when the superlattice is found to behave like
an anisotropic bulk medium. The corresponding result
for the optics of a nonmagnetic superlattice!' =13 has
proved of value in interpreting far-infrared reflectance
experiments on GaAs/Al,Ga, _, As superlattices.'*

II. TRANSFER MATRIX AND DISPERSION
EQUATION

The notation to be used is indicated in Fig. 1. Mag-
netic layers of thickness @ and b alternate; the spatial
period is A=a +b. A static magnetic field B is applied
in the plane of the layers. As indicated in Fig. 1, we
choose axes with B along the z axis, and we consider
only propagation in the x-y plane, that is, the Voigt
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FIG. 1. Notation for magnetic-superlattice calculation.

geometry.
The magnetic properties of each medium are described
by a gyrotropic permeability tensor of the form

Bix Mz O
Ee=|—pg, péi 0 |, a=12. (1
0 0 uz

This form is sufficiently general to describe ferromag-
nets, antiferromagnets, and ferrimagnets.? u,, and Hxy
have poles at the magnetic resonance frequencies, while
., does not have strong frequency dispersion. In the
absence of damping u,, is real and p,, is pure imagi-
nary. In addition to its magnetic permeability, each
medium is taken to have an isotropic dielectric constant
€.

As is to be expected from the form of Eq. (1), the
magnetic polaritons of interest are TE modes with the
electric field E along z and the magnetic field vectors in
the x-y plane. We therefore concentrate on this polar-
ization, although later for completeness we give the re-
sults for TM modes. All magnetic field components in a
layer are given by a sum of a forward- and a backward-
traveling wave; for example, in cell n

H={4Vexp[ —Bi(y —nA)1+ B\ exp[Bi(y —nA)]}
xexpli (kyx —wt)] . (2)

Here the last factor is common to the fields in all layers.

Within the layer the wave number k;, can be real or

pure imaginary (in the absence of damping), and for later
convenience we have written it as

kly:iﬁl . (3)

The components k;, and k, are related by the bulk wave
equation, which has the general form

k’H—k(k-H)—(ew?/c?)i-H=0 . (4)
The solvability condition for (4), together with (3), gives

Bi=(k}—epulo?/ch)?, (5)
where

Ho = Hx + (B ) /e ©)

is the Voigt permeability of medium 1.
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The electromagnetic boundary conditions are now
used to relate field amplitudes (A4,,B, ) in successive lay-
ers. As pointed out by Irving,'* for magnetic interfaces
it is more convenient to work in terms of (H,,,B,,),
since these components are continuous at successive in-
terfaces. Application of boundary conditions at two in-
terfaces gives the basic result

(1) (1)
H(n~—1)x H

nx
B}])

=T |,
n—1)y Bny

) (7

where the fields are evaluated at y =(n —2)A+b and
y =(n —1)A+b. The transfer matrix T has components

T,, =[cosh(B,a)+ Alsinh(;a)]
X [cosh(B,b)+ Alsinh(B,b)]

+A}Asinh(B,a)sinh(B,b) , (8)
T, =[cosh(B;a)+ Alsinh(B;a)]A3sinh(3,b)

+[cosh(B,b)— AZsinh(3,b)]Alsinh(B;a) , 9)
T, =[cosh(B,b)+ Alsinh(B,b)]Alsinh(B,a)

+[cosh(B,a)— Alsinh(B,a)]A3sinh(B,b) , (10)

T,, = A}AJsinh(B,a)sinh(B,b)
+[cosh(B,a)— Alsinh(B,a)]
X [cosh(B,b)— Alsinh(B,b)] , (11)
where
A=k pul, /iBpl, (12)
Ag— k3 (s, P +Baul, )
ik Battg [ (15 )2+ (13, )*]
§= —pokx [ )+ (1% ) 1/iBaptl - (14)

It is seen from these expressions that as usual 7 is uni-
modular:

detT'=1. (15)

) (13)

The derivation of the dispersion relation from (7) is
now standard.>'® Bloch’s theorem gives

H(l)

nx (k A) (n—1)x
(1) | =expli > (16)
B"y 7 Bsz)—l)y

where k, is the Bloch wave vector. Comparison of Egs.
(7) and (16), with use of (15), then yields

cos(k,A)=1TrT . (17
Substitution from (8) and (11) leads to the explicit form
cos(k, A)=cos(k ,a)cos(ky,,b)
—(AJAT+1AJAT+1AJAY)
Xsin(ky,a)sin(k,,b) , (18)

where we have reinstated k,, in place of ,.
Equations (7) and (18) are the central results of this
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paper; it will be shown in the next section that they con-
tain a number of previously known results as special
cases. The case of TM polarization, with H along z, the
external field direction, is not expected to be of any great
significance, since u,, is at most weakly dispersive. For
completeness, however, we have investigated this case.
The dispersion relation is

cos(k, A)=cos(k,,a)cos(k,,b)
—‘;—(klyez/kzyel+k2y61/k1y€2)
X sin(k,a)sin(k,,b) , (19)
where now

koy =€l 0?/c?—k2)? . (20)

III. SPECIAL CASES

Equations (7), (18), and (19) are quite general. If both
media are nonmagnetic, =1, they describe optical
propagation in a superlattice of alternating dielectric lay-
ers, for which the formal results are given by Yeh
et al.'® Our results do indeed reduce to theirs in this
limit. In particular, Eq. (18) becomes

cos(k, A)=cos(k ,a)cos(k,,b)

_%(kly/k2y+k2y/kly)

with
k(,[y=(6,J,a>2/c2——k,f)1/2 (22)

as derived by Yeh et al.'® Equation (19), for TM propa-
gation, is already in the form quoted by Yeh et al.;'¢ for
nonmagnetic media pu% =1 in (20). If one medium is
taken as magnetic and the other as nonmagnetic we re-
cover Barna§’s results.!® In particular, (18) reduces to
his Eq. (23).

IV. LONG-WAVELENGTH LIMIT

Ferromagnetic resonance frequencies are typically in
the microwave frequency region, and antiferromagnetic
resonance frequencies in the far infrared. Thus in the re-
gions of high frequency dispersion, which are those of
most interest, the free-space wavelength is much greater
than the superlattice period A. This means that,
perhaps with the exception of very narrow frequency in-
tervals close to resonance, the wave numbers k appear-
ing in the dispersion equations are small compared with
A~ It is therefore possible to carry out systematic
Taylor expansions to order k?A%. As mentioned in Sec.
I, the resulting approximations have proved very useful
in the description of the reststrahl region of semiconduc-
tor superlattices.

The expansions are straightforward, and we simply

Xsin(k,a)sin(k,,b) (21)  quote the result; (18) reduces to
J
2uypty, R, (P () 2
kyz(a +024+k2 (a2 4+b2— .ulxyl";xy _ xx : 2/-‘x,v M : 2I~‘xy ab =w—2[(,u,£a+,u,3b)(ela+62b)] . (23)
#XX/"’XX #XX#XX I‘LXX’LXX c

Equation (23) describes propagation in the superlat-
tice, treated as an effective homogeneous anisotropic
medium. It is not easy to appreciate its significance as it
stands, so we now give an alternative derivation which is
a development of the method used for a dielectric super-
lattice by Agranovich and Kravtsov.!'?

We consider an rf magnetic field in the x-y plane of
the superlattice of Fig. 1; the wavelength is taken much
longer than the superlattice period so that the B and H
fields are the same in successive layers of component 1
and in successive layers of component 2. The boundary
conditions are that H, and B, are continuous across in-
terfaces, so these components are everywhere equal to
their average values H, and Ey. In medium 1 the field
components are related by

Bx /.U'O:::u)lcxﬁx +“iny ’ (24)

Eyﬂ‘«o: _ﬂ)lcyﬁx +P'JltxHy ’ (25)
so that

B, /#ozulllﬁx + (:u’)lcy /.u':lcx )B-y /Ho > . (26)

H,=(ul, /ut O H, +(1/ul)B, /u, . 27)

f

Similar equations hold in component 2, and combined
with (26) and (27) give expressions for the average fields
B,=(aB!+bB})/(a +b)and H,:

(a +b)B, /uo=(aul +bu?)H,

(g /s + 1%y, /% )B, /o, (28)
(@ +b)H, =(apyy, /s +bug, /i JHy
+(a/ph+b/uk)B, /o - (29)

Reorganization gives relations in terms of the effective
medium permeability tensor

B, Bo By | [He
B_y —Ho —Bxy By Hy l G0
with
(a0 piepl +ab (g —p3 P+ gy —p3y )]
Ha = (a +b)ap, +buly) ’
31
= Qi ix +buly i (32)

apl; +burx
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(@ +b)pc i
Ay == (33)

apix +bpixy

It is straightforward to find the dispersion equation
for wave propagation in a medium with the permeability
tensor (30). For a TE mode, the relevant component of
the dielectric tensor in the effective-medium description
iS €,y

€. =(€1a+6€b)/(a +b) . (34)
The dispersion equation is

k? Kk}

— —2 - + — —2
Byy +B5xy /lxx Hxx TR 3y /By
Substitution of (31) to (33) shows that this is identical to
(23). Thus, as stated, the latter is simply the propaga-
tion equation for the effective medium described by (30)
and (34).

Most previous work on magnetic superlattices, for ex-
ample, Refs. 6, 7, and 10, have considered the case when
one component is nonmagnetic. The effective-medium
description of such a superlattice is simply obtained
from (31) to (33) as the special case u2, =1, ,uiy =0. The

explicit form of (23), which we quote for later reference,
is

€ 02/ci= (35)

kXa+b)P+k[a?+b24+(ul +1/ul,)ab]
2
w

C2

=—(ula +b)€a+eb). (36)

As an example of the application of this formalism, we
give in Figs. 2 and 3 bulk dispersion curves in the long-
wavelength limit for a YIG/YAG superlattice (where
YIG represents yttrium iron garnet and YAG represents
yttrium aluminum garnet) in an applied magnetic field
H,=3500 Oe. Values of the saturation magnetization
M, gyromagnetic ratio y, and dielectric constant € for
these materials are given in Table 1.

Figure 2 shows the special case of propagation normal
to the layers k, =0. It can be seen from (23) that in that
case k, diverges at frequencies for which either u} or u2
has a pole. The pole in pu, is at

w,=yHY*(Ho+My)!"? . (37)

For the numerical values given in Table I, these frequen-
cies are 0.376 cm™' (YAG) and 0.392 cm™' (YIG). The
corresponding divergences are seen in Fig. 2. Similarly,
(23) shows that the zeros of k, occur at the zeros of
apl +bpl, namely 0.382 and 0.461 cm™! for the exam-
ple chosen.

TABLE I. Parameters of YIG and YAG used for dispersion
curves from Refs. 17 and 18.

M, (300 K) (Oe) ¥ (Oes)™! €
YIG 1750 1.76 < 107 15.0
YAG 1200 1.76 x 107 14.8
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FIG. 2. Long-wavelength bulk dispersion curves for an
infinite YIG/YAG superlattice with @ =b and propagation
normal to the layers.

Figure 3 is for propagation parallel to the layers
k,=0. Inspection of (23) shows that as in Fig. 2 there
are two divergences of k,. The zeros of k, occur at the
frequencies for which au! +bu?=0, as do the zeros of
k, in Fig. 2. There is, however, no simple argument to
locate the frequencies at which poles of k, are found, be-
cause of the rather complicated form of i, in (31), or
equivalently the rather complicated coefficient of k2 in
(23). For the example chosen, our numerical work
shows that the poles of k, in Fig. 3 occur at about 0.375
and 0.394 cm~!, close to the poles of k, in Fig. 2, but
not the same.

We believe that the close similarity between Figs. 2
and 3 is an accidental consequence of our choice of ma-
terials, and probably stems from the fact that we have
used parameters for two garnets, both with gyromagnet-
ic ratio g=2. Even for the simple case of the
magnetic/nonmagnetic superlattice, (36) shows that
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FIG. 3. Asin Fig. 2, for propagation parallel to the layers.
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whereas the poles and zeros of k, are determined by
those of u,, the poles and zeros of k, are strongly
influenced by those of u,, as well as u,. Thus as in the
dielectric case!! the building of the superlattice may be
expected to produce strong and distinctive anisotropies.

V. CONCLUSIONS

The principal results of this paper are the transfer ma-
trix and dispersion equation for TE modes (7) and (18),
the dispersion equation for TM modes (19), and the
simplifications of the dispersion equations in the long-
wavelength limit (30) to (33). All the results apply to
bulk (infinite) superlattices. The numerical results
presented have been restricted to simple illustration in
one particular case.

There is scope for considerably more discussion of
these results than has been given here. The general
consequence of the existence of the long period A is that
Brillouin-zone edges appear at k,=nw/A. The bulk
dispersion equations therefore have the property that
stop bands where k, is complex, k,=nw/A+i7, may
appear at the Brillouin-zone edges. One implication is
that for frequencies within the stop bands surface modes
may appear on a semi-infinite superlattice; this is illus-
trated for the dielectric case by Yeh et al.! Surface po-
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laritons may also arise in frequency intervals where the
Voigt susceptibility is negative; these surface polaritons
were first discussed for a semi-infinite homogeneous
magnetic medium by Hartstein et al.'” The relation be-
tween surface polaritons and stop-band-related surface
modes has not been fully discussed even for dielectric su-
perlattices, and certainly needs investigation for the
magnetic case.

We believe that the results for the long-wavelength
limit presented in Sec. IV should prove very useful, for
example, in device design using ferromagnetic superlat-
tices. In antiferromagnetic superlattices, there is likely
to be considerable interest in surface polaritons and
guided waves in semi-infinite and thin-film specimens.
The description given by the long-wavelength expres-
sions facilitates discussion of these modes and the associ-
ated ATR spectrum.
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