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Spin-density waves in heavy-fermion compounds: A theoretical study
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The first theoretical description of the itinerant antiferromagnetic state in heavy-fermion systems is

presented in detail. We analyze the phase diagram, the stability of the phases, the magnetic suscepti-

bility, and the specific heat. For the case in which the gap vanishes in points on the Fermi surface,
the deduced results are in good agreement with the experimental data.

I. INTRODUCTION

During the last few years a great deal of experimental
and theoretical works' have been devoted to understand-
ing the properties of the heavy-fermion compounds. The
theoretical analyses published up to now have focused on
descriptions of the Kondo lattice and the superconducting
properties of these systems. However, recent experimen-
tal data emphasize the magnetically ordered ground state
in some heavy-fermion systems. Among these, we must
mention the UqZn&7, UCd~i, and NpBei3 (Ref. 6) com-
pounds, for which, at low temperature, itinerant antiferro-
magnetic properties are claimed. There are other com-
pounds in which the magnetically ordered ground state is
presumed to exist in some temperature domain, such as
Ui „Th Be)3, URu2Si2, UCu5, CeP13, ' but this is an
experimental field that is developing so rapidly that until
now, few relevant conclusions have been produced. These
previously presented experimental data need theoretical
descriptions which should analyze the magnetic properties
of the heavy-fermion ground state.

For the antiferromagnetic characteristics of U2Zni7,
UCd&&, and NpBe&3 compounds the experimental data
strongly indicates an itinerant origin. The magnetic sus-
ceptibility (X) and the specific heat (C~) plots for these
systems; the ordered moment of some tenths of pz which
is considerably smaller than the Curie-Weiss effective lo-
calized moment; the recent neutron diffraction data;"
and the fact that the magnetic properties are strongly
affected by substitutions on sites, completely unlike usual
local-moment behavior (like Zn in U2Zn, ~),

' support this
observation. In order to obtain theoretically such proper-
ties, usually a spin-density-wave (SDW) formation is
claimed. Starting from this idea, we analyze, in this paper
the possibilities of SDW formation in heavy-fermion sys-
tems. We stick to this phase, and so we will neglect (as
the models which analyze the superconducting proper-
ties ' ) other condensed phases. The analysis is conduct-
ed in such a way that the study of the coexistence between
the SDW and the superconducting ground states (which
seems to be experimentally proved ' ) becomes possible.
(In fact, this study is underway. ) In this paper we con-
centrate upon the possible descriptions of the SDW state
in heavy-fermion systems, together with their characteris-
tics and properties. Some preliminary conclusions were
presented in two short papers. ' This article contains the

detailed prescription of the theoretical results concerning
a simple crystal structure.

The paper is organized as follows. In Sec. II we de-
scribe the Hamiltonian and after a discussion concerning
the nesting properties, we deduce the Green's functions.
The characteristic physical quantities and the phase dia-
gram are described in Secs. III and IV. A comprehensive
analysis of different SDW phases is given in Sec. V. Sec-
tion VI is dedicated to discussions and conclusions.

II. MODEL

The experimentally measured specific-heat jump at
the Neel temperature (Tz) is comparable in magnitude
with the norma1 specific heat C„at T~T&. Thus, we
consider that the same f electrons which are responsible
for the heavy-fermion properties give rise to the SDW
phase too. Furthermore, the above presented experimen-
tal data show that the itinerant antiferromagnetic ground
state which is realized in a large domain of the phase dia-
gram (PD) substantially diff'ers from the classical
Overhauser-type' or Fedders-Martin —type' phase: Cz
well below T& behaves like T," the gap in certain crys-
tallographic directions must still be zero at T =0, ' ' and
the SDW state appears only when the f electrons, which
in the high-temperature domain are localized on the rare-
earth or actinide sites, become coherent and form a
heavy-fermion band. ' In these circumstances, we start
our considerations with a Hamiltonian which describes
such a band and has the form'

H, = ——,
' g (ta; aj +H. c. )

+ —, QUa;~a; a; ~a;

The microscopic origin of H~ arises from a simple
description of the Kondo-lattice system. ' ' The first
term describes a narrow half-filled band, which gives rise
to the cA = —t y q dispersion relation in k space.
t =2T~/~z, where T~ is the Kondo temperature and z is
the number of the nearest-neighbor sites denoted by i and
j. The second term is the renormalized one site repulsion.
In the case of heavy-fermionic systems, it is known that
the concrete band structure plays an important role. Be-
cause of this, in this paper we analyze a cubic system,
where yk =2[cos(ak„)+cos(ak~ ) +cos(ak, )] with a as
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lattice constant. The results however, can be easily gen-
eralized to other symmetry species. ' '

Furthermore, the electron-electron interactions appear
to dominate the behavior of the analyzed systems at low
temperatures. ' ' So, in order to describe an SDW state,
besides H

&
we must take into account these interactions in

a way which emphasizes the difference between the contri-
butions which arise from different spin configurations on
nearest-neighbor sites. For this reason we consider spin-
dependent interactions between the nearest-neighbor sites
in the following Hamiltonian term:

Hz ———, g Va; a, aj aj —
—, QIa; ai a; a,

&,J, O ij,a

(2)

Because the phononic terms are considered separately,
we consider that the terms from H2 have a different
nonphononic origin, for a discussion of this see Ref. 13.
Our study shows that these terms are those which greatly
contribute to an SDW state description in the analyzed
systems. We have to mention that the last term was al-
ready successfully used in the explanation of the 1/T& re-
laxation rate in heavy-fermion superconductors, while V
and J were tested ' some years ago in an analysis of the
itinerant antiferromagnetic properties. These two terms
arise from a standard (A, lfi //5rs +Azar i/ cr~s) like e-x-

change term between the nearest-neighbor sites, where 5 p
and a. p are the Kronecker symbol and the Pauli ma-
trices, respectively. The second term in H2 tries to model
the fluctuation effects in a simple manner. As will be seen
later (see Sec. IV), the introduction of I is necessary if we
want to obtain energetically stable odd k-dependent gap
functions.

As we have mentioned before, the phononic terms are
taken into account separately, by the following Hamiltoni-
an term'

ZE 1

I,J, O, CJ

1

g 2 a i (Ja i g +j (7 ~j g

——,
' gg3a; a; (a; a +Hc).

As expected' the contributions from H3 will not play an
essential role in a SDW phase description [see Eq. (17):
the expressions of the effective coupling constants are only
renormalized by g; ]. However, H3 is important in the
analysis of the superconducting properties. For this
reason and taking into account the future developments
which need a study of the existence of the SDW and the
superconducting phase, the Hamiltonian we use is
H, +H, +H, .

In order to describe an SDW phase, we must analyze
the nesting properties at first. In our case, being a cubic
system, a Q vector oriented along the [111]direction in k
space,

Qlll=(rr/a)(i+ j+k),
produces the required nesting

Ek+Q ~k

without which the SDW state cannot be formed. ' Nest-
ing conditions can be obtained for other crystal structures
too, so that, the presented description could be with no
difficulty given for other symmetry species' too. We
must mention that we have a commensurate spin-density
wave [see Eq. (4)] as the neutron diffraction measurements
suggest.

Furthermore, we introduce the following average:

(6)

where Q is fixed at the gill value. The effective Hamil-
tonian which can be obtained, in this way becomes

H, /r
———g E/, a/, a/, +—' —g [a/, a/, +p ~[g, (k, k') r(k')+gz (k, k')r (k')]+H. c. ]

We use the notations

g l (k k') =(gz —gl —V)[6+1'(k —k')l

gz (k, k')=U+6(gz+J)+Iy(k+k')+gl Y(k —k') .

In our analysis we are interested in the following Green's
functions:

I

where

= (i a/„) —e/, —
i g (k)

i

g*(k)=—g [gl+(k, k')r+ (k')+gz+(k, k')r (k')];1

k'

g* (k)= —g*(k) .

G (k, ia/„)=((a/, , ia/c, ));

F (k, ia/„)=((a/, +g, ~ ~
a/, , ));

where G (k, ia/„) is the normal and F (k,i, co„) is the
anomalous Green's function. Using standard methods,
from H,~ one obtains

The knowledge of the Green's functions makes it possible
to express the SDW gap and some physical quantities of
interest. This will be done in the following section.

III. CHARACTERISTIC QUANTITIES

The SDW gap can be given in the following way
G (k,ia/„)=(ia/„+e/, )IN

F (k,ia/„)=g*(k)/N
(10)

—1

bs(k)= —g gs(k, k')Tr o'F (k', ice„),
2 Nk, „

(12)
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6

bs(k) = g S;(k)b, ; .
i=0

For the symmetry-adapted functions S;(k), we have

So(k) =1,
Sl «)=rk
S2(k) =&6[cos(ak„)—cos(ak» )],
S3(k)=&2[cos(ak„)+cos(ak» ) —2 cos(ak, )),
$4(k) =sin(ak„),

S&(k)=sin(ak» ),
S6(k) =sin(ak, ),

(14)

(15)

where S;(k) are orthogonal functions, each being along a
fixed irreducible representation I; of the cubic group O~.
For i =0, 1, I;= A, , for i =2, 3, I;=Es, and for
i =4, 5, 6, I;=Fl„.' ' ' The odd-parity gap functions
will be denoted with A4 ——6 sink +Aysinky+A, sink„
where A4 ——6 lasE5 Ay and 66 ——4, . In this way Eq.
(13) is reduced to

PE(k)6; =—g g;S;(k) tanh
2E (k) 2

i =0—6.

(16)

We have E(k) =( „a+lb,s(k)
I

)' and the effective cou-
pling constants which are renormalized by the phononic
contributions, are

where gs(k, k') =g l+ (k, k') —g2+ (k, k'). Using Eqs.
(10)—(12) the expression of b,s(k) becomes

—l gs(k, k')bs(k')
hs(k) = —g 2 2

. (13)
k', n (i~ ) ek'

I
~s(k')

I

'

The structure of gs(k, k') imposes the following expres-
sion for hs(k)

the even k solutions and the whole PD are totally
different in that case.

The order parameter for the SDW phase [see Eqs. (14)
and (15)] is strongly k dependent. While b, o resembles the
classical gap,

' ' the 6;, i ) 1 contributions describe SDW
states which differ from the Overhauser-type' or
Fedders-Martin-type' phases, in agreement with the ex-
perimental' observation that the gap vanishes in some
crystallographic directions. A consequence of this is the
unusual temperature dependence of the physical quanti-
ties, which describe the heavy fermion systems and cannot
be deduced from the classical models.

In order to be realistic in the construction of the PD,
we have to make the energetical stability analysis, too.
The free energy of the system can be deduced following
Leggett. After some algebra, its expression becomes

F =Fp+ g ——gin
=0

PE (k)

PEk
cosh

2

(18)

where Fo is the free energy of the paramagnetic state (all
b; =0) We. are also interested in the deduction of some
experimentally measured physical quantities. Thus, we
will calculate the specific heat C»(T) and the magnetic
susceptibility X( T). The expression of C» ( T) can be easily
obtained from the entropy

2

C (T)= —g E(k) E(k)+P cosh

+ij =+i~i) ++2(flkif)kj ~ikl~lkj ) (20)

(19)

The magnetic susceptibility is obtained by means of the
linear response theory. The magnetic susceptibility tensor
g,~, which describes the response of the total induced spin
magnetization in the direction i, under the perturbation of
an uniform static magnetic field in the direction j is ex-
pressed as

go ——U+6( V+J +gl ),
gl —g2 =g3 —( V I—g2)/6—
g4=gs=g6 ——2(V+I —g2) .

(17)

i k c ~ 1a~pe =Uij &ay+ &&ikl 0 ay (21)

where 6;~ is the Kronecker symbol and E'jk is the an-
tisymmetrical tensor defined as

Whenever necessary, we will use the notation V= V —g2.
The presented model can be considered as an extension

of the description given by Miyake et al. ' for the case in
which the exchange interactions and the phononic contri-
butions are equally important. The existence of the
effective coupling constants go, g2, and g4 (such eff'ective

constants can be obtained in the superconducting case
too) emphasizes that the competition between the same in-
teractions gives rise to superconductivity or itinerant mag-
netic properties in heavy-fermion systems and in the two
cases above mentioned, only the strength of the contribut-
ing interactions is different (see for example Ott et al. ).
However, we must mention that the gap equation in the
superconducting case differs significantly from Eqs.
(14)—(17). This is due to the rk term in the first, and the
2g3 term in the second gap, Eq. (31) of Ref. 19, because

o.
p being the Pauli matrices. X, and +2 are expressed as

Xl(T)= 2j2jjP ' —g G—(k, ice„)G (k,icy„),2

X2(T)= 2j4jip ' gF —(k,ice„)F—(k,ice„),2

CV k„

(22)

S(T)= —,
' [Xi(T)+S2(T)]+-', [X;(T)—X2(T)] . (23)

From Eqs. (10) and (20)—(23) one obtains

X(T)=iM2i[ —,
' Y(T)+ —,'Z(T)], (24)

where p~ is the Bohr magneton. The total magnetic sus-
ceptibility becomes
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where

Y(T)= ——g coshP 1 p PE(k)
2 X 2

(25)

1 8 ~k /3E (k)
X „Bek E(k) 2

(26)

IV. PHASE DIAGRAM

Concerning the phase diagram (PD), the results were
obtained by using simultaneously the gap equations, Eq.
(16) and the free energy expression, Eq. (18) in order to
obtain energetically stable phases. Figure l presents the
results obtained for T =0. As Eq. (17) reflects we have
three global coupling constants which characterize the
model: go, g2, and g4. Depending on these, the PD will
be as in Fig. 1(d). As can be seen, we have only three en-
ergetically stable phases; 60, h4, and Aq, 53 (for the last
phase the b, q and h3 order parameters coexist). The solid
curves in Figs. 1(a), 1(b), and 1(c) represent phase separa-
tion lines of PD in the g4 ——0, g2 ——0, and go ——0 pla~es,
respectively. The A2, A3 coexistence is a regular one, be-
cause these two order parameters have the same symme-
try (Eg). Among these we have regular coexistence be-
tween the 60 and b,

&
phases (both A &s) in the region situ-

ated between the (3) dashed line and the gq axis [Fig.
l(a)], but this is unstable, because it has greater free ener-
gy than the A~, 63 phase

Between the dashed curves (1) and (2) in Figs. 1(a), 1(b),
and 1(c) we have irregular coexistence between gaps with
different symmetries: b,o&0, 52&0, b, 3&0 in Fig. 1(a);
b,o&0, b,4&0 in Fig. 1(b), and b,4&0, 52&0, 63&0 in
Fig. 1(c), respectively. These solutions are allowed by the
gap equations, but they are energetically unstable. For
example, at the dashed line (2) [Fig. 1(a)] the Az, 53 phase
appears within a Ao state. The new phase Do&0, 62&0,
b, 3&0 situated below the (2) curve has lower energy than
the Do&0 phase, but greater energy than the 62&0,
63&0, 60——0 phase, which can exist in the same region of
the PD. Similar results can be obtained for other irregu-
lar coexistences, too. This conclusion shows that, because
of the differences in the symmetry of the 5;{k) functions,
the coexistence between different 5, terms cannot appear
unrestricted. This is in good agreement with the results
of Balian and Werthamer concerning the coexistence of
difterent symmetry species.

The A4 phase can be also considered as a regular coex-
istence state, but we treat it as a single vector solution
with components A~, A~, 6, . The existence of this phase
is strongly connected to the I value. To show this, we
mention that in Fig. 1(c) the dot-dashed curve represents
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FIG. 1. Phase diagram of the system at T =0. (a) The g4 ——0
plane; {b) the g2 ——0 plane; (c) the gp ——0 plane; (d) the global
phase diagram in the (g0/t, g2/t, g4/t) space; (e) the (g0/t, V/t)
plane for I/t =0; (f) the (gp/t, V/t) plane for I/t =0.1. The
dashed lines delimitate unstable domains (see text).

L

FICx. 2. Phase diagram of the system at T&0. (a) The
(g0/t, V/t) plane for T/t =0.05 and I /t =0; (b) the plane
(gp/t, V/t) for T/t =0.2 and I/t =0; (c} the (gp/t, V/t) plane
for T/t =O.OS and I/t =0.1; {d) the (gp/t, V/t) plane for
T/t =0.2 and I/t =0.1; {e) the global phase diagram in the

(gp/t, V/t, T/t) space for I/t =0; (fl the global phase diagram in

the (gpss&, V/t, T/t) space for I/t =0.1.
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the V —I = V+I line. Because the separation between the
b,4 and the b, 2, b, 3 phases [the solid line in Fig. 1(c)] is sit-
uated below this curve, for I =0 the A4 phase cannot ap-
pear [Fig. 1(e)]. If I&0, the shape of the PD is automati-
cally modified [Fig. 1(f)]. All the other solutions of Eq.
(16), (e.g. , At&0, 62&0, b, 3 ——0; A2 ——0, b, 3~0; or the oth-
er nonmentioned coexistence states) have greater energy
than the stable phases of PD.

In Figs. 2(a) —2(f) we show the PD for T&0. The space
used is (golt, Vlt, T/t) and I/t is a parameter. For
I/t =0, we obtain the PD from Fig. 2(e). The T =0 sec-
tion of this figure is given in Fig 1(.e) and other two
T/t =const planes are presented in Figs. 2(a) and 2(b).
The paramagnetic phase is denoted by P. As one can see,
we do not have a A4 phase in this case.

For I /t =0. 1, the PD is given in Fig. 2(f). The
T/t =0, 0.05, and 0.2 sections are given in Figs. 1(f), 2(c),
and 2(d), respectively. The phase transition from the I' to
the ordered phases are of the second kind. It must be
mentioned that the A4 and the 62, 63 phases can be gen-
erated by many solutions of Eq (16.). From these, in the
construction of the PD we have used the one which gives
the minimum possible free energy value (see Sec. V).

The 60 phase (since its gap does not present k depen-
dence) resembles Overhauser-type'" or Fedders-Martin-
type' SDW state. However, in our case, two new ener-
getically stable SD%' phases appear, with gaps which van-
ish for certain k directions (as the experimental results
suggested' ' ). Under these circumstances, a description
of the magnetic ground state of heavy fermions becomes
possible, and it is made in the next section.

V. ANALYSIS OF DIFFERENT SDW PHASES

In this section we analyze (separately) the three stable
SDW phases of the PD. Still, we have to underline that
the k sum is performed using
~(a/2m) I dk;, i =x,y, z and all the integrals which
appear in this section, denoted by I~, I2, I~, . . . , are

—. n/a 0 0 2/3

given in the Appendix.

A. 5,0 phase

The characteristic gap equation for this phase is ob-
tained from Eq. (16) for i =0, and 6;=0 for all i ) l.
The precise numerical result concerning the temperature
dependence of the gap and the critical temperature Tz; /t
(in this case i =0) as a function of the coupling constant
go, is given in Fig. 3(a) and 3(b), respectively. The analyt-
ical expression of b.o(T) at T~O is

2-

2 T/t

TNO

t

0.5-

0.0
6 g)t

where

kp =3.50t /T~p for t /T )) 1

kp ——2.62, for t/T-1,
kp ——2, for t/T «1 .

The expressions for the Neel temperature are

T&0 t exp[ tl(0 14go)]——, for. t—/T &~ I,
T~O=O. 19go for t /T 1

T~p =gp/4 for t /T && 1

(29)

The Cz(T) expression can be derived from Eq. (19).
For T~O, BE( )k//3 Bbring a negligible contribution. For
the first term we use the same integral variable transfor-
mation as for Eq. (27), and we obtain

C (T)=2T '~ 5 (To=0)e ' [It+0(T)] . (31)

FIG. 3. Characteristics of the 60 phase. (a) The reduced gap
Ao/t as a function of the reduced temperature T/t for go/t =9
curve (1) and go/t =6.3 curve (2); (b) the critical temperature vs
the coupling constant go.

Ao(T) =b, t)(T =0) goT' I,e— (27)

60——t [koIO(T~0, 1/&2)] '~ (1 —T/T~O)'~ (28)

and can be found by making the following change of the
integral variables: x, =~/Pcos(trx), x2 ——~ Pcos(my), and
x 3

—v'/3 cos( trx ). The b o( T =0) /Tzo fraction is constant,
i.e., approximately equal to 2, for g0/t & 2. If we are situ-
ated at a temperature range T ( T&p, the gap becomes

As to the magnetic susceptibility, first of all we have to
emphasize some general properties of Eqs. (24) —(26)
which are true for every i state. For T~T&;, we have

I'( T~, )=Z ( T~,. ) =X( T~( ) /p Ji . (32)

In the case of classical SDW, Eq. (32) gives the tempera-
ture independent Pauli susceptibility Xt (T)=2N (0)pii.
From Eq. (32) the paramagnetic susceptibility can be
reobtained, for T & T~; and T~T&;, by putting 6;=0.
However, in this case XJ, (T) has a meaning just above
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T&;, because at higher temperatures the system undergoes
a local moment regime. We have to mention that an ex-
act numerical result shows that Xp(T) is nearly constant
in a relatively large T/t domain, i.e., tX~/@~=0. 28 for
T/t &[0.05,0.7]. For a greater T/t it decreases, so that,
for example at T/t =5, tXp/pz is 0.094.

For T~O, at any i, Z(T) becomes a temperature-
independent constant Z (0) and the T dependence of X( T)
is determined by Y(T). For the classical SDW, a similar
situation is obtained with Z(0)=1. For the b.o phase, in
the T~O limit we obtain

1.0

0.5

00
0

(a)

0.5

0.0

1=3
(c)

(33)

1.0

(b)
I = 2

To obtain Eq. (33) an integral representation of cosh x
was taken into account, which introduces the x4 integral
variable (see the Appendix), after which the same integral
variable transformation was used as for I&. As it can be
seen, one obtains exponential dependence for Cz(T) and
T behavior for X(T) in the T 0 limit; thus, the b, o

phase resembles classical SDW state. ' ' However, ex-
perimental measurements ' show a T behavior in g(T)
and give a T dependence in C~(T) for T~O. Thus,
probably it is not the Ao phase which is realized in the
measured heavy-fermion systems.

B. 6&, h~ phase

The gap equations which we must analyze in this case
can be obtained from Eq. (16) for i =2, 3 with
60——6]——A4 ——0. The two coupled integral equations
which result allow simple solutions like Az&0, 63 ——0 and
b, z

——0, A&&0, but these have greater free energy than the
coexistence phase. Thus, only the b, &&0, b, ,&0 phase
will be analyzed below. All such solutions have the same
critical temperature Tzz [Fig. 4(a)], and they can be real
or complex variables. From these, the minimum possible
free energy has the Az ——b„hi ——+id, (or equivalent) solu-
tion, which was used in the construction of the PD. In
Fig. 4(b) we present some exact numerical results con-
cerning the 5 versus T variations at fixed gz/t values.

The analytical expression of 6( T) in the T~O limit can
be given as

b, ( T)=b ( T =0)——,
'
gq T b ( T =0)I, i (34)

Equation (34) is found by expanding the tanhx functions
and by changing the integral variables in xi icos(irx), ——
xq ——P cos(rry), and x& ——P cos(irz). The analytical approx-
imations for Tzz are the following

Tv& t exp[ —t/(1. 07gz)] fo——r t/T »1,
T,zz

——1.25g& for t/T —1 .

T~q ——3gq/2 for t/T &&1 .

(35)

The T&z/b, (T =0) ratio slowly decreases with gq/t, so
that it becomes 2.5 and 2.08 at 6gz/t =2 and 8, respec-
tively. In the vicinity of Tzz, 6 can be expressed as

A=t [kz, Io(T~z, (Sz+Sq)/i/2)] ' (1 —T/T~q)'

(36)

05 0.5

oo~—'
0.0 0.5 1.0 1.5 7 /t

(

0.0 0.5 1.0 15 r/t

FIG. 4. Characteristics of the 6&, Aq phase. (a) The critical
temperature vs the coupling constant gq,

' (b) the reduced gap 5/t
as a function of the reduced temperature T/t for g&/t =1.16,
curve (1) and g~/t =0.83, curve (2) in the case of the complex
solution; the reduced gaps 6&/t and A~/t as a function of the re-
duced temperature T/t are presented in (c) and (d), respectively,
for g&/t =1.41, in the case of the real symmetrical solution.

where

k~c =0.23t /T~~ for t/T ))1,
kz, ——0.20 for t/T —1,
k„=—' for t/T«1 .

(37)

T3
( T) I2, 3 (38)

As we mentioned in Sec. VA, for the magnetic suscep-
tibility in the T~O limit, we must consider only the Y(T)
term [see Eq. (25)], because the Z(T) term brings a con-
stant contribution Z (0). With the same technique as for
the specific heat, we find

Y(T)=T I $ (39)

From Eq. (39), one can see that X(T) in the T~O limit
has the same temperature dependence as for the Ao phase.
The important difference arising from the strong k depen-
dence of the Az and Aq gaps is reAected in C (T), where

3 PT behavior is found in the small temperature limit. In

with Sz and S~ given in Eq. (15). The specific heat can be
obtained just as in the previous paragraph. Starting from
Eq. (19) and using the same integral variable transforma-
tion as for Eq. (34), in the T~O limit one obtains
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Eq. (38) this dependence is obtained mathematically by
the integral variable change y; =p cos(vrx, ). The integral
limits, after the transformation becomes ( —P, +P) which
in the T~O limit yield ( —oo, + oo ) (see the Appendix).
But in fact, this result is connected to the fact that the gap
5(S2(k)+iS3(k)) vanishes in this case on points on the
Fermi surface (FS) (see Ref. 26). To show this, we em-
phasize that for a half-filled band, the FS is given by
yk ——0. The gap is zero on FS if S2(k)=0 and S3(k)+0.
These three relations have point solutions: k~ =+~/2a,
j =x,y, z. Expanding now in the first term of Eq. (19) the
cosak, terms from S;(k), i =1,2, 3 around k, up to the

first order and changing the integral variables in

y, =per(kj —k, ) we reobtain, in the T~O limit, the rela-
tion given in Eq. (38).

We present another solution for the Az, 63 phase. The
two coupled integral equations mentioned at the begin-
ning of Sec. VB also give two real and symmetrical solu-
tions with the same free energy, which is however, greater
than the free energy of the b(S2(k)+iS3(k)) phase. We
illustrate these solutions with the numerical result of A2,
63 versus T, for the g2 /r = 1 .4 1 value [Figs. 4(c) and (d)].
In this case, the gaps in the T~O limit can be given in a
condensed form, as

6 (T)+b, (T)=b, (T =0)+62(T =0)—2T [I2, (b (~T =0)+92(T=0))+2I„b, (T =0)b, (T =0)+O(T ) . (40)

In the vicinity of T&2, we obtain

A2+ k3 = r ( k2„IO( T~2, S q /&2) )( 1 —T/T~2) (41)

where kz„——2k2, . C~(T) and X(T) have the same expres-
sions as in Eqs. (38) and (39), in which I„', i =2, 3 are
changed with I„' i =2, 3. The T&2/b, ;(T =0), i =2, 3 ra-
tio is almost the same for a great variation domain of g2
and it is close to 3.03 and 1.92 for higher and lower gap
solutions, respectively.

The recent neutron diffraction measurements" show
that the magnetic moments on nearest-neighbor U sites in
UzZni7 have antiparallel orientation. This means a strong
repulsive interaction between two heavy electron spins sit-
uated on adjacent sites, i.e., a large V contribution. This
means that the Az, 63 phase has a great chance to emerge
in the heavy-fermion systems, because this SDW state ap-
pears as a stable one (see Fig. 1) for great V coupling con-
stant value, and give T and T behavior for X( T) and
C~(T), respectively, in the T~O limit, in agreement with
the experimental data. ' It must be mentioned, that the
measured C~/T&0 (i.e., yo) for T =0 value is due to
electrons for which the nesting is not accomplished.

1.5)

t
GB

(b)

10)

Ds(
0.2-

0
—0.0

6 gI /2t 0 2

(c)

6

10

where g'=go, 6g2, and g4/2 for i =0, i =2, and i =4
phases, respectively. This is an interesting result, which is
also illustrated by the numerical data in Figs. 3(b), 4(a),
and 5(a).

Some of the possible A4 solutions are presented in Fig.
5(b) together with their energy (6E =E Eo) at T—=0 in
function of g4. The relative positions of the curves remain

C. h4 phaSe

The three coupled gap equations which characterize
this case are given by Eq. (16) with i =4, 5, 6 and 6; =0
for all i =0, 1, 2, and 3. The equations obtained allow
many solutions (real or complex) which appear at the
same Neel temperature T~4. The numerical results con-
cerning the TJvq versus g4 curve a-re prese-nted in Fig. 5(a).
The analytic expressions for T&4 are the following:

0-
00 0.5

0.0

T~4 t exp( —12t/g~), for t/T——&&1 .

T&4——0. 10g4, for t/T-1 .

T~4 ——g4/8 for t/T &&1 .

(42)

Tx =R /4 (43)

At this stage, we must mention that T~ —for all the
three analyzed SDW phases in the great coupling constant
limit g'/t ~&1—can be expressed in the following con-
densed form:

0
pa 0.5 1.0

FIG. 5. Characteristics of the h4 phase. (a) The critical tern-
perature vs the coupling constant g4, (b) some possible solutions
for the A4 phase together with their ground-state energy, com-
pared to the energy of the paramagnetic phase 6E =E —Eo (see
text); (c) the reduced gap 6/t as a function of the reduced tem-
perature T /t for g 4/t = 14, curve (1) and g 4/t = 10, curve (2);
the reduced gaps 6"/t and 5'/t as a function of the reduced
temperature T/t for g4/t = 12, curve (1), g4/t =8, curve (2),
g4/t = 12, curve (3), and g4/t =8, curve (4).
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the same for T&0, too. The lowest free energy for the 64
state could be given by a solution of the form:

~

b.s ~

=b (sin ak„+sin ak»+sin ak, ). But such a solu-
tion cannot be obtained. Under these conditions, the
lowest free energy is given by the solution:

~

b,s ~

=b, (sin ak„+sin ak») [see curve (1) in Fig. 5(b)]. This
solution is a complex one and has the form
b, 4

——b(sinak +i sinak»), or an equivalent one. This gap
was used for the construction of the phase diagram. In
the free energy scale the 6 '=5'sinak solution follows
[curve (2) in Fig. 5(b)), followed by solutions such as
b,"=b,„=b,» =b,, [curve (3) in Fig. S(b)] or b, "'=b,„=A»
with b,, =0 [curve (4) in Fig. 5(b)]. What is important for
the A4 state, is that it has the same symmetry properties
as the other i & 1 SDW states, from the point of view of
the k~k+Q transformation (this is relevant for the
SDW and not k~ —k as in the superconducting case).

Now we study the above mentioned A4 complex solu-
tion. In Fig. 5(c) we present the exact numerical results
concerning the 6-versus-T variations at fixed g4 values.
The h(T =0)/Tz& ratio is close to 1.6 for small g4lt
values and it slightly increases with the coupling constant.
For example, if g4/2t =8, we have b.(T =0)/T&4 1.78. ——
In the small temperature regime, b, (T) can be analytically
approximated by

Figs. 1 and 2) this phase is strongly connected to the I
value and the experimental information obtained up to
now suggest a small I contribution, which does not allow
us to obtain a stable A4 solution. In future measurements
we shall have to analyze the b, (T=0)/T~, values too,
since they could offer useful information about the con-
crete existing SDW phase. Furthermore, we analyze a
metastable A4 phase, namely the 5"=6 Ay
symmetrical and real solution. We present this phase, be-
cause of its interesting properties.

The numerical results concerning the 6"/t-versus-T/t
dependence for fixed g4/t values are presented in Fig.
5(d), curves (1) and (2). The 6 "(T=0)/Tz& ratio in this
case is close to one for small g4/t values and it slightly in-
creases with the coupling constant. For example, if
g4/t =8 we have b, "(T=0)/T&4 ——1. 14. In the small

temperature regime the gap can be approximated by

b."(T)=h"(T=0)—23gqT b."(T=—0)I„) .

In this case, the integral I„& is obtained in a different way.
We introduce new integral variables as x

&
p(co——s~x

+cosvry +cosmz), xz ——P(sinmx + sinvry + sinvrz), and
x3 ——z. The integration domain, after some algebra, is
transformed to domain D given by

b(T)=b(T =0) g4T b(T—=0)I„. (44)
(x )

—p cos77x 3 ) + (x p
—p coswx 3 ) 4p

Equation (44) is obtained by expanding the tanhx function
and by changing the integral variables in
x

~ P(cosmx +——cosmy +coswz), x2 ——P sinmx and
x3 =p sinmy. In the vicinity of T&&, b. can be expressed as

b, =t [k4, Io(T~4, (S4+S&)/&2)] ' (1 —T/Tv~)'

For T~O, D passes over the whole (x, ,x2) plane. The
temperature dependence is then obtained directly from the
coefficient of the I„] term. The gap expression, for the
T~ T~4 1S

t [k4„Io(TJv~ (S4 +S5 +S6) /&3)]

(45)
&& ( 1 —T /T~4) ' (50)

where

k4, ——3t/T&4 for t/T &~1,

k4, ——2. 55 for t/T —1,
k4, ——2 for t/T«1 .

(46)
C (T)=T I2, (51)

and

where k~„=k4, and the S; terms used in Eqs. (45) and
(50) are given in Eq. (15). The specific heat and the mag-
netic susceptibility for T~O are found using the same
procedure as for the I„& term:

For the specific heat we used the same integral variable
transformation as for Eq. (44), obtaining in the T~O lim-
it

C»(T)=T I,2 . (47)

With the same technique, the Y ( T) function from X( T),
in the T—+0 case is

Y(T)=T I, (48)

As Eqs. (47) and (48) show, the b 4 solution gives a T
dependence in X( T) and a T behavior in C» ( T), in the
T~O limit. As in the case of the 62, 63 phase these re-
sults are connected to the fact that the 5 4 gap vanishes in
points on the FS. In this case the three equations which
determines the gap zeros on FS are: yk ——0, S4(k)=0,
and S&(k)=0. The k, becomes: k =0, k =+sr/a, and
k, =+a./2a; or k~ = ~/a, ky =0, and k, =+sr/2a.
Thus, from the g(T) and C (T) point of view, the A4
solution also could describe the measured data. But (see

Y(T)= TI„3 . (52)

As it can be seen, an unusual temperature behavior is
found at low temperatures, for the physical quantities:
X(T) depends on T and C„(T) behaves as T for T~O.
All these results are due to the specific k dependence of
the gap function: 6" vanishes on lines on the FS. In this
case, besides the y~ ——0 relation which gives the FS, we
have only the S4(k)+Sq(k)+S6(k) =0 equality, which
determines the zeros of the gap on FS. If we fix the k,
value, the two relations mentioned above give point solu-
tions for k and ky, but a continuous variation of the
solutions is obtained with k, used as a parameter which
moves on the FS. Thus, the gap vanishes on lines on the
FS and this property (in agreement with other results )

gives the obtained dependences for the physical quantities
in the T~O limit.

In Fig. 5(d), comparatively, we present another temper-
ature dependence of another metastable A4 solution,
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namely the 6'/t-versus- T /t curve, which describes the
5'=6'sinak gap. We mention that this gap also van-
ishes on lines on the FS.

Unfortunately, the rnetastable A4 states, like 6' or 6",
have greater free energy than the stable 6 4 phase and
thus the existence of the A4 solutions which vanishes on
lines on the FS is less probable.

VI. DISCUSSION AND CONCLUSIONS

Many experimental data obtained in the last few years
prove the existence of an itinerant antiferromagnetic state
in heavy-fermion (HF) materials. Our analysis models
this phase in the HF systems by a spin-density wave
(SDW), the characteristics and properties of which are an-
alyzed in detail in this work. For this purpose, we start
from the idea that the same f electrons which give the HF
properties also give rise to the SDW characteristics. The
used Hamiltonian is based on a simple description of the
Kondo lattice systems. ' ' In this Hamiltonian we intro-
duced new terms ( V, J,I) which emphasize the differences
between the contributions which arise from different spin
configurations on nearest-neighbor sites. Contrary to the
classical SDW phase, ' ' in this case of HF materials, the
use of the explicit band structure is of great importance.
For this reason we present our analysis in the case of a
simple crystal structure. However, the results can be easi-
ly generalized to other symmetry species (see Ref. 13).

The description presented herein represents a model in
which the exchange and the phononic contributions are
equally important. It emphasizes that the competition be-
tween the same interactions give rise to superconductivity
or SDW properties in the HF systems, and in the two
mentioned cases, only the strength of the contributing in-
teractions is different.

After we study the nesting properties, we define the
SDW gaps and deduce the characteristic Green's func-
tions of the model. Making use of these, we analyze the
gap equations, the phase diagram of the system, the ener-

getical stability, the specific heat C~(T) and the magnetic
susceptibility X(T) of different SDW phases. Our study
emphasizes that the possible SDW states reAect the sym-
metry of the crystal lattice. Besides the b,0 solution which
shows some similarities with the classical Overhauser-
type' or Fedders-Martin-type' phases, two other new
stable SDW phases can appear which have k-dependent
order parameters (as the experimental data suggested' ' ).
The magnetic phases which we describes are cornmensu-
rate with the lattice (in agreement with the measure-
ments"). They are characterized by a well-defined Q vec-
tor which is given by the nesting property. The experi-
mental data show that only a fraction of the Fermi sur-
face is opened by the SDW gaps, ' ' because only a
fraction of the band satisfies the nesting conditions in the
measured materials. The recent neutron diffraction mea-
surements" show a strong V coupling constant (and a
weak I contribution) which give rise to a stable b, 2, b, 3

phase and which explains the T dependence in g(T) and
a T behavior in Cz(T) in the T~O limit. All these data
emphasize upon the fact that the 62, 63 SDW phase has a
great chance to describe the magnetically ordered ground
state of the HF systems. We mention that the deduced
behavior for C~(T) and X( T) is connected to the fact that,
for the A2, 63 phase, the gap vanishes on points on the
Fermi surface.

In the theoretical description to come, one must consid-
er the SDW and the superconducting phases together.
This is claimed by recent experimental data which sug-
gests the coexistence of the two mentioned states. The
study of this coexistence is in course of development.
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APPENDIX: INTEGRALS APPEARING IN SEC. V

0 1 ] 2 X e 1 2 eIp(x,y) = dx
&

dxz dx3y —tanh — cosh
0 0 0 2x 2x

I, =(1/rr') f dx, f dx, f + dx, exp[ —2t (x, +x2+x3) /kp(T =0)] .

+ oc + oo + oo + oo x4, tanh(Ep/2)I2=(1/2~ ) "dx, dx2 dx3 dx4 cosh '(r
l
xi+x2+x3

l
)

oc oo 0 Ep cosh(Ep /2 )

where e

12~3
c1

12~3
c2

I2)3

I2( 3

12~3
r2

=2t (cos7TX, +cos'ltx 2 +cos7tx

=(1/vr ) f dx, f "dx2

=(1/~') f "dxi f "dx2

=(1/2m') f "dx, f "dx

=(1/~') f "dx, f dx~

=(1/m ) f dxi f dx2

3). We used the notation Ep =4t (x& +xz+x3) +x4.

f dx3I [exp( —E2 3 ~ g)][(6(x& —x2) +2(x&+x2 —2x3) ]/Ep 3 ~

f dx3E2 3.,cosh (E2 3., /2),

, f' dx, cosh (Ez3 ~ g/2),

f dx3[exp( —Ez 3.„)][(x,—x, ) /E2 3.„],
f '

dx3[exp( —Ep 3 ~ )][(xf x2)(x]+x2 2x3)/Ep 3 ~ ],
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I„~ =(1/m) .f dx& f dxz f dx3Ez 3.„cosh (Ez 3.„/2),
I„'4' —(1/2'') f+"dx, f "dx, f "dx3cosh '(E, 3.„/2),

where

and

Ez 3 , =4t (xi+xz+x3) +b, (T =0)[6(xi —xz) +2(xi+xz —2x3) ]

Ez 3 p
—4t (x& +xz+x3 ) + [&6hz( T =0)(x

&

—xz )+&26 (3T =0)(xi +xz —
2x3 )]

Also,

I,', =(i/~') f+" dx& f "dxz f+"dx3[exp( E4 ,—)][(x.z+x3)/E4 ,], .
Qo 0 0

I,z
——(1/m ) f "dxi f dx, f '"

dx3E4. ,cosh (E4., /2),
QO 0 0

Ig3 ——( 1/Ir ) f dxi f dx, f + dx3cosh (E4., /2)
QO 0 0

I„& ——(8/&3~ ) f+"
dx, f "dxz[exp( E4 „)](—xz/E. 4 „), .

I„,=(4/&3m') f+"dx, f+"
dx, E4 „cosh '(.E4 „/2), .

I„3——(4/&3m. ) f dx& f dxzcosh (E4.„/2),
where

and

E4, 4t xi+6, (T——=O)(xz+x3)

E4 „4t x, +.x——(bz, "(T=0))
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