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Specific heat and collapse transition of branched polymers
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We computed the specific heat of site lattice animals with nearest-neighbor attractive interaction
for various animal sizes N, with N up to 80, on the simple-cubic lattice. For fixed N, the specific
heat as a function of the temperature exhibits a peak at a temperature T (N) depending on N. As
N increases, this peak gets higher and sharper and T (N) seems to approach a collapse transition
temperature T, from below. A least-squares fit together with finite-size scaling then gives both the
transition temperature T, and the specific-heat exponent u. The cycle-number distribution for the
number of animals with fixed size N is also calculated. They seem to obey a scaling law for large
N.

I. INTRODUCTION

Connected clusters of occupied site or lattice animals
are good models for branched polymers in dilute sol-
vents, for they take into account the excluded-volume
effect, ' which is important there. They are also inti-
mately related to the percolation problem. Normal an-
imals describe the high-temperature limit of branched
polymers when the excluded-volume effect dominates
over the monomer-monomer affinity. At low-tempera-
tures, or in a good solvent, the monomer-monomer
affinity can become the dominant effect, leading to a col-
lapse of the polymer. Such collapse had actually been
studied experimentally. The related collapse transi-
tion in linear polymers at the 6 point, at which the col-
lapse temperature coincides with the point where the
second virial coefficient vanishes, had long been studied
both experimentally and theoretically (see the references
quoted in Ref. 7). Derrida and Herrmann did a
theoretical study of the collapse transition of branched
polymers in two dimensions using the transfer matrix
method. They obtained the transition temperature T,
and certain critical exponents, including the specific-heat
exponent a. However, their method cannot be easily ex-
tended to three dimensions, at which experiments can be
most conveniently performed. Later, Dickman and
Schieve studied the same problem using a Monte Carlo
method for some two- and three-dimensional lattices. In
two dimensions, they obtained a transition temperature
in closed agreement with that of Derrida and Herrmann.
However, they were not able to determine any exponent.
In three dimensions their numerical data were
insufficient to determine either the transition tempera-
ture or the exponent. Recently Lam and Duarte ap-
plied the method of Dickman and Schieve to study the
collapse problem of directed lattice animals in two and
three dimensions. Using a least-squares fit, together
with finite-size scaling, we were able to estimate both the
transition temperatures and specific-heat exponents for
both the square and simple-cubic lattices. Encouraged
by the success with the directed animal problem, we per-
form now a similar calculation of the undirected animal

in which Az(8) is the number of animals of size N with
8 nearest-neighbor bonds, and T is the absolute tempera-
ture. We have expressed the energy in units such that
E/kz ——1, with c the nearest-neighbor attractive poten-
tial, and k~ is Boltzmann's constant. Using the Euler
relation 8 =N+C —1, with C the number of cycles in
the animal, (1) can be rewritten as

M(N)
Z (N —1)/T ~ A (C) c/T

N
C=0

where A&(C) is the number of animals with exactly C
cycles and M(N) is the maximum number of cycles in
animals of size N. For the simple-cubic lattice,

M(N) = (3(N N)]—
N+ [5(N, L )—+5(N, L (L + 1) )

+5(N, (L +1)'L )],
where the open square brackets denote the largest in-
teger value of their argument, 6 is the Kronecker 6 func-
tion, and L, is an integer. Using the Monte Carlo
method of Dickman and Schieve, the ratios

for successive, nonzero values of A&(C) are estimated
for fixed animal size N. In this way we have simultane-
ously calculated estimates for the cycle-number distribu-
tion for animals of size N defined by

P~(C) = A~(c)
M(Nj

A~(c) .
C=0

Our data for P~(C) suggest that P~(c) satisfies the scal-
ing law for large N. For fixed C, A v(C) behaves

problem on the simple-cubic lattice, which may be of
relevance to experimental studies. Thermal properties of
lattice animals may be derived from the partition func-
tion
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asymptotically for large N as

A~(C) =crcADN

where A.D is a lattice-dependent growth parameter for lat-
tice trees or zero-cycle animals, e is a universal ex-
ponent, and o.c is an amplitude factor depending on C.
Our estimate for»z(C} also allows an investigation of
the amplitude factors o.c. The result strongly suggests
that the amplitude factors for different cycles are simply
related.

II. MONTE CARLO METHOD FOR ESTIMATING
THE NUMBER OF LATTICE ANIMALS

We review briefly the method of Dickman and
Schieve. One starts initially with a connected cluster of
fixed size N connected to the site at the origin. One then
generates different configurations of connected clusters
of the same size N by removing randomly any of the
N —1 sites with the exception of the site at the origin,
and attaching it at a randomly chosen unoccupied per-
imeter site. During this process one checks every time
that the cluster does not break up into two or more
disconnected clusters. This connectivity constraint can
be most easily checked by using the "burning" algo-
rithm. ' Let x be the position of the site to be removed
and x' be the position of the site to be occupied. We
denote the new configuration to be the one in which x'
is occupied and x is empty, and the old configuration as
the reversed situation. In the new configuration, we
start the "burning" from an arbitrarily chosen neighbor
site of x. During the process of "burning" we check if
all the neighboring sites of x have been "burned. " If so,
the new configuration is a connected cluster. Otherwise,
the new configuration is disconnected and is rejected.
After this new configuration has passed the connectivity
test, it is accepted with a probability p determined in the
following way. One determines in the new configuration
the number of neighboring sites nz of x and the number
of bonds nb of x', and similarly in the old configuration,
the number of neighboring sites n of x* and the number
of bonds nb of x. If nb rs greater than or equal to nb,
the new configuration is accepted with probability
p =n~ fnz. Otherwise it is accepted with probability

p= exp[(nb —nb)/T),

where Yc is the number of realizations of C-cycle an-
imals. For large N, animals with small C are generated
only with suSciently large T, and those with very large
C are only generated with suSciently small T. There-
fore, for large N, one has to use several different temper-
ature (four or five) in order to generate animals with cy-
cle numbers ranging all the way from C =0 to
C=M(N). For each temperature we make about 100
million trials at generating new configurations starting
from an initial connected cluster. An accepted
configuration is called an event. At T-1.0, the number
of events is about one-fourth the total number of trials.
For 1ower T, this fraction can be considerably smaller.
At the start of each run 10 or 20 million trials are al-
lowed for relaxation. For N(12 we have checked that
our Monte Carlo data are in excellent agreement with
exact results. "

1s

III. LA'l l'ICE ANIMAL SPECIFIC HEAT

The specific heat per particle in an N-particle animal

C, =((8') —(8 )')I(NT')-(T T,)—
where

(Bn) Z —I yBnA & (8)eB/T

and A~(B) is the number of animals of size N with 8
bonds. Since A~(M(N) 1)=0 for N—=L, L (L + 1),
or (L +1) L, with L an integer, we can define

and

»&(C)= A&(C)/A&(C+1), C &M(N) —3 (6)

»~ =—A~(M (N) 2)/A~(M (N}) . —
Then Z& can be written as

where T is the temperature. An unbiased estimate of the
ratios A~(C)/Az(C+ 1) is then given by

exp[(C' —C) /T] F, /&,

M(N) —3 c M (N) —3

Z~ =e' " Az(0) 1+ g g [e ' "/»~(j )]+(e /»~) g [e' /»Jv(C)]
C=0 j=0 C=0

and Z&(B") as

M(N) —3 c M(N) —3
Z (8")=(N —1)"+ g (N+C)" g [e ' I» (j )]+[N+M(N) —1]"(e I»' ) g [e' I» (C)] . (9)

c=0 j=0 C=0

We have calculated»~(C) on the simple-cubic lattice us-
ing the Monte Carlo method of the preceding section,
for N =27, 36, 48, 64, and 80. The specific heat ob-
tained using (5)—(9) is plotted as a function of T in Fig. 1

for various sizes N. From Fig. 1, we see that besides the
subsidiary peak at low temperatures, the specific heat ex-
hibits also a strong, fairly broad peak at a higher tern-
perature. We identify this as the collapse point T (N)
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C —1

A~(C)- A)v(0) g r)v(j) ', C (M(N) —2
j=0

(16)

C —1 C —1

1 —g b, r /rx(1) g r)v(j)
j=0 j=0

(17)

We have in our calculation hr, /r~(j )=0.01. At X =1,
Q)v(X) is normalized to 1 for all N. For small X, we see
from Fig. 3 that there is excellent scaling behavior for
large N. For X between 0.5 and 0.8, the scaling behavior
deteriorates somewhat. But, however, according to (17),
the error bars in this region are also larger. We see that
the data are not inconsistent even with the conjecture of
an exact scaling behavior for all X at large N.

For fixed cycle-number C it is known" ' ' that
A~(C) has the following asymptotic behavior for large
N:

we see that the errors in P~(C) increase with C; let hrj
be the statistical error in r)v (j ), then

C —1

+ [rrv(J)+~r, ] '

j=0

200 "

150-

Nrgc)

50 r

0 N=27
N=36

X N=~
+N= 6g
~ N= 80

+
+ x
X

x
~ 0

X
G

0

~ +

~ + X
+ x

x
x

x )'

A)v(C) =crckoN, N )) 1 (18)
where cr, is a cycle-dependent amplitude factor, A, o is the
growth parameter for lattice trees, i.e., C =0 lattice an-
imals, and e is a universal exponent. From (18) we see
that the ratio of successive amplitude factors o c/ac+1
can be obtained from

o c/crc+, NA~(C)/—A)v (C +.1)=¹z(C). (19)

In Fig. 4, we have plotted the successive ratios Nr~(C)
as a function of C. This figure strongly suggests the fol-
lowing relation between the successive amplitude factors
~C i~C+1.

C ~0

C —1

oc=oo(cr)/cro) + (1+jKa) loo) .
j=1

(21)

If we sum (18) over all cycles C, we obtain the total
number of animals of size N, 3&, which has the asymp-
totic behavior at large N,

FIG. 4. Ratio Nr&(C) of the number of animals with Axed
size N but successive cycle numbers C and C+1 as a function
of C for the simple-cubic lattice.

—cr c lo c + 1+cr c + 1/cr c + 2 (20) =ok, N (22)
where K is a constant. From Fig. 4 we find K=14.5.
From (20) it follows that

1.0

where A, is the growth parameter for the total number of
lattice animals and e is the same universal exponent as
in (18). We have, therefore, the equation

(a' /a')(1+No)/ao+N o2/'o o+ ' ' +N 'osr(~)/cro)

=(X/A, ) (23)

0.6

Q„[x)

In the limit N~ eo, the left-hand side of (22) must tend
towards an exponential function exp(oN), with
o =log(A, /Ao) and cro ——o. If we substitute (21) into (23),
we have

M(N)
(A, /A, ) = g (No. , /cr ) C!

C=0

Q2
I

Og X 06

FIG. 3. Quantity Q~!X) vs X for lattice animals on the
simple-cubic lattice.

c
X Q n [1+(n —1)Kcr, /oo]

n=1

Now since Ko. ]/o. o= 1, we have for large n

n [1+(n —1)Kcr)/oo] '=oo/(Kcr)) .

Therefore, (24) becomes
M(N)

(A, /Ao) = g (N/K) /C! = exp(N/K),
C=0

(24)

(25)
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with K '=ln(A, /Ao). Using the values A, =8.368 (Ref.
16) and A,o ——7. 8 (Ref. 11) determined elsewhere, we ob-
tain ln(A, /Ao)=0. 0703=If ', in reasonable agreement
with our graphically determined value E =14.5. A par-
ticular solution of (20) is the Poisson distribution
oc=ool(E . C!). Substituting this into (18) and sum-
ming over all C up to C =M(X), we obtain in the limit
X~oo, again K '=in(k/Ao). Our Eq. (21) reduces to
the above Poisson distribution if O.o

——Eo.&. But in gen-
eral, (20) alone does not give such a relation between o

&

and uo.

g. CONCLUSION

scahng law for large X. We have also found numerical
support for a relation between the amplitude factors o&
for diferent C in the asymptotic formula

(C) =oculo'N

Besides the main peak corresponding to the collapse
transition, there is also a subsidiary peak at a lower tem-
perature. As discussed elsewhere ' this subsidiary peak
presumably describes the roughening transition. This
peak seems to approach a finite temperature as A'~ ~,
as appropriate for the roughening transition in three di-
mensions.

%e have calculated the collapse transition tempera-
ture and specNc-heat exponent for lattice animals on the
simple-cubic lattice. In addition, the cycle-number dis-
tributions are also calculated. They seem to obey the
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