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Simulated growth of wetting layers
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We have done Monte Carlo simulations of the growth of wetting films in two and three dimen-
sions for the case of nonconserved order parameters using a solid-on-solid model with nearest-
neighbor interactions; cases with both short-ranged and algebraic adsorbate-substrate potentials
have been examined. Where applicable, the results support the predictions of Lipowsky which are
based on analysis of effective interface models. They are also in general agreement with the Ising
model simulations of Mon, Binder, and Landau for the particular case of three dimensions and
short-ranged adsorbate-substrate interactions.

- I. INTRODUCTION II. MODEL AND THEORETICAL PREDICTIONS

Wetting phenomena, films, and interfaces have lately
received considerable attention from physicists as evi-
denced by the larger number of recent reviews of these
topics. ' They are of interest both because of their im-
portance in many natural and technological processes
and because they provide basic examples of nonuniform
many-particle systems. Much research has been done in
the general area of equilibrium thermodynamic proper-
ties; more recently, dynamic properties, especially the
question of the manner in which equilibrium is ap-
proached, have been receiving increased attention. In
this paper we present the results of Monte Carlo (MC)
simulations designed to study the growth of an equilibri-
um wetting film on a smooth substrate starting from an
initial configuration in which the film is completely ab-
sent. We use a solid-on-solid (SOS) model in two and
three dimensions d and so have interfaces of dimension
d —1 equal to one or two. The interaction V(h) between
the film and the substrate is either short ranged or varies
as h ~, where h is the thickness of the adsorbed film. In
all cases, V(h), the temperature T, and the chemical po-
tential p are such that there is complete wetting at equi-
librium and the system is far from any wetting, prewet-
ting, or roughening transitions. By the nature of the
SOS model, our simulations are of necessity order-
parameter nonconserving.

The principal goal of this work is to examine the film
thickness as a function of time, I =I (t). The results
may be compared with the predictions of Lipowsky
which are based on analysis of an effective interface
model with nonconserved order parameter. They can
also be compared, for the particular case of d =3 and
short ranged V(h), with the recent simulations by Mon,
Binder, and Landau' of the Ising model with single-
spin-flip dynamics.

The remainder of this paper consists of Sec. II, which
contains a description of the model and Monte Carlo
procedures along with a summary of Lipowsky's predic-
tions; Sec. III presents the results; and Sec. IV is a sum-
mary and discussion.

We employ a solid-on-solid model with nearest-
neighbor ferromagnetic coupling J/2 on a (d —1)-
dimensional square lattice lying parallel to the surface of
the substrate; d =2 or 3. At any site i of the lattice
there is a column of adsorbate atoms of height
h; =0, 1,2, . . . so that h; is the thickness of the adsorbed
film at that site. The Hamiltonian is

H pN=(J/—2) g ~
h; —

h~
~
++[V(h;)—ph, ],

where V(h) is the adsorbate-substrate interaction energy
for a column of height h and (i,j ) denotes that the sum
is over nearest-neighbor pairs of sites. Bulk two-phase
coexistence occurs for chemical potential p=0. This
value is used in all of the simulations reported here.
Two types of substrate potential were employed. The
first, which we call short ranged, is simply zero every-
where,

V(h) =0, (2)

while the second is algebraic for h ~ 1,

7.85J if h =0
4.2J/ht' if h &0 .

The specific cases of p =1, 2, or 3 were used extensively, '

p equal to 2 or 3 corresponds, respectively, to the nonre-
tarded or retarded van der Waals interaction. Tempera-
tures used in the simulations are, in the case of short-
ranged V(h), T=0.4J/k and 1.0J/k for d =2 and
T =0.8J/k and 2.0J/k for d =3; k is the Boltzmann
constant. In the case of algebraic V(h), we employed
T =0.8J/k for d =3 and T=0.SJ/k for d =2. Given
the potentials used here, there is complete wetting at
T ~0 in all cases. Also, for d =3 there is a roughening
transition at a temperature "0.62J/k which is consider-
ably less than the lowest temperature (0.8J/k) employed
for simulations. Hence there are no complications aris-
ing from metastability associated with first-order layer-
ing or wetting transitions.
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The standard Metropolis method was employed in the
MC simulations with a change hh; =+1 attempted in
each step. Individual runs were made with from 10 to
3&(10 Monte Carlo steps per site (MCS), and the num-
ber of runs N performed for any given set of parameters
ranged from 30 to 300. The starting configuration was
always h; =0 for all i. The size of the lattice was L
with L of 30, 100, 200, or 400 for d =2 and 10, 14, 20,
or 30 for d =3. The quantity of primary interest is the
coverage I, defined by

(4)

The coverage was computed in each run at intervals of
about 100 MCS and averaged over all N runs with a
given set of parameters, as was the interface width,

w(t) = L +'g[h;(t) —I (t)]

In some cases the profile n (z, t), given by

n (z, t) =L +'+9[h, (t) —z],

where

1 for x)0
Hx ='

0 for x&0

was also accumulated and averaged over a set of runs
with identical parameters.

Our results for I (t) are conveniently compared with
Lipowsky s theory which is for the limit L~co. Given
a potential V(h) in the form of Eq. (3), these predictions
may be summarized as follows: First, for

d &d*(p)=(3p+2)/(p+2),
where d*(p) is the upper critical dimension, one has a
mean-field (MF) regime where the effect of V(h) dom-
inates thermal fluctuations and leads at sufficiently long
times to

The coverage I at which the crossover takes place is ex-
pected to be of order L ' '. In the work done here, t
is sufficiently short that the crossover is not observed in
most cases, the case of d = 3 and short-ranged V being a
notable exception; we did, however, do some simulations
on small systems to verify the presence of the crossover.

III. RESULTS

We present first our results for d =3 and algebraic po-
tentials. Figure 1 is a plot of lnI versus lnt for poten-
tials with p =1, 2, and 3; also T=0.8J/k, L =20, and
p=0. From 30 to 90 runs of length 10 MCS were aver-
aged to obtain each curve. With the exception of p =3,
all curves are fit well by straight lines of slope 1/(p +2),
as expected in the MF regime; such lines are included in
the figure to guide the eye. For p =3, the expected t'
behavior is present for t not too large, but for the largest
times, the film is growing at a rate consistent with some
larger power of t. Probably this is a finite-size effect sig-
naling the crossover to t ' behavior at very long times.

The other case that we have studied in d =3 is the
short-ranged substrate potential. Figure 2 shows lnI
versus lnt for L =14, T =2.0J/k, and 3/10 MCS.
Some 150 runs were averaged to obtain these results. If
there is in fact a regime where I -lnt, it is for 4& I & 8.
This interval is shown in the inset to Fig. 2 which
presents I versus lnt. The range of I for which this be-
havior is present is sufficiently limited to prevent our
claiming a definitive observation of it. For thicker films
I )20, the behavior appears to be 1 -t', as one may
see by fitting a straight line to the curve in Fig. 2 at

where u=p+2. For d =3, we have this regime for any

p & oo. In d =2, we have this regime for p &2. Second,
for d (d "(p), one has the fiuctuation (FL) regime where
fluctuations dominate the effects of the potential and
produce a universal exponent where a=4/(3 —d). For
d =2, we are in this regime if p )2 and so should expect
I (t)-t'~ in all such cases. For d =3 (and d =2), we
are in the FL regime given the short-ranged substrate
potential. In this case, for d =3, we have 1/a~0 which
would be consistent with, e.g. , I (t) —lnt; this behavior
was reported by Mon et al. ' in their simulations of the
d =3 Ising model with short-ranged interactions.

The foregoing will not hold for arbitrarily long times
in a system with finite L; in this limit, as discussed by
Mon et al. ,

' the growth process will revert to a one-
dimensional random walk on a half-space (h & 0), leading
to the long-time behavior in all cases

(9)
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FIG. 1. The logarithm of the coverage is shown as a func-
tion of the logarithm of the time for d =3 and algebraic poten-
tials with p = 1 (N =30), 2 (N =60), and 3 (N =90), at
T=0.SJ/k and with L =20; t is in units of 100 MCS. Lines of
slope 3 4 and —,

' are also shown.
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FICJ. 2. The logarithm of the coverage vs the logarithm of
time for d = 3 and short-ranged V ( h ) at T =2.OJ /k and with
L =14; 150 runs of duration 3&&10 MCS were done to obtain
these results. A line of slope z

is also given in the figure. The
inset shows the coverage vs lnt at short times for L =14 and
N =240.

FIG. 3. The logarithm of the coverage is sho~n vs the loga-
rithm of the time for d =2 and a short-ranged V(h) at
T=1.0J/k with L =200. Some 143 runs of duration 2X10'
MCS were averaged. A line of slope 4 is included.

the eye.
We turn now to consideration of the profiles of the

growing films. Figure 6 shows a set of profiles n (z, r) as
functions of z for several values of the time for a film
growing in the MF regime: d =2, p = 1, T =0.8J/k,

large t. A plot of I versus t' supports this conclusion.
In two dimensions, the short-ranged V(h) again lies in

the fluctuation regime. Figure 3 present 1nI versus lnt
for L, =200, T = 1.0J/k, and 2 & 10 MCS, averaged
over 143 runs. There is a noticeable curvature in the
data for t ~ 2& 10; at larger times the data approach a
line of slope —,'. Also, if I' is plotted against t', the re-
sult is a line without noticeable curvature for t & 2&10
as opposed to plots of, e.g. , I versus t' or t'

The remaining cases studied in two dimensions,
V(h) —h ~ with p =1, 2, and 3, give lnI versus lnt as
shown in Fig. 4. The case of p =1 is expected to be in
the MF regime and to produce I -t' . The cases of
p =2 and 3 are expected to be in the FL regime and to
produce I -t' . Comparison of the simulation results
with lines of slope —,

' and —,
' in Fig. 4 shows that these ex-

pectations are justified.
For each of the cases just described we have done

some runs using values of I diff'erent from those given
above to check that the results are independent of L. and
correspond to the large-L, limit. Aside from the excep-
tions already noted [d = 3 and either V(h ) =0 or
V(h)-/i ], they are indeed independent of L. As an
example presenting the crossover behavior we show Fig.
5 which is a plot of lnI versus lnt for d =2, p =3, and L,
of only 30. Lines of slope —,

' and —,
' are included to guide
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FICJ. 4. The logarithm of the coverage is shown vs the loga-
rithm of the time for d =2 and an algebraic potential with

p =1 (N =60), 2 (N =100), and 3 (N =120), for T=0.5J/k
and L =200. Runs of 10' MCS each were employed. Lines of
slope —,

' and —' are also shown.
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FIG. 5. The logarithm of the coverage vs the logarithm of
the time for d =2, T=0.5J/k, and an algebraic potential with

p =3. The size of the system was L =30, so that the crossover
to the small-L regime may be seen; N =240. Lines of slope —'

and
z

are also shown.

and L =400. Figure 7 shows the same for a case in the
FL regime: d =2, p =2, T=0.8J/k, and L =400. The
profiles are shown at t =1, 10, 100, 500, and 1000 in
units of 100 MCS. In both cases the profile broadens as
the film grows. In the case of the films in the FL re-
gime, the width of the profile appears to scale as I (t) it-

self; that is, if we let the width of the profile be defined
as the difference between the values of z where n =0.10
and n =0.90, this distance appears from our simulations
to grow roughly as t ' reflecting the fact that the film

thickness fluctuates at any time by amounts of the order
of I (t). In the mean-field regime our results are less
clear. For the case shown in Fig. 6, the width of the
profile does appear to increase steadily with time but less
slowly than I (t) which varies as t'~ . We have exam-
ined also the case of d =3 and p =2 and again have
found that the width of the profile grows less slowly than
I (t) To. get a more clear picture of what is in fact hap-
pening we would need more runs to provide better statis-
tics.

As for the intrinsic width of the interface defined by
Eq. (5), it too increases initially with time but then satu-
rates because of finite-size effects. There is essentially no
diff'erence between the behaviors we find for w (t) in the
two cases d=2 with p =1 and p =2 which are, respec-
tively, in the MF and FL regimes. For %=1000 and
runs of 10 MCS we find that w -t — which prob-
ably reflects a growth rate with an exponent of one-
fourth. However, for other cases in the MF regime in
particular, we appear to find quite different growth rates
for w. Further studies are underway.
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FIG. 6. Profiles n(z, t) as functions of z for times 1 (U), 10
(~), 100 (+ ), 500 (X), and 1000 (+) in units of 100 MCS.
These are in the MF regime with d =2, p =1, T=0.8J/k,
L =400, and N =10.
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FICr. 7. The same as Fig. 6 but for a case in the FL regime:
d =2, p =2, T=0.5J/k, L =400, and N =20.
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IV. SUMMARY AND DISCUSSION

We have used a solid-on-solid model for d =2 and 3
to study the growth of wetting films in both the mean-
field and fluctuation regimes under conditions of com-
plete wetting at equilibrium. The substrate potentials
used are of the forms V(h)-h ~ with p =l, 2, and 3,
and V(h) =0. The cases p =2 and 3 in three dimensions
especially are of physical interest as they correspond, re-
spectively, to the van der Waals and retarded van der
Waals potentials. The film thickness l (t) is found to
vary at long enough times as t '~, where a = 1/(p +2) in
the MF regime, and a= —,

' in the FL regime in d =2.
These results are in agreement with the predictions of
Lipowsky. For the FL regime in d =3, we are unable
to employ a large enough system to find unambiguously
the claimed 1nt behavior for L ~ oo, but there is certain-
ly some evidence that it is present, as in the simulations
of Mon et a/. ,

' for relatively short times. At larger t
there is a crossover to a small-L regime, ' where
I -t ' . The width of the profile of the growing film ap-
pears to grow at the same rate as I" in simulations of one

particular case in the FL regime while a somewhat
slower growth was observed in simulations involving
cases in the MF regime. The intrinsic width of the in-

terface grows until it becomes limited by finite-L effects.
It would be of some interest to pursue the question of

the film profile in more detail, looking at correlation
functions and the interface width more quantitatively.
An additional question worth pursuing is the growth of
films given conserved order parameter which would be
more appropriate for studies of, e.g., liquid film growth
beneath a vapor. Lipowsky and Huse' have predicted
the behavior of 1"(t) in this case, finding in d =3 that
I -t' for p =2 and 1"-t' ' for p =3. We are
currently looking at the feasibility of simulations that
can test these and related predictions.

ACKNOWLEDGMENT

This work was partially supported by National Sci-
ence-Foundation Grant No. DMR-84-04961.

K. Binder, in Phase Transitions and Critical Phenomena, edit-
ed by C. Domb and J. L. Lebowitz (Academic, New York,
1983), Vol. 8, p. 1.

D. Jasnow, Rep. Prog. Phys. 47, 1059 (1984).
E. H. Hauge, in Fundamental Problems in Statistical Mechan-

ics VI, edited by E. G. D. Cohen {North-Holland, Amster-
dam, 1985), p. 65.

~D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial
Phenomena, edited by C. A. Croxton (Wiley, New York,
1985).

5P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
6C. Ebner, in Chemistry and Physics of Solid Surfaces VI, edit-

ed by R. Vanselow and R. Howe {Springer-Verlag, New

York, 1986},p. 581.
7S. Dietrich, in Phase Transitions and Critical Phenomena, edit-

ed by C. Domb and J. L. Lebowitz (Academic, New York,
1987), Vol. 10.

~See also the bibliographies in Refs. 1 —7.
R. Lipowsky, J. Phys. A 18, L585 (1985}.
K. K. Mon, K. Binder, and D. P. Landau, Phys. Rev. B 35,
3683 (1987).

' J. D. Weeks, in Ordering in Strongly Fluctuating Condensed
Matter Systems, edited by Tormod Riste (Plenum, New
York, 1980), p. 293.
R. Lipowsky and D. A. Huse, Phys. Rev. Lett. 57, 353
(1986).


