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Susceptibility and correlation functions in amorphous magnets
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We calculate the site-dependent susceptibility and the neutron scattering form factor S~ of the
random-anisotropy model (RAM) in site-dependent mean-field theory with an additional Lagrange
parameter. We obtain for S~ a Lorentzian and a Lorentzian-squared term. The latter vanishes
above the characteristic temperature T, in zero field but persists at low temperature for all fields.
The susceptibility remains finite at all temperatures. The spin-correlation length becomes temper-
ature independent below T, (apart from the temperature dependence of the exchange and anisotro-

py constants) but depends strongly on an applied field and on additional coherent uniaxial anisot-
ropy. The saturation magnetization decreases in high fields as h

I. INTRODUCTION

Most magnetically disordered system can be classified
either as spin glasses, or as random-field or random-
anisotropy systems. All these systems are commonly de-
scribed by the Hamiltonian

H = ——,
' g JJS;-SJ—Q h; S; ——,'D g(n;. S; )

with the spins (or, more generally, total momenta) S;. In
the case of spin glasses one has competing positive and
negative exchange interactions J;J. Most spin glasses are
diluted alloys with a nonmagnetic matrix. ' Spin glasses
can be crystalline or amorphous. Random-field systems
are characterized by a random distribution of fields
P(h;) and are equivalent to diluted antiferromagnets in
an uniform field. In random-anisotropy systems one
has a random distribution P (n; ) of unit vectors n; which
point out into local easy-axis directions. The anisotropy
strength D is assumed to be constant. In both the
random-field model (RFM) and the random-anisotropy
model (RAM) the exchange is assumed to be predom-
inantly ferromagnetic. In some cases additional nonran-
dom anisotropy (which depends on the lattice structure)
is also important.

Most disordered amorphous magnetic alloys are either
spin glasses or random-anisotropy systems. In some
cases no clear distinction between both cases can be
made since there are systems with fairly random ex-
change and with random anisotropies. Most randorn-
anisotropy systems are either amorphous rare-earth al-
loys or amorphous rare-earth —transition-metal alloys
such as Y, Nd, Pr, Sm, Gd, Tb, Dy, Ho, Er, or Tm with
Fe, Co, Ni, Cu, Ag, or Au. ' Here, the transition-metal
ions can be magnetic or nonmagnetic. Some of these
systems order magnetically at su%ciently large concen-
trations. We do not discuss amorphous insulating
glasses.

The RAM was investigated initially in mean-field
theory (MFT). ' Some authors predicted a ferromag-
netic state with coercitivity, remanence, hysteresis

loops, ' and other ferromagnetic effects. However, the
possibility of a spin-glass-like state was also suggested
early. ' ' Computer simulations in three dimensions
led to conflicting results. Chi and Alben found that the
lowest-lying states are ferromagnetic with finite
remanence, whereas Chi and Egami' suggested an insta-
bility of this ferromagnetic state. Harris and Sung con-
cluded that there are spin-glass-like states at higher ener-
gies which are separated by large energy barriers from
each other and from the ferromagnetic ("asperomagnet-
ic") ground state with finite spontaneous magnetization
but strong spin disorder. This is in contrast to very
careful Monte Carlo simulations of Jayaprakash and
Kirkpatrick, ' for large random anisotropies, who con-
cluded that the ground state exhibits significant short-
range ferromagnetic order but no 1ong-range magnetic
order.

This conclusion is consistent with an estimate of the
energy for the formation of magnetic domains. Such an
estimate was first made by Imry and Ma' for the RFM,
but can easily be applied to the RAM. ' This estimate
predicts ferromagnetic order for all ratios D/J and for
dimensions d &4, where J is the exchange for nearest
neighbors. For d &4 the system should break into mag-
netic domains of size L —(J/D) ~' '. The fiaw in this
argument is that it does not take into account the entro-
py that might be important in disordered systems. A
mean-field theory in which the ferromagnetic exchange
interactions J;J in (l) are all equal and of infinite range
(corresponding to d ~ Oo ) indeed leads to a ferromagnet
ic state for all ratios of anisotropy to exchange. ' ' This
in contrast to a spin glass, where the same type of
mean-field theory [as defined by the Sherrington-
Kirkpatrick (SK) model' ] leads to a spin-glass state and
where many predictions of this theory compare favor-
ably with experiments. '

One possibility for going beyond MFT is to use
renormalization-group methods. ' ' In Refs. 20—23
the average over the random axes n; with g", n; = I
is performed by employing a truncated cumulant expan-
sion of the anisotropy term in (l). This is equivalent to
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replacing the distribution P(n;)=const by independent
Gaussian distributions for all components n; . This ex-
pansion is questionable since it leads, in the limit of
infinite-range exchange interactions and strong anisotro-
py, to a spin-glass state, whereas the MFT (which is ex-
act in this limit) predicts a ferromagnetic state. For
short-range ferromagnetic exchange the cumulant expan-
sion leads to an effective Hamiltonian which can be ana-
lyzed using conventional renormalization-group tech-
niques. One finds below four dimensions an instability
of the ferromagnetic fixed point. ' ' Further investiga-
tions ' of this effective Hamiltonian showed that it
describes, for d &4, most likely a spin glass. However,
the upper critical dimension of an ordinary spin glass is
6 instead of 4 and the behavior of this model between
d =4 and 6 is not yet completely clear.

The RAM can be treated rather rigorously in the limit
24 —~8

n ~ ~, where n is the number of spin components.
A 1/n expansion yields results consistent with the
Imry-Ma argument discussed above' ' and sufficiently
large additional coherent anisotropy (such as cubic an-
isotropy) restores in d =3 the long-range ferromagnetic
order via a first-order phase transition. These calcula-
tions have another flaw, pointed out by Bray and
Moore: One has in the limit n ~ oo a spin-glass transi-
tion at finite temperatures even for a single spin. So this
limit is not useful in order to determine a critical dimen-
sion. More information about this question yields the
large-cell renormalization-group method used in Ref. 29.
This method leads for the RAM with D/J~oo and
d =2 to a zero-temperature phase transition with critical
exponents consistent with those of a two-dimensional
(2D) Ising spin glass. A RAM with infinitely large an-
isotropy indeed is an Ising system. ' ' ' The authors of
Ref. 29 conclude that it belongs to the universality class
of the Ising spin glasses, at least for d =2 and probably
for all d (4.

Considerable progress in determining the spin struc-
ture of the RAM has been made by Chudnovsky
et al. , Scrota and Lee, and Saslow. These au-
thors calculate the static spin correlations at low temper-
atures in the framework of a Ginzburg-Landau model
with small random anisotropy. The spin correlations
turn out to be finite ranged and scale with the correla-
tion length g-R, (A/R, D), where 2 (V M&) is the
exchange energy and R, is the correlation length for the
random axes. This result is consistent with the Imry-Ma
estimate for d =3 mentioned above. Depending on the
external field h, the authors of Refs. 34 and 36 distin-
guish three different magnetic regions. The state for
h =0 has zero net magnetization and can be described as
a "correlated spin-glass state" with large but finite sus-
ceptibility and slowly rotating moments. A relatively
small field h aligns the moments to a considerable extent.
The authors of Refs. 34 and 36 call this state a "fer-
romagnet with wandering axis. " The spin structure is
slightly noncollinear with a correlated tipping of the spin
directions. Coey calls this an "asperomagnetic" state.
In a large field, finally, the tipping angles should be com-
pletely uncorrelated from site to site. Additional
coherent (i.e., nonrandom) anisotropy acts roughly like

an additional field ' ' and in this sense enhances the
tendency towards ferromagnetic order. A finite spin-
correlation length at low temperature has also been ob-
tained by Dotsenko and Feigelman ' for a three-
dimensional random-anisotropy model with planar spins.
These authors find that the static susceptibility diverges
at the phase transition with r=(T, —T)/T, ~O as
D z and varies at low temperatures as D

In this paper we calculate the static spin-correlation
function and susceptibility of the RAM in site-dependent
MFT based on the Hamiltonian ( I) with additional
coherent anisotropy and a uniform magnetic field. We
consider only weak anisotropy. Our results are as fol-
lows. Above the characteristic temperature T, the sys-
tem is very similar to a ferromagnet. However, the
spin-correlation function (which is proportional to the
neutron scattering form factor) contains an additional
term in the form of a Lorentzian squared which vanishes
in zero field. A similar result recently has been obtained
by Feigelman and Tsodyks in the limit of strong an-
isotropy. Below T, the susceptibility remains finite.
One has in zero field the spin-correlation length gD, due
to random anisotropy, which agrees with that found in
Ref. 34. The form factor consists for all fields (including
the case h =0) of a Lorentzian and a Lorentzian
squared. The latter has been predicted already by Chud-
novsky. A Lorentzian plus Lorentzian-squared form
factor with undetermined coefficients has also been sug-
gested by Aharony and Pytte. These authors predicted
a low-temperature phase of the RAM with zero net mag-
netization but diverging susceptibility, in contrast to
our results. We find that in a finite field
(J »h » AgD ) the correlation length gD has to be re-
placed by g=(gD'+g„M) ' ', where g„M=h/AM, is
the ferromagnetic contribution, and where M is the in-
duced magnetization. For h &~J the magnetization devi-
ates from the saturation magnetization M =5 by a term
proportional to h . Similar results have been derived
in Ref. 34 from a phenomenological model.

Additional coherent uniaxial anisotropy reduces the
spin-correlation length perpendicular to the easy axis.
One has the correlation length g=(gD +gFM+g, )
where g, is the Bloch-wall thickness of an ideal fer-
romagnet. If g«g, Bloch walls no longer can exist and
the spin structure is determined by the random anisotro-
py. In the opposite limit and for sufficiently small
domains the system looks like an ideal ferromagnetic
with additional small tilting of the spins within the
domains.

II. GENERAL THEORY

We mentioned already in the Introduction that a MFT
for the RAM based on infinite-range ferromagnetic in-
teractions' ' ' leads to a ferromagnetic state which
disagrees with the estimate of Imry and Ma' ' ' and
most other calculations. A simple improvement of the
MFT is a local (or site-dependent) mean-field theory
which has been considered already in earlier work on the
RAM. ' Here we go one step further (which turns
out to be crucial) and take into account the constraint
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S; = g"
~ S; =1 by means of a Lagrange parameter A,;.

Our model is then defined by the Hamiltonian

H = ——,
' g J;1S; S) —g h; S; + —,

' g k; (S; —1) H—D,

(2)

H, ff ———g h'; S;+KD+ —,
' g J;JM; M)

17J

——,'(Joi, + AA, ) g (M, —1),

HD = —,'D g (n;.S; )' ——,
' + 5A, , (S,' —1) . (10)

HD ———,'D g—(n;.S; )

with short-range ferromagnetic exchange interactions J;J
and a site-dependent nonrandom field h;. We are in-
terested in the susceptibility 7;J. One has, from linear-
response theory,

We write h; =h+5h;, M; =M;p+5M;, and h' =h;-p

+5h, , where the magnetization 5M; is induced by the
field 5h;~0 and where the magnetization M;p still de-
pends on site i due to the disorder. Expansion of the lo-
cal partition function

Z; =Tr exp[ p[HD—+(h;p+5h )S ]I
TX,, = [(S,.S,.) ],—q,,

with the generalized spin-glass order parameter'

(4)
to second order in 5h' leads to the induced magnetiza-
tion

q;, =[M; M, ]D, M; =(S; ) (5)

where ( ) denotes the thermal average and [ ]D the
average over a distribution of random axes. Both 7;.
and q;. depend in a constant field h only on the distance

~
x; —x;

~

between the sites i and j. In a way similar to
spin glasses, the RAM might have low-lying metastable
states or a nearly degenerate ground state, and (4) and
(5) refer to the thermal equilibrium for a given field h.
In a spin glass such a state presumably can be reached
only by suKciently slow field cooling.

The neutron scattering form factor is proportional to
the Fourier transform of the spin-correlation function

5M; =P g ((S; S;y)o —M;o M;or)
y

X 5h'y+ g JJ5M, y (JoA+Ak)5M;y
J

(12)

where M;p and (S; S;r )p are averages for 5h =0. In
what follows we restrict ourselves to small random an-
isotropy and average the two factors on the right-hand
side (rhs) of (12) separately over a distribution of axes n;.
This is correct to lowest order in D and leads to

iQ.(x,. —x. )

S& ——g e ' ' (TX;, +q; )=—TX&. +q& . (6) [5M;~]D ——p(p —q ) 5h; —g J;, [5M ]D
J

k; =Jpk+ A A, +5k, ; . (7)

Here, Jpl, with Jp: gk Jk is the conventional ferromag-
netic contribution which leads to a shift of T„and A A,

and 5k; are contributions which vanish for D =0. The
constant 3 will be defined below.

An external field h produces a homogeneous magnetiza-
tion Mp and leads in qQ to a term Mp 5Q p We shall
calculate the susceptibility 7,J and the order parameters

q;J in a slightly different way. The susceptibility is ob-
tained from a partition function in which we keep the
full random-axis Hamiltonian HD, Eq. (3), and treat only
the exchange in a generalized local MFT. In the case of
q;J we separate HD into mean-field and fluctuation con-
tributions. The Lagrangian parameters A, ; in both cases
are written as

—(Jok, + Ak)[5M, ]D (13)

where we have chosen a coordinate system in which

[(S; S;r)p]D and [M;p M p~]D are diagonal,

[(S; S )p]D =p 5, [M;p M p ]D =q 5.,
The parameters

p [(Si )0]D q. = [M o. ]D

(14}

5[M@ ]D

5hQ

pa —qa
T —(p. —q )(Jg —Joz —A X)

(16}

enter in this form also into the MFT of spin glasses. ' If
the exchange interactions J;J of the amorphous system
differ little from those of the crystalline state, i.e., if
J;J =J; ~, Eq. (13) can be solved by Fourier transforma-
tion. We have the susceptibility

A. Susceptibility

We calculate the susceptibility 7;J by means of the
effective field

For small Q values JO can be expanded,

Jo ——Jo( 1 —b Q ), Jo ——g J;

and (16) can be written,

(17)

h'; =h; + g J;,M& —(Jo A. + A X }M;. ,

and the effective Hamiltonian

(8) XQ—
1

A (Q'+g. ')

where

(18)
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4a = +~=KFM, a+CD~ pa —qa
(19) 1

A (Q2+g. ')
T =(p —q )Tp, Tp ——Jp(1 —A. ), A =Jpb, (20)

and where the parameter b is of the order of the average
lattice constant.

The susceptibility (18) has the same Q dependence as
an ideal ferromagnet in MFT. However, the correlation
length g still depends through the parameters p„, q
and A, on the anisotropy HD, Eq. (10). We shall calcu-
late these parameters in Sec. III for various temperature
and field regions.

—2 Ta —2 —2+~—g FM, a+ED
A(p —q )

(26)

g n; =1, [n; n;p]D 6——p!n (27)

with T =(p —q )Tp.
For an isotropic distribution, P (n; ) holds [6M, ]D =0,

which determines the Lagrange parameter 6k;. One has,
with

B. Correlation function q;,.
to lowest order in D, from (24) (see also Ref. 33),

6k =D(n'M )'/M (28)
In the preceding subsection we calculated the response

5M; induced by a small field 6h; . In this subsection we
consider the local response 6M; due to the anisotropy
interaction HD, Eq. (10), which is assumed to be small.
For this purpose we add to h,', Eq. (8), the anisotropy
term in local MFT,

and

5M; =D g G;lnl Ml[nl Ml (n—l Ml )/Ml ] . (29)
1

We assume for all axes n; the same constant distribution
function

h; =h+ g J;,MJ+D(n; M, )n; —A,;M;,
J

(21) P (n; ) =fI„'= I (n/2)/2m" ~ (30)

with 6h; =0, and replace, in Eq. (10), S; by S; —M;. In a
finite field h we have M; =M; +5M; and
h,' =h';0+6h;, where M; is the induced magnetiza-
tion. Equation (12) now reads, in obvious notation,

6M; =P(p —q ) D(n; M;)n; 6A;M—;,
+ g [J;,—6;, (Jpl, + AA, )]6M,

J

where 0„ is the surface of an n-dimensional hypersphere
and I (z) the gamma function. Two axes with the direc-
tions n; and n~ might be correlated over a certain dis-
tance as described by the function I;~. We need, for the
correlation function (5), the averages

[n, n, pn n s]D ——[n (n +2)]
x[5 p5 s+r;, (5 r5ps+5 s5pr)] . (31)

A simple ansatz for I; is

r;l =exp( —
~
x; —x~

~
/R, ), (32)

where we replaced the quantities (S; S;z)p and M; M;z
by their averages over the random axes, and where aver-
ages like ( )p are taken with (9) and (10), but without the
MF contribution of HD. Again, this is correct to lowest
order in D. '

Equation (22) can be solved by means of the Green's
function 6;J as defined by

g I5;l —p(p —q )[Jl —6;l(JpA, + Al(, )]]Gl,

where the characteristic length R, is of the order of the
average lattice constant.

Equation (29) leads, with (31) to lowest order in D, to
the correlation function

2
[5M 5M ]D =5q" =D (q q ) g G kG lrkl'n(n+2

(33)

with

=/3(p —q )6„. (23) q=gq =+[M ]D . (34)

One has the formal solution

5M = g GI[D(nl Ml )Ml M.lMl ] . —
1

(24)

Equation (23) again is solved by Fourier transformation.
The Fourier transform of 6;~,

Pa —9'a

T —(p —q )(J&—Jpl. —AX)

is, apart from the slightly different averages, identical to
the susceptibility (16). One has, in the limit Q~O,

For
~
x, —xl

~

&&R, the function Gll in (33) can be re-
placed by G~&. This leads to

6q,, = D'(q —q. ) g G,', GP, ,n(n+2 (35)

where

n= y r„=n;, ' j dx "r(x)=8~n;, 'R.3.
k

Equation (36) holds only for n = 3, and 0„is the atomic
volume. It is convenient to introduce the magnetization
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density 5M(x;)=0,, '5M; and to write (35) for n =3 in
the form

[5M (xl )5M (x2)]D =5q. (xi, x2)

", , mR,—D (q —q )

X dxG xi —xG x2 —x

The integral in (37) can be evaluated for large distances,
for which (25) can be replaced by (26),

xG xi —x 6 x

=(2m) 3 f d3Q e '(G )

=A (2m) f d Qe '(Q —g )

=(8m A ) 'g exp( —x, /g ) .

M =S(cothH —1/H)
H =PS(h + TOM)

(43a)

(43b)

which leads, for the components p and q parallel and
perpendicular to M, to

essentially the additional term gD . We will show that
at least at low temperatures gD ——gD, Eq. (40). Hence

is of the order (D/A) «1 and can be ignored
sufficiently far above T„but would lead at T, to a finite
correlation length g . However, near T, and for h =0
the site-dependent MFT breaks down and we do not
have a rigorous proof that gD ——gD holds at all tempera-
tures. The critical temperature T, is defined by
g„M~ oo, which leads, with T = T, p =S /3, and

q =0, to T, =S Tp/3, independently of the random an-
isotropy [see Eq. (39) of Ref. 52].

In the ideal classical ferromagnet the magnetization is
given by the Langevin function

(38) p, =pii S 2SM——/H, —p2 =p3 =pj =SM/H, (44)

This leads, with M; =M+ 5M;, [5M; ]D =0, and
[M; ]D =Mo, to

qq ——0, q))
——M 2

One has, to lowest order in M, from (19),

(45)

[M (xi)M (xz)]D =—q (xi, x2)

= Mo +(g /2$D)
—

~ Xl —X2)
~
/g

X(q —q )e

where

(39)

T —T, + —,
' ToM

—'AS
3

T —T +—'TOM
~FMi=

i AS2
3

(46)

(47)

gD
—= —", R, ( A /D ) (40)

The result (39) has an interesting property: One has, for

The transverse correlation function gFMJ diverges for
h =0 with M =M, (M, is the spontaneous magnetiza-
tion) for all temperatures T & T~, where

q (xi, x2) =const —(q —q )
~
xi —xz

~
/2(D, (41) Ti ——T, ——,

' ToM, (48)

4vrgD '(q —q )

Q ~ 2 —2+ 2
——2z + Oa QOA Q+g. (Q+g. )

(42)

It consists of a Lorentzian and a Lorentzian-squared
contribution. This result based on a site-dependent
MFT should hold to a good approximation for all tem-
peratures, except near the phase transition. It contains
the parameters g, g, q, and q, which will be calculat-
ed in the next section. The Lorentzian-squared term is
an effect of disorder and vanishes for gD '-D =0.

III. HIGH TEMPERATURES

For T ~ T, and h =0 both the local magnetization M;
and the spin-glass parameter q =(. . . ,q, . . . ) vanish
and the form factor (42) reduces to the first term on the
rhs. For D =0 the spin-correlation length g, Eq. (19),
reduces to that of an ideal ferromagnet in the Ornstein-
Zernicke approximation. For D&0 one has in (19)

i.e., the correlations decay on the scale gD, Eq. (40),
which depends on the temperature only through the pa-
rameters A and D.

The neutron scattering form factor (6) for small Q
values is obtained from (18) and (37) with (38) and (40),

Such a critical line T =Ti =(pj —qi)To with (FM
——0

and M, ~q should exist also for D&0 even if gj, Eq.
(19), remains finite. In a finite field one has, for D =0
and T(Tg,

gFM ——— (M —M ),3 p

5 ~S' (49)

with qz
——0 and q =M . For D&0 one has, from (33),

qz
——[5M;i ]D&0, leading to an additional term in Tj,

Eq. (20), which only vanishes for h =0 and T & T, . In
addition, the (uniform) spontaneous magnetization M,
vanishes for D&0.

The Lorentzian-squared term in the form factor (42)
vanishes for h =0, T)T„where q =q =0, and be-
comes, for low fields with M-h, proportional to h . To
lowest order in the anisotropy and for a field in direction
a=1, one has qi ——M and q2

——q3
——0 or q —q =q, (1—

5, ), and the longitudinal component of the Lorentzian-
squared term vanishes. It becomes nonzero only to or-
der (D/A) with

q —qi =q, =MVi/kD =M'gFM~~~/JD D

from (39) and (40), with g„M=gFM. A field-dependent
Lorentzian-squared term in the form factor has been ob-
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tained also by Feigelmann and Tsodyks for D ~ ao and
T & T, . In this limit the transverse and longitudinal
components of S& become of the same order of magni-
tude. A similar term can be derived in the RFM. In
this model the factor h has to be replaced by the aver-
age [h; ],„over the random fields.

TM
px (53)

and the field-induced part

partly polarized and gFM&0 even below T, . We calcu-
late gFM for T~O and D~0. One has from (43)—(45),
apart from exponentially small terms in H,

IV. LOW TEMPERATURES

The low-temperature limit of the RAM has been dis-
cussed quite extensively by Chudnovsky et al. We fol-
low their notation and distinguish three regions depend-
ing on the applied field.

In zero geld the net (or uniform) magnetization is
zero. The system is macroscopically isotropic with

g =g and MD
——0 in (39). Summation of (39) over all a

leads to

Topi
EFMl

Apq

and to

h

AM '

—]. /2

Th

To + 0

which leads with (19), (20), and qi =0 (see below) to

(54)

(55)

[M(xi) M(xz)]D —q(xi, xz)=qe (50)
h

AM
(56)

where

(51)

Qz+$ —2 3(Q2+(—2)2
(52)

A similar form factor (with undetermined coefficients)
has been suggested (but not proven) by Aharony and
Pytte. The Lorentzian-squared term already has been
derived by Chudnovsky, who, unfortunately, replaced
[M~(xi)M~(xz)]D by [S (x(~S (xz)]D.

Line shapes in the neutron scattering cross section
that could be fitted by the sum of a Lorentzian and
Lorentzian squared have been observed " in amor-
phous Tb75Fe», Tb2Fe», TbFe2, Fe»Zr9, and NdFe, .
Some of these alloys show a fairly temperature-
independent correlation length g (well below T, ). This
agrees with /=AD, Eq. (51), if the exchange constant A

and the anisotropy constant D are temperatures indepen-
dent. Sometimes a sharp increase of g near T, is ob-
served which cannot be explained by our theory. Above
T, one observed in all systems a sharp decrease of g(T)
with increasing temperature which can be explained by
gFM, Eq. (19), with (20).

In an external fteld Jo »h » ASgD the spin system is

from the limit x&~x2. This result agrees, for T =0 and

q =M, with Eq. (2.16) of Ref. 34. For weak anisotropy
the correlation length gD, Eq. (40), becomes large and
the correlations of the magnetization (43) decay only
very slowly. The fluctuations of the magnetization due
to the random anisotropy add up to large-angle
differences only at large distances of order gD and lead
to a destruction of the coherent ferromagnetic state.
The system behaves over small distances like a ferromag-
net and over large distances like a spin glass with huge
ferromagnetic clusters the moments of which point in
random directions. This is different in an "ideal" spin
glass (with a symmetric bond distribution), which has
only few short-range ferromagnetic correlations. The
form factor (42) becomes, with (50), g =g, and

q =q/3,

This decrease of the correlation length has been ob-
served in Refs. 43, 44, and 48, and gFMJ agrees with the
"characteristic length" RF introduced by Chudnovsky

et al. from energy considerations. For the transverse
magnetization correlation, (39), holds with q =q ~~,

M =M6 &, and q —q =q for a=1,2, 3,

[MJ (xi )MJ (xz)]gj q (gi /gD )exp(
l
xi xz

l
/gi) (57)

and

—]/2

qi=[Mi]D =(q/CD)
AM

+CD' (58)

x~ ——P(p —q ),
and with (35), gt G,.t Gt. ——5;l(X ), (36), and (40) to

8~a' S4

gD (h+T M)

(59)

(60)

One has from (60) the change of the longitudinal magne-
tization

[6M i ]D = [S —M i ]D /2S =q z /2S

4~3 S
gD (h + TpM)

(61)

A similar h dependence has been predicted by Callen
et al. , Chudnovsky, ' and Chudnovsky and Scrota.

Equation (58) agrees with Eq. (3.12) of Ref. 34 in the
limit T~0 with q =S if one ignores the term gD . The
authors of Ref. 34 call this state a "ferromagnet with
wandering axis": One has an induced uniform magneti-
zation and, in addition, fairly long-ranged correlations of
transverse magnetization. Similar correlations of smaller
amplitude exist also for the longitudinal magnetization.

Finally, we consider the region of Uery high fields
(h » JOS) and, specifically, deviations from the satura-
tion magnetization. We ignore in this limit the exchange
interactions. This leads with (16) to
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V. EFFECT OF COHERENT ANISOTROPY

with n, =(0,0, 1). In site-dependent MFT this adds to
the mean field (21) the term D, (n, M;)n, . This term
enters into the susceptibility (16) or (25) and into the
averages p, q, p, and q in the same way as the exter-
nal field. Equation (43b) has now to be replaced by

pS[h 0 ]:—H =pS
~

h+ TOM+D, (n, M)n,
~

(63)

We consider only the case where the field and the mag-
netization are parallel to the easy axis with

H =PS[h +M(T0+D, )] . (64)

One has at low temperatures, with cothH —H ' = 1
—H

and, from (15),

SMps=

T
h +M(TO+D, )

TM
h +M(TO+D, )

'

(65)

(66)

which generalizes (53). However, for D, &0 the trans-
verse susceptibility of an ideal ferromagnet no longer
diverges for Q =0 since it costs a finite energy in order
to rotate the spins out of the easy-axis directions. Hence
(66) has to be replaced by

T(h +D,M)
fip, =pi(h +D,M) —pi(0) =-

To[h +M(TO+D, }]

which leads to

h +DcM h

AM AM
(68)

with the Bloch-wall width g, =(A/D, )' of an ideal
ferromagnet. The correlation length g, =g, (19) or (26),
with a=2,3, now consists of three contributions. One
has

+h/AM, (69)

with the random-anisotropy term (40), the field term
h /AM, and the coherent anisotropy term g, . This
leads, instead of (58), to

—1/2
h

SD

and to the change of the longitudinal magnetization
[5M']D ——qi/2S. Similar results again have been de-
rived in Refs. 32 and 34.

Equation (70) has a simple interpretation: For

Amorphous magnets contain in many cases a certain
amount of coherent anisotropy due to internal strains,
magnetoelastic effects, etc. In the simplest case this an-
isotropy is unidirectional,

H, = ,'D,—g—(n,S; ) = —,'D, g—(S)

g, «gD the system is able to form Bloch walls. If, in
addition, the size of the magnetic domains is large com-
pared to gD, the system is very similar to an ideal fer-
romagnet with coherent anisotropy. The domain size it-
self depends on form and size of the sample. In the op-
posite limit g, »gD the fluctuations due to the random
anisotropy destroy the Bloch walls and therewith the
domain structure. In this sense sufficiently strong
coherent anisotropy can restore the ferromagnetic state.

However, the meaning of the correlation length gD
and the Bloch-wall thickness g, is rather different: In
the Bloch wall of an ideal ferromagnet the spins remain
perfectly correlated and rotate coherently, whereas ran-
dom anisotropy leads to fluctuations which destroy the
coherence over a distance gD.

VI. CONCLUSIONS

Our theory predicts the breakdown of long-range fer-
romagnetic order in spin systems with ferromagnetic ex-
change and random anisotropy, in agreement with the
results of many other authors. The magnetic state for
T & T, is characterized by strong ferromagnetic correla-
tions with the correlation length /=AD proportional to
D . One has fluctuations of the magnetization which
in zero field lead to a gradual misalignment of the spins.
In a finite field these fluctuations are superimposed by a
constant magnetization. They lead, in the neutron-
scattering form factor S~, Eq. (6), to an additional
Lorentzian-squared contribution qo which has been ob-
served in many amorphous alloys. This term van-
ishes above the critical temperature T, in zero field. In
a finite field and/or above T, the correlation length gD
has to be replaced by g=(g'D +/AM)', where the "fer-
romagnetic" contribution gFM for weak anisotropy can
be replaced by its value at D =0. The parameter g„M
diverges at T = T„whereas g and the susceptibility
remain finite at all temperatures. However, our theory,
which is based on a site-dependent mean-field approxi-
mation (or, more exactly, spherical approximation}, does
not hold in the critical region around T, .

Throughout the paper we consider only weak anisot-
ropy. In this case the susceptibility at T & T, differs
only slightly from that of an ideal ferromagnet. Below
T, the zero-field susceptibility for Q =0 becomes pro-
portional to A /D and has only the temperature
dependence of the exchange parameter A and the anisot-
ropy constant D. The Lorentzian and the Lorentzian-
squared terms in S& in this temperature region are deter-
mined by the correlation length gD -( A /D) . An addi-
tional field h » ASgD leads to gFMJ —h /AM (M is the
induced magnetization) and hence to a reduction of g.
This reduction is enforced by additional coherent anisot-
ropy which acts on the transverse correlation length g'~,

similar to a magnetic field. One has
+g, +h/AM, where g, is the thickness of a Bloch
wall of an ideal ferromagnet.

The spin structure of the RAM has some similarity
with that of a spin glass and similar properties indeed
have been observed in both types of systems, including
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similar critical exponents at the characteristic tempera-
ture and a de Almeida —Thouless (AT) line in the field-
temperature plane which is defined by the onset of ir-
reversibility effects. In the MFT of spin glasses the AT
line is derived either by introducing replicas or in dy-
namic theory. ' Both theories are based on the SK mod-
el and it is still a matter of debate whether or not a stat-
ic AT line persists in a model with short-range interac-
tions. A RAM with infinite-range exchange interactions
can be solved without invoking replicas. Hence one has
no solution for the order parameter, which is based on
replica symmetry breaking as in the case of spin glasses.
It remains an open question whether the observed AT
line is a dynamic effect or can only be derived in a
theory which goes beyond our approach.

Recently, an AT line has been derived in the RAM
(Refs. 17 and 52) and in ideal ferromagnets, both with
infinite-range ferromagnetic exchange interactions and
additional cubic (coherent) anisotropy. In both cases the
AT line is the consequence of symmetry breaking which
leads to a second-order phase transition and to the
change of the number of the order-parameter com-
ponents. In both cases this order parameter is the spon-
taneous magnetization M, . In a more realistic RAM the
order parameter presumably is the spin-glass parameter
q, Eq. (15), all components of which are nonzero below
T„even in zero field. Hence there is no obvious symme-
try breaking in the field-temperature plane and the ob-
served lines most likely can be explained only within a
dynamic theory.
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