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Tunneling and activated motion of a string across a potential barrier
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A string in a potential barrier provides a conventional model for dislocations in crystals,
charge-density waves in Peierls dielectrics, and the order-parameter phase in linear Josephson
junctions. The joint effects of quantum tunneling and thermal activation result in a finite lifetime
of the metastable states of the string. With exponential accuracy the decay rates for typical weak-

ly asymmetric potentials and a cubic potential are calculated in the full temperature range. To do
this, a new approach is proposed to calculate the decay rate in the crossover regions from the tun-
neling regime to that of activated tunneling and from the latter to the regime of thermal activa-
tion. The preexponential factor is calculated in the full temperature range except for a low-
temperature region, where it changes only by a factor close to unity. For two typical potentials
and a cubic potential the preexponential factors are plotted as functions of temperature. In the
high-temperature regime the Arrhenius law holds with a universal temperature dependence of the
preexponential factor, 8 o- T

I. INTRODUCTION

States of physical systems, separated from the neigh-
boring states by high potential barriers, decay via
thermal activation and quantum-mechanical tunneling
and may have very long lifetimes. At a finite tempera-
ture there is no principal difference between a metastable
state and the true stable state, and they can be con-
sidered on the same basis. Research on the decay rates
of metastable states was initiated by Kramers, ' who
developed a theory of the absolute rate of chemical reac-
tions based on the assumption that the thermal dissocia-
tion of a molecule is similar to the escape of a Brownian
particle from a deep potential well. Kramers's results
pertain, first, to the case of strong friction, when the de-
cay rate decreases with friction due to slowing down of
the particle motion, second, to the case of intermediate
friction, when the particle states in the initial minimum
are in thermal equilibrium and the decay rate does not
depend on friction, and, third, to the case of extremely
weak friction, when the particle distribution is depleted
due to escapes of particles across the barrier and the de-
cay rate is proportional to friction.

A great deal of work has been done on an extension of
Kramers's results and their generalizations to quantum-
mechanical systems and systems with many degrees of
freedom. Below we cite brieAy the major achievements
and recent trends in the field.

For the regime of intermediate to strong friction the
problem of the decay rate has been generalized in two
directions. Langer considered the activated decays of
classical systems with many degrees of freedom. Cal-
deira and Leggett investigated the effects of friction on
the tunneling decays at zero temperature. Tunneling
with strong friction at finite temperatures and quantum
effects in activated decays with intermediate to strong
friction ' have also been investigated.

In the regime of intermediate friction the friction
strength does not enter the problem explicitly, the only

role of dissipation is to establish thermal equilibrium be-
tween the system states in the initial potential well. At
zero temperature only quantum-mechanical tunneling is
possible. This mechanism for systems with macroscopi-
cal degrees of freedom has been considered by Lifshitz
and Kagan. The same procedure is responsible for the
phase transition in a phonon system, motion of a dislo-
cation in a crystal and charge-density waves in a Peierls
dielectric (Rice et al. '

), the decay of a metastable vacu-
um (Voloshin et al. "), and also the decay of metastable
states of the Josephson junction. For finite tempera-
tures the decay rate is enhanced by the thermal activa-
tion. ' At sufficiently high temperatures, the decay rate
obeys the Arrhenius law. ' The decay rates in this regime
for systems with many degrees of freedom with al-
lowance for quantum effects have been calculated by
Langer. ' The crossover from the thermal activation to
the regime of activation enhanced by tunneling has been
elucidated by AfBeck. '

In the weak-friction regime the distribution of parti-
cles in the initial potential well becomes a nonequilibri-
um one due to the escape of particles across the barrier.
The problem of the decay rate in this regime has been
exactly solved in the classical' and quantum-
mechanical' cases.

The present paper deals with the decay of a metasta-
ble state of a string lying in a deep potential minimum.
This model appears to be relevant to dislocations in a
crystal, charge-density waves in a Peierls dielectric, the
decays of metastable states of the linear Josephson junc-
tion, and the problem of a metastable vacuum. We as-
sume the initial distribution to be an equilibrium one,
which means that interaction with a thermal bath is
sufficiently strong to thermalize the string states, but has
only negligible effect on the dynamics of the string. Our
aim is to investigate, in detail, the temperature depen-
dence of the penetration coefficient of a string through a
potential barrier. We assume the problem to be a semi-
classical one and make use of the formalism developed
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by Langer' and Callan and Colemen. ' Then the solu-
tion of the problem proceeds in the following two stages.
First, one looks for the extremal trajectory and the clas-
sical action, the result being an exponential approxima-
tion for the decay rate. Second, a linearized problem
near the extremal trajectory is solved, which gives an ex-
pression for the preexponential factor.

Therefore, the present paper consists of two main
parts. In the first part of the paper the classical action is
calculated. To this end one has to find the extremal tra-
jectory for the string motion across the barrier. As the
string represents a continual object, its trajectory is
governed by a nonlinear partial differential equation sub-
ject to certain boundary conditions. This problem is too
complicated to be solved in a general case. However, it
simplifies greatly for potentials with nearly degenerate
minima, when the extremal trajectory describes a long
piece of the string going across the barrier into the
lower-lying minimum of the potential. In this situation
the tunneling of the string has a close similarity to the
problem of nucleation at a first-order phase transition,
when the small supercooling is caused by a small
difference of the specific free energies of the two phases.
Then the size of the critical nucleus is large compared to
the thickness of its walls, and a thin-wall approximation
is justified. Hence, we may take the inner structure of
the nucleus wall to be fixed and describe the nucleus
only by a spatial configuration of its boundary. A sys-
tematic development of this approach enables one to in-
corporate into the general scheme the effect of interac-
tion between the neighboring boundaries and calculate
the classical action in the whole temperature range. The
semiclassical approach is also applied for the calculation
of an enhancement of the decay rate under effect of a
high-frequency field. The result depends substantially on
the inner structure of the nucleus wall.

In the second part of the present paper, the preex-
ponential factor is calculated and a complete expression
for the decay rate is obtained. The linearized problem
remains rather complicated even in the limit of small su-
percooling, and its solution can be obtained only for tun-
neling at zero temperature' ' and in a high-
temperature regime, when the dependence on the string
coordinate and imaginary time can be factorized. For-
tunately, the values of the preexponential factor at the
two edges of the unattainable interval differ only by a
numerical factor 2(3' )/m=1. 103. We would conjec-
ture, therefore, that, at low temperatures, the preex-
ponential factor is practically constant. Then our results
will provide a full description of a rather nontrivial tem-
perature dependence of the preexponential factor. A
complete solution for the decay rate at suKciently high
temperatures is also obtained near the lability point,
where the depth of the potential well is small and the
shape of the barrier can be approximated by a cubic po-
tential ~

This expression has a sharp maximum at an energy,
determined by the equation

dS
dc

Interpretation of this result is quite simple: at the tem-
perature T the imaginary time interval for the subbarrier
motion of the string equals 1/T.

Therefore, in an exponential approximation one can
write the decay rate as

1/2 T
D =exp —J L [dy/dr, y]dr—1/2 T

with the string Lagrangian given by
2

I.= f dx —
p

1 By 1 By
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Here U(z) is a symmetric function of the order of a
unity with minima at z = +1. It is illustrated in Fig. 1

by the dashed line. The solid line shows the potential

V(z) = U(z) —Fz E. —

The constant shift of energy E provides a zero value

Vt

librium distribution of the string states, proportional to
the Cxibbs factor exp( —E/r), where E is the energy and T
is the temperature. At large temperatures the string
would shift to an adjacent minimum by activated motion
of certain segment of the string across the top of the bar-
rier. In a more general case, the quantum-mechanical
tunneling through the classically forbidden region con-
tributes substantially to the decays of the metastable
states. At a given energy the tunneling penetration
coefficient is exp[ —S(e)], S(c, ) being the action for the
sub-barrier motion. Combining the Gibbs factor and the
tunnel factor, one obtains the decay rate at the given en-
ergy

D(e)~exp[ —E/T —S(E)] .

II. EXPONENTIAL APPROXIMATION

Consider a string lying in a deep potential barrier.
Weak interaction with a thermal bath maintains an equi-

FIG. 1. Metastable potential V(z). The dashed line shows
the unbiased potential U(z).
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of the potential V(z) at the bottom of the initial (left-
hand side) well. The traditionally considered potentials
are

and

U(z)= —,'(1—z )

2 2

U(z)= —,
' cos (nz/2. ) .

The quantity U0 determines the scale of the height of
the potential barrier; the bias F lifts the degeneracy of
the potential minima. The solution of the classical equa-
tion of motion in the imaginary time y(x, r) is specified
by the condition, that ~=+1/2T are the turning points
of the string trajectory. In what follows we shall mea-
sure x, ~, and Tin units

xo ——a (~/Uo)'

ro ——a (p/Uo)'

1/ro ——a '( Uo/p)'

but retain their former notations. Then the decay rate is

D =exp( —A),
where

lows. We start with a solution at zero temperature,
which is circularly symmetric in the x~ plane. In this
case z =1 in a circle of a large radius R -F ', z = —1

in the outer region, and the thickness of the transition
region is of the order of unity. This solution describes a
circular nucleus with a thin wall. At T & T0-F the cir-
cular nucleus hits the boundary of the stripe of the
width 1/T in the x~ plane, and at T & T0 the nucleus is
bounded by two arcs of the initial circle, which intersect
at the points ~=1/2T and ~= —1/2T. The action A is
now a universal function of the ratio T/F, and penetra-
tion through the barrier proceeds via the activated tun-
neling. The curvature of the nucleus boundaries is con-
stant, because in the thin-wall approximation we neglect
an interaction between the boundaries. We have derived
a comparatively simple equation, which relates the cur-
vature of the boundary to the distance between the
neighboring boundaries. This approach is used to inves-
tigate in detail the crossover at a temperature T0 from
the pure tunneling regime to that of the activated tun-
neling. The high-temperature region T-F' && T0 is
also investigated. It is shown, that at T~ T, -F' the
string surmounts the barrier due to the classical activa-
tion processes. Within the exponential approximation
the enhancement of the decay rate under the effect of a
high-frequency field is calculated.

A. Tunneling at a zero temperature

+ U(z) Fz E— —(2)

and we introduce z =y/a and a semiclassical parameter
g =a'(~p)'")) 1.

By the order of magnitude the semiclassical action A
(in the exponent of D) is a ratio V/co, where co-I/ro
and V is proportional to the energy of a kink,
V —a (x Uo )

' . Variation of the action (2) gives an equa-
tion for the classical trajectory z (x, r),

Bz Bz —U'(z)+F=O .
Bv Bx

(3)

The trajectory z(x, r) should satisfy the periodic bound-
ary condition

z (x, I /2T) =z (x, —1/2T),

At T =0 the solution of Eq. (3) is given by a circularly
symmetric function, which satisfies trivially the bound-
ary condition (4). In polar coordinates, Eq. (3) is written
as

dz, 1dz—U'(z) = —— F, r =x —+r
r dr

This situation is very similar to the problem of the
critical nucleus at a first-order phase transition. The
condition F «1 corresponds to a small difference of the
specific free energies of two phases. Hence, the function
z(r) must describe a large nucleus with thin walls. Then
the problem can be solved stepwise: first, we find the
inner structure of the wall, and then we calculate the ra-
dius R of the nucleus. Neglecting the right-hand side of
(5), we obtain an equation

which is equivalent to d zo/dn —U'(zo)=0, n =r —R (6)

(4)

Thus, one encounters a quite complicated problem of
solution of a nonlinear partial differential equation in a
restricted region. A real progress is only possible for the
situation with nearly degenerate minima, in other words,
for F« 1. A systematic expansion in the small parame-
ter F enables one to determine the temperature depen-
dence of A in the whole temperature range. It is worth
mentioning that in this way some of the detailed features
of the solution structure in the x~ plane can be clarified.

The organization of the first half of the paper is as fol-

which describes the structure of the nucleus wall. The
right-hand side of (5) will be used below to calculate the
radius R. To be specific, we take the line z(x, r) =0 as a
boundary of the nucleus. The wall structure is deter-
mined by the first integral of (6),

( dz0 ldn ) =2 U(zo ) .

Dependence zo(r) is shown schematically in Fig. 2.
To find the nucleus radius we multiply Eq. (5) by

dzo/dr and integrate over r within the interval (0, oo).
Then the contribution of the left-hand side of (5)
vanishes, while on the right-hand side one can substitute
R for ~. The result is
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ZQ T0 ——F/2a,

this line hits the boundary of the circular nucleus and at
higher temperatures the circular solution is incorrect.
In this situation the string surmounts the barrier due to
both tunneling and activation mechanisms.

To calculate 3 (T,F) we shall exploit below a thin-
wall approximation. The profile of z along a normal to
the boundary is determined by an implicit relation

n (z)= f dy [2U(y)]
0

which follows from (7). Performing integration over n in
the action (2) we arrive to a functional

2 =2g (a I —FS), (12)

FIG. 2. Radial dependence of zo at zero temperature.

R =a/F,
where a is a number of the order of unity,

a = —,
' f dx (dzo /dx ) = f dz [2U (z) ] '

QO 0

(8)

Within the same approximation the action (2) is given
b 11 16 17

3 =2~a g/F . (10)

In contrast to the tunneling of a particle, the barrier
penetration by a string is a direct consequence of the
fact that the final minimum of the potential is shifted
down with respect to the initial one (see Fig. 1). The
point is that crossing of the barrier creates two kinks
with an energy of the order of unity, which must be
compensated by an energy gain RF-1 from the replace-
ment of a piece of the string of the length 2R into the
lower minimum.

B. Activated tunneling regime

It has been shown that in the limit of a low tempera-
ture the nucleus is represented by a circle with a radius
R. The boundary condition (4) does not afFect the nu-
cleus shape as long as the boundary line ~=1/2T is far
from the circle. At a temperature

2

A(T, F)= sin
F

2aT

F
2aT

1—
I.

2 1/2F
2aT

(14)

The two arcs, representing the nucleus boundary, may
be thought of as trajectories of a kink and an antikink,
formed initially by thermal processes at ~=1/2T but
then separated by quantum tunneling. This interpreta-
tion is motivated by the fact that the curvature of the
nucleus boundary and its internal structure do not de-
pend on temperature.

In the limiting cases we get

which depends only on the circumference I and area S of
the nucleus (see Fig. 3). If the nucleus boundary is
determined by a function x =x(r), the action can be
rewritten as"' '

2 =4g f drIa[1+(dx/dr) ]'~ Fx I . —(13)—1/2 T

The condition of extremality of the action (13) shows,
that, locally, the nucleus boundary is still an arc of the
initial circle of the radius R =a/F. This arc is normal
to the x axis at ~=0, whereas its full height equals 1/T
(see Fig. 3). These conditions determine the arc length.
The extremal value of the action (13) is achieved at the
minimal area of the nucleus, when two symmetric arcs
intersect at ~=+1/2T. This gives

A (T,F)= t

3/2
2ma g 8(2'~ ) F

F 3~ 2aT
F

1 — ((1

4ag
T

F2
) F((T

6aT
(16)

where the first expression gives a small correction to the
tunneling probability from the activated tunneling pro-
cesses. On the other hand, the leading term of the
second expression corresponds to activation, while a
small correction comes from the tunneling processes.

The relations (10) and (14) cover the whole tempera-
ture range, their matching point being T0=F/2a. The
thin-wall approximation implies the small curvature of
the nucleus boundary, hence it becomes inadequate near
the kink of the boundary (see Fig. 3). The neighborhood
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also be used in the high temperature regime, when the
nucleus walls get so close that their interaction becomes
substantial and the tunneling correction differs from that
given by (16}.

C. Interaction of the nucleus walls

X

FIG. 3. The nucleus boundary x(~), defined by the equation
z (x, ~) =0, in the regime of activated tunneling.

of the kink brings a comparatively small contribution
into the action, and Eqs. (10) and (14) are correct at a
certain distance from T = To. The calculation of the ac-
tion in a close neighborhood of this point requires a
more sophisticated treatment of the problem of the nu-
cleus shape. The anticipated result is a formula for the
action A (T,F), which matches smoothly onto Eqs. (10)
and (15) away from T= TO. A similar approach may

In this section we develop a systematic approach to
the problem of the nucleus shape, assuming that super-
cooling of the initial state of the string is small, F «1.
In this case the nucleus wall is thin compared to an
overall nucleus size, and the nucleus is described by the
position of its boundary, defined as a solution of the
equation z(x, 7)=0. Then our problem is divided into
two: (1) calculation of the inner structure of the wall in
a region close to the boundary; (2) derivation and solu-
tion of an equation for x(r), the position of the bound-
ary.

The nucleus boundary may be specified by the radius
of its curvature R (P), with P being an angle between the
normal to the boundary and the ~ axis. This angle
parametrizes the position of a point on the boundary;
displacement normal to the boundary will be denoted by
n Afte.r the transformation of Eq. (3) to coordinates
(n, P), one obtains

a'z 1 Bz 1 8 z+ +
Bn2 R +n Bn (R +n)2 BP2

1 dR Bz —U'(z)+F =0 .
(R +n)

(17)

sponds to a vanishing coefficient of the growing ex-
ponent. The function f satisfies a linear equation

This equation contains small parameters F and 1/R.
Neglecting these parameters, the solution of Eq. (17) is
given by a quadrature of Eq. (7). In the next approxima-
tion z =zo+z&, and a small correction z&, linear in F
and 1/R, is governed by an equation

a' - = — a"—U "(zo )z i ———R ' F. —
Qn2 Bn

(18)

We are looking for a solution of (18), which is finite
inside the nucleus and grows exponentially in the outer
region. Taking z = —1+g and solving Eq. (18), at
n &&1 one gets asymptotically

1 a
Pl' R (P)

Fexp(yn )+P exp( —yn ), (19)—
where the second term comes from zo(n). The parame-
ters a has been introduced above,

with boundary conditions (g and By/Bn at the nucleus
boundary, n =0} specified by R and F, as is clear from
(19).

The boundary condition (4) will be satisfied trivially, if
we continue z(x, ~) across the line 7.=1/2T by a mirror
refiection against this line, z(x, r)=z(x, I /T r). Then-
the shape of the nucleus is selected by the following con-
dition: the growing and decaying terms of (19) near one
boundary match the corresponding terms at the second
boundary. A practically important case is that of nearly
parallel boundaries. In particular, at high temperatures,
T &&F, the nucleus boundaries are nearly parallel to the
T axis. Neglecting the corrections of the order of

=exp dz
1 y

[2U(z)]' (1—z)
x (r)(dx/dr) «1, (20)

=)[ U( }lI'"

With T going down to zero, the boundary ~=1/2T,
where condition (4) should be met, goes away to infinity
and the nucleus radius is given by Eq. (8), which corre-

one can substitute the projection of the normal on the x
axis for the distance along the normal from the bound-
ary to the w axis. Then the matching of the growing and
decaying exponents similar to (19) gives an equation for
x(r),
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dx F Py+—= exp( —2yx),d~r a a (21)

where taking into account Eq. (20) we have substituted
—d x/d~ for R '. The boundary conditions for Eq.
(21) are

=0, 1/2T
=0 ~

Equation (21) holds in the full interval of r from zero
to 1/2T. With account of Eq. (20), we shall write the
validity condition of (21) as an inequality

T ~~F [In(1/F) ]'~ (22)

For large distances between the boundaries, Eq. (21)
reproduces the nucleus boundary of a constant curvature
F/a. This equation also has a solution with parallel
boundaries, separated by a distance (a)

11 py
II 2y F (23)

With increasing temperature, x(0) increases and
x(l/2T) decreases, their convergence point being x~~.
At temperatures T « [F/In( I /F) ]

' ~ one can neglect
the right-hand side of Eq (21),. obtaining

F 1x =
2a 4T~ xll «x (24)

yF 1
)& cosh

2aT 2T
x «x(0) .

(25)

Expressions (24) and (25) have a common interval of
validity, as it follows from the inequality x~~ &&x(0).
From (24) and (25) one obtains

which is just an initial part of a circle. For sufficiently
close boundaries, one can neglect the term F/a, then the
required solution of (21) is

T

1
1

2TP(ay )'
r'" F

0

(b)

FIG. 4. Interacting nucleus boundaries: (a) at T close to To',

(b) at T close to T, .

In a special case of temperatures close to Tp, the
noninteracting boundaries intersect at an angle close to
m. [see Fig. 4(a)]. Then the consideration given above is
applicable again, and the equation for x(r) is similar to
(21):

x(0)=
SaT

dr F Py 1+—= — exp 2y
dx 2T

(26)

1 1 2TP(ay )'
x =—ln

2T y F

It is evident from the given solutions, that the nucleus
boundary has no kinks and is directed normally to the
lines &=0 and ~=1/2T. The boundary consists of two
smooth curves [see Fig. 4(b)]. The distance between the
curves, 2x (1/2T), is large compared to unity due to re-
striction (22).

Thus we have shown that the approach given above
proves to be useful in the calculations of the nucleus
shape, if the noninteracting boundaries of a nucleus con-
verge at a sufficiently small angle.

This equation is correct near the top of the nucleus
[see Fig. 4(a)], and its solution describes a curve x (r),
which goes over into an arc of a circle with ~ far way
from the point r= 1/2T. Equation (26) is valid in an in-
terval from zero temperature up to that slightly above
Tp, when 0& T—Tp «Tp.

At still larger temperatures, the topology of the nu-
cleus changes from the one shown in Fig. 4(a) to that
shown in Fig. 4(b). In the major part of this tempera-
ture interval, the distance between the nucleus boun-
daries at the point ~= 1/2 T is of the order of unity and
the approach developed above holds no longer. It will
be shown below, that, at temperature T, -F', the in-
teraction between the nucleus boundaries turns out again
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to be weak. This region can. be investigated with the use
of an equation similar to (26).

D. Crossover from tunneling to activated tunneling
at temperatures close to To

If interaction between the nucleus boundaries is
neglected, the action A ( T, F) would be given by different
functions at T & To and at T & To [see Eqs. (10) and
(15)]. However, the singularity of A (T,F) at T=TO is
smeared out with boundary interactions taken into ac-
count.

The energy integral of Eq. (26) is

pressions (10), (15), and (28) for the action A (T,F). As
the temperature rises, the nucleus size keeps diminishing
and a relative contribution from the boundary interac-
tion increases in a full analogy to the region around T0.
Then the nucleus shape is described by Eqs. (24) and
(25). The Lagrangian for the equation of motion (21)
can be derived as previously, which results in the action

1/2 r 1 dx3 =8og dw 1+—
0 2

'y
exp( —2yx )

2A

1 d~
2 dx

2
rF P') 1+ exp 2y 1—2' 2T

(27)
ln

F eP)
2(xy F

At some distance from r= 1/2T Eq. (27) describes an
unperturbed boundary. Contribution from the distorted
part of a boundary into the action can be easily recon-
structed by writing the Lagrangian, corresponding to the
energy (27), in a form, that goes over into the integrand
of (13) (with substitution of r for x and vice versa) for r
sufficiently far from 1/2T. The required Lagrangian is

2
1 d~ ~F

L =4ug
2 dx Q

4ag 4g aF T
Tc

(29)

where the function N(q) is determined by the implicit re-
lations

The constant term in the Lagrangian provides a zero
value of the minimal potential energy. The final result
for the action is

' 1/2

2 1

2(x
exp 2y 2T +

x2
&P(q) = — dx [Q —x —exp( —x —1)]'~

2'"q

Making use of Eq. (27), we

22m.a g 4g aF
F y y

obtain
1/2

4 2

X [T—To(F)]

21/2 x2
dx [Q —x —exp( —x —1)]

and x1 and x2 are the roots of the equation

Q —x —exp( —x —1)=0 .

To(F) = F
2Q

F2 P2y 2

ln
4a'y F

where To(F) differs from To by a small correction,

(28)
The critical temperature is defined as

1/2
1 yFT.=—

'TT 2'

Asymptotes of the function @(q) are given by
The function P is defined by an integral

X(p) = I dx I [x —exp(p —x)]'"e(x
0

1

+(q) = 6(2'") q

3

with asymptotics

—(~' /2)exp(p), p ~—ao

3ZZ—3p, p~(x)

p =x1+lnx1 3a2' (1 —q), (1—q) «1 .

The first asymptote matches Eq. (16) in an interval
T0 «T «T, . Close to T„when T, —T «T„and for
all temperatures above T, we obtain

Thus, the expression (28) matches Eq. (15) for temper-
atures above To and Eq. (10) at low temperatures. The
width of the crossover region is

A (T,F)=
T

24~g aF
y 2y

1/2 '2

1 — e(T, —T),T
C

To(F)
I

—F'

E. Crossover from activated tunneling to pure activation

Above we have followed the crossover from pure tun-
neling to the activated-tunneling regime and derived ex-

which shows, that at T & T, the string crosses the bar-
rier via classical activation processes.

To summarize, the results of calculations in the ex-
ponential approximation are given by Eqs. (14), (28), and
(29), which determine the action A (T,F) in the whole
temperature range.
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F. Tunneling under eÃect of a high-frequency field

2i 9F2x 2

3F 8
——(1+2k) 1+ 9F x

2 8

(31)

where k =0, 1,2, . . . . Integration over t in (30) can be
performed by residues. In the limit A&&F, the integral
is dominated by x —(QF) '~ which justifies the expan-
sion (31). Thus, summation over k gives the final expres-
sion

A )
——nF) 3AF

' 1/2
20

P 3F
~A

sin
2

(32)

Two features of this result are worth mentioning. The
field Fi is enhanced by a large factor exp(20/F), be-
cause in crossing the barrier the string spends, in the
classically forbidden region, an imaginary time propor-
tional to 1/F, which greatly surpasses the period of the
field oscillations 2~/A. The resonance denominator
comes from the string motion in the classically allowed
region, where the frequency of small oscillations in the
adopted units equals 2.

The important point is that the action Ai depends
crucially on the inner structure of the nucleus wall, since
the integral (30) is dominated by the singularities of the
function zp(x, t) in the complex t plane. The exponential
factor in (32) survives the reduction of the problem to a
one-dimensional one, with the nucleus boundary x (r)
governed by the Lagrangian (13), but the resonance
denominator of Eq. (32) cannot be reproduced by this
simplified consideration. A thin-wall approach to solu-

Consider a situation, when besides the static field F
there is also a small alternating field F,cos(Qt). The
temperature will be taken to be zero. As above, we con-
sider the semiclassical approximation and represent the
decay rate in the form

D =exp[ —3 + A icos(Qt )],
where the correction 3

&
to the action has to be small

compared to 3, but large compared to unity. To calcu-
late 3

&
we turn to the approach developed earlier, '

which gives

3 i
——,'iF, f—dtf dx zp(x t)cos(Qt+P),

C 00

where zp is a solution of Eq. (7) with n =(x —r )'~
—a/F. The contour C at zero temperature goes along
the imaginary t axis and closes in a remote part of the
left half-plane. The integral along the contour C is finite
in spite of the divergence of the integral along the imagi-
nary axis. A constant phase shift P in (30) is to be
chosen to provide a maximum value of 3 &.

Consider the potential U(z) = —,'(1 —z ), when

z p(x, t)= —tanh[(x t )'~ —2—F/3] .

As a function of t this solution has poles at t =tk,
which at small x are given by

tion of a nonstationary problem has been discussed by
Maki '

III. THE PREEXPGNENTIAL FACTOR

where L is the string length.
At a zero temperature, in the limit F && I, the preex-

ponential factor is already known. ' ' In our notations

UOF
(33)

Computation of the preexponential factor B represents
a more complicated problem than that of the imaginary
action 3, so we turn to a general approach developed by
Langer' and Callan and Coleman. ' These authors have
shown that the preexponential factor can be expressed in
terms of the spectrum of the linear excitations near the
extremal solution. At a zero temperature this solution is
circularly symmetric in the x~ plane and comparatively
simple calculations result in (33). As long as T & Tp, the
corrections to this result are small. A substantial change
of the preexponential factor begins with the distortion of
the extremal solution at temperatures above To. Since
To F and T, —F', one might expect, that 8 changes
drastically in this interval of temperatures, similar to 3,
which changes by a factor F '

Unfortunately, the direct calculation of 8 in the inter-
val (Tp, T, ) appears to be impossible due to a complicat-
ed shape of the extremal solution (see Fig. 3). However,
this situation simplifies drastically at temperatures close
to and above T„when the extremal trajectory is a func-
tion of a single variable, x. In this case the spectrum of
excitations and the preexponential factor 8 can be calcu-
lated with the use of factorization of the dependence on
the variables x and ~. The important point is that the
value of 8 at T„derived in this way, differs from the
value of B at a zero temperature only by a factor
2(3'~z)/m=1. 103, in contrast to what one might expect.
Therefore, we conjecture that B is practically constant in
the interval (O, T, ). Then the results derived below give a
complete solution for B (T) and consequently for the de-
cay rate in the whole range of temperatures.

A. A general expression for the preexponential factor

For temperature close and above T, the decay rate in
the conventional notations is given by'

D =2m ImZ
ReZ

(34)

where Z is the partition function. We make use of the
standard approach to calculate the functional integral
for Z. To this end we represent the function z(x, r) as a

The decay rate of the metastable state of a string has
been calculated above in the exponential approximation.
To complete the solution we have to calculate the preex-
ponential factor 8 in the following equation for the de-
cay rate:

D—=B exp( —A),
L
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not shift the zero-energy level, but splits from it a level
with a negative energy of the order of F. In a similar
way the other levels are split. Denote the eigenvalues of
the operator in the left-hand side of (36) by S, where
m =0, 1,2, . . . (see Fig. 5), Sp (0 Si ——0, and S ~0 for
m &2.

For the eigenvalues of (36) we obtain

Ap(n)=(2m) (n T T, —),
, (n, ) =(2m Tn)

(n)=(2mTn) +S, m =2, . . . , M .

FIG. 5. Potential energy and the bound-state energy levels
for the linearized problem.

z(x, r)=zp(x)+T' g C „z „(x)exp(2rriTrn) .
m, n

(35)

Then the quadratic contribution to the action takes
the form

53=—gA, (n)C „,
m, n

where A, (n) are the eigenvalues of the linearized equa-
tion,

—d z „/dx + U"(zp(x))z „—[A, (n) —(2mTn)']z

(36)

The potential U"(zp(x)) is pictured schematically in
Fig. 5. It consists of the two potential wells with a
profile not depending of F as long as F ~&1. The dis-
tance between the wells is logarithmically large, as
ln(1/F), and determined by (23). For the solitary well
there always exists a solution with a zero energy, which
corresponds to the shift mode, and, probably, several
higher levels. The interaction between the wells does

I

sum of the saddle-point solution zp(x), which obeys the
equation

d zp/dx —U'(zp)+F =0,
and a small correction to it, which can be written as an
expansion in the periodic functions of z and the normal-
ized eigenfunctions z „(x), where L is the length of the string, xp [z I is a position of

the minimum of the functional V(x'
~

z ), where
L/2 1/2 T 2V(x'

~

z)= f dx f dr[z(x, r) —zp(x —x')]
—L /2 —1/2T

=0.

Expanding in x' and making use of Eq. (35) and
definition of a [see Eq. (9)], one obtains

' 1/2
dV 4ax' ga
dx T T C1o .

By virtue of an identity

d 9 d95(x' —xpIz j )= 5
dX dX

one can integrate easily over C1o, since the argument of
5 function in (37) is linear in Cip. Hence, the integral
over x' gives the length of the string L. The functional
integration in terms of the variables C „should be per-
formed with the use of the definition

For the continuous spectrum

A~(n)=(2~Tn) +y +q

Thus, at the saddle point there is a negative eigenvalue
Ap(0), the zero eigenvalue A, &(0) corresponds to the shift
mode, and the others are positive.

For a suKciently long string the decay probability per
unit length of the string is a well-defined quantity. It is
convenient to introduce, explicitly, integration over the
string length, ' ' writing the functional integral for
ImZ in the form

L/2
ImZ =Im f dx' f Dz exp( —3 tz] )5(x' —xp Iz [ ),—L/2

(37)

ImZ =L a
&T

1/2
dCoo g dC „gf,z ex2p ——

~

Ap(0)
~

Cpp gf, exp ——
A, (n)C2„

(2m )'" )
j/2 2 foal

where the factors with indices (0,0) and (1,0) are omitted, and integration over Cpp goes along a half-axis according to
the rule of analytical continuation onto the negative values of Ap(0).

We have expressed ImZ in terms of the eigenvalues I, (n). The functional integral for the ReZ is dominated by a
neighborhood of the minimum of the action, where all the eigenvalues of the linearized problem are positive. Substi-
tuting the results for ImZ and ReZ into (34), we arrive at a final formula for the decay rate per unit length,
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D a
UoL ' ~Tg

1/2

a2
det

8~2

a2 +f

82 a2
det — — + U (zo(x))

BI' Bx

1/2

exp( —/I ), (38)

with det' omits the zero eigenvalue.
This expression is applicable above but not too close to T„since the eigenvalue Ao(1) vanishes with T going to T, .

In Sec. III B we shall calculate the formal expression (38); the vicinity of T, will be considered separately.

as

B. The decay rate at temperatures above T,

To calculate the ratio of the determinants in (38), we write the eigenvalues of the operator in the nominator of (38)

pk ( n ) = ( 2' Tn ) +y +k

Then the products over n are calculated easily, and the result is

1/2
D aT
L 2mg

Tc 4ag b

sin(AT, /T) T Texp — +—

M g 1/2

H 1 —exp
m =2 T k

1 —exp
( 2+ k 2)1/2

T
1 —exp

—1

( 2+ 2)1/2

T

where 6 is defined by

b= ——,
' g ~'"+-,' g [(y'+km)]'" —[(y'+e1v)'"] .

m =2

( y2+ k 2)1/2
1 —exp T

(y2+ 2)1/2
1 —exp T

q

The discrete spectra of kz and q& are determined by the boundary conditions at the ends of the string. Defining
the density of states as p(k)=dN/dk, one can write

1

=exp J dk[po(k) —p(k)]ln 1 —exp
0

(y2+ k 2)1/2

T

where p(k) is the density of states of the continuous spectrum of equation

—d tt/dx + U"(zo(x))p=k p,
while po(k) corresponds to the substitution of U"(zo(x)) by its limiting value y .

Since Eq. (36) just has M +1 bound-state eigenvalues, we must have

J dk[po(k) —p(k)]=M+1 .

In a similar way we get

b= —
—,
' g S'/ + —,

' j dk[po(k) —p(k)](y +k')'
m =2 0

Finally we obtain

(39)

1/2
D aT
L 2~g

Tc 4ag b

sin(rrT, /T ) T Texp — +—

M
X + 1 —exp

m =2

g 1/2
m

T
(y +k2)'

exp dk po k —p k ln 1 —exp
0 T
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The dependence on the potential asymmetry F enters
this expression only through the parameter T, . For a
vanishing T, the decay rate obeys the Arhennius law in
the whole temperature range. In this case the preex-
ponential factor changes on the temperature scale T-1
(in the conventional units T-fm). At low temperatures
B ~ T and at high temperatures B ~ T ' . Hence, in
a general case, the preexponential factor has a maximum
at T-1. When T, is small but finite, the preexponential
factor B also has a minimum at T=1.710 T„where
B= 0. 541Uo(a /g)' T, . The maximal value of B is of
the order of Uog' and surpasses its minimal value by a
factor T, . The dependence B(T) for typical poten-
tials U(z) will be calculated later.

C. The decay rate at temperature close to T,

Equation (40) shows that the preexponential factor
tends to infinity when T tends to T, . This divergence is
caused by the vanishing of the eigenvalue A,o(1) at
T=T, . Hence, the quadratic terms dominate no longer
in the action in a proximity of T„and one should retain
the cubic and quartic terms in the expansion of the ac-
tion in C01. Integration with respect to all other C „'s
results in the following expression:

—=4UoT, (2magT, )
/ exp — +-D 3 1 /2 4ag b

dC01 dCo —1

X )1/2 (2 )1/2

)& exp 2~'g( T' T—,') I
Coi

I

'—

~gT y
I Coi I

'

—=4(3' )—Uo T, exp — +—

2vr(6agT, )'/
XK

T.1—
T (41)

where

2E(x)=, f dy exp( —y )

The typical scale of the temperature variations in (41),

I
T, —T

I

—(T, /g)'

is much smaller than T„ therefore, we have substituted
T, for T elsewhere. This assumption holds when
gT, »1. Hence, our consideration is justified for F in
an interval g «F «1. The restriction of F from
below relates to the criterion of the semiclassical approx-
imation, which implies that contributions to the action
should be large compared to the Planck constant. Equa-
tions (40) and (41) match in a region

(gT, )
' '«(T —T, )/T, «1 .

At temperatures well below T, the preexponential fac-
tor becomes a constant, B =2(3' )vr UoF, which sur-
passes the value of B at a zero temperature by a factor
2(3'/ )/n =1.103 only. Hence, we conjecture that in the
interval (0,T, ), the preexponential factor is weakly
dependent on temperature. The level of this plateau
exceeds above the determined minimal value of B by a
factor F' g' . The ratio of the plateau value of B to
its maximal value at T-1 is of the order Fg' and in
the frame of our approach can be large as well as small
compared to unity.

For temperatures

(gT, ) '"«
l

l —T/T,
I
«1

Performing the remained integrations, we arrive at a
final result

Eqs. (40) and (41) can be substantially simplified with the
results

D 40.g b—= Uoexp — +—I. T T

1/2
2( 3' )F 24mg aF

exp
7T r . 2y.

' 1/4 ' —1

1 r3F3 1—
27T 2cog

T& Tc

T( Tc

For still higher temperatures

D—= UoexpI

T QT
7T 27Tg

+—X
a

2&g T

1/2

T ((T((1

exp —,
' f dk[po(k) —p(k) jln(y +k )

m.(S2 . S~ )'
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~/2 -1/2
Tc g

I

I

and, therefore, should be cut ofF at k of the order of in-
verse lattice spacing or some other fundamental length.
Experimentally, only combination 4ag —b makes sense,
which manifests itself as the activation energy.

D. Results for typical potentials

l

Tc

FIG. 6. Schematic temperature dependence of the preex-
ponential factor.

In a broad interval of temperatures, the string motion
across a barrier is either crucially or at least substantial-
ly dependent on the quantum e6'ects. To make this
point quite clear, we shall recall that in the conventional
system of units the Planck constant enters our parame-
ters in the following way:

Up~1/A, T~1/A, g ~1/A .

Hence, the surmounting of a barrier by a string proceeds
in a purely classical manner only in the limit of high
temperatures. The dependence of the preexponential
factor B on temperature is shown schematically in Fig.
6.

It should be pointed out that the integral for a correc-
tion b to the activation energy is divergent at large k,

The general expression for D derived above depends
on parameters a and y, eigenvalues S„,and the variation
of the density of states po(k) —p(k). This result can be
represented in a more transparent form

Up mT, /T 4' b
P( T)expL '~2 sin(n T, /T) T T

where the factor, dependent on the ratio (T/T, ), is iden-
tical to that for the one-particle decay rate. ' For
T&)T„ this factor tends to unity and the temperature
dependence of the preexponential factor is determined
by a function P(T), which changes within the tempera-
ture scale T-1. We shall consider two typical poten-
tials.

~. U(z)=-,'(&-z')'

In this case a= —', , y=2, M =3, and S2 ——S3 ——3 (the
energy splitting S3 —S2 is of the order of F (&1 and can
be well neglected for T- I),

4 1 2
Pp —P= 2+2 4+/ 2

Thus, we obtain

' 3/2
1 T

P(T) =
31/2

L

1 —exp
31/2

—2

exp — dk
0

1 2+ ln 1 —exp1+k' 4+@'
(4+k 2)1/2

T (42)

with asymptotes

3/2
1 TB(T)=

P(T) =
77 7r T

T))1 .

2. U(z) =
2 cos (7Tz /2)

In this case a =2/~, y = 7T./2, M = 1,

2
PP P —

2/4

and we obtain

T3/2 dkP(T) = exp 2 ln 1 —exp
7T2/4+ k'

(~'/4+ k ')'"
T

(43)
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0.25, where

Up ——Up(9/2C)(F, F)—

0.125 0.5

Introducing new scales of coordinate and time and in-
verse temperature

xp ——a (21'/CUp )' (F, F)—', ip=x p(p/ir )'

we can write the action A as

2 '2

T 20
+2z (1—z) (44)

FIG. 7. The preexponential factors P(T) for two typical po-
tentials: (1) U(z) = —,'(1—z ); {2) U{z)= 2

cos (mz/2).

with asymptotes

T3/2
p(T) =

~2 '

P(T)=T ', T»1 .

Plots of the functions p(T) are given in Fig. 7. Their
common feature is a rapid increase at T-1 and a flat
maximum at a comparatively large temperature
T-10—20, followed by a rather slow decay.

E. Motion of a string at a critical bias

Above we have considered tunneling and activation
for small linear bias of an originally symmetric potential
F «1. An analytical solution can also be obtained in
another special case of F close to the critical value of F„
which corresponds to the vanishing of the barrier. Then
the shape of a barrier is described by a cubic potential,
obtained from a general expression

where the semiclassical parameter

g=a (Irp)' (9/C )(F, F)—
should exceed greatly unit.

The Lagrangian for the action (44) does not contain
small parameters. Therefore, we restrict ourselves to the
case of sufficiently high temperatures, T & T, (T, will be
calculated below). The extremal trajectory depends only
on x and obeys an equation

2
dzp

2 dx
=2zp(1 —zp),

with a solution

zp(x)=1/cosh (x) .

The equation, similar to (36), can be written as

—d z „/dx +[4—12zp(x)]z „=[A, (n) —(2rrnT) ]z „.
(45)

The critical temperature T, is determined by the van-
ishing condition of the eigenvalue A,p(1),

Up V(y/a)= Up[U(y/a) Fy/a E]— — T, =5' /277 . (46)

by expanding it out near the inflection point y„deter-
mined by the equation

U"(y, /a ) =0 .

The refiectionless potential of Eq. (45) has three
discrete levels, So ———5, S] ——0, and S2 ——3. Variation of
the density of states is given by

The critical value of the bias F is given by the first
derivative of the potential U(y/a) at this point,

F, = U'(y, /a ) .

Pp(k) —P(k) =—,+,+2 1 2

1+k' 4+k' 9+k' (47)

We introduce a new parameter C by a relation

C = —,
'

~

U"'(y, /a )
~

Substituting

(y —y, )/a =C '(F, F)'~ (3z —1)—
reduces the approximate potential to a standard form

Up V(y/a)=2Upz (1—z),

D Uo Tf exp
C

16g b

15T T

where b is defined by (39),

T T, »(T, /g)' '—
Substitution of (46) and (47) along with M =2, a= —,', ,

and y =2 into Eq. (40) gives the final result for the decay
rate,
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(
5 )1/4 1/2

12»/22' sin(7r/x) 1 —exp[ —2'( —', ) /x]

&& exp — dk
7T p

1 2
2+ 2+1+k 4+k

3
ln 1 —exp9+k'

1/2 '

2~ 4+k'
x 5

The function f (T/T, ) is plotted in Fig. 8. In the lim-
iting cases

decay rate has different functional forms in different
temperature ranges,

f (x) ~(x —1) ', x —1&&1 .

8(51/4)f(x)=, , x ))I .

The critical temperature T, can be rewritten in the in-
itial notations,

T(TQ-F7TCXg

TQ

2og &
Tp Tp

A = . sin ' + 1—
Tp T T

2 1/2
Q

1
Tc

2&a

5CUQ

2p

1/2

(F F)1/4

T) Tc

Tp (T (T

We have investigated the string motion in a cubic po-
tential, which provides a conventional model for the
dislocation motion at stress close to the Peierls stress.
Our results agree with those obtained earlier in classi-
cal and quantum regimes. Comparison of Fig. 8 with
Fig. 7 shows that slow temperature dependence of the
preexponential factor B is a common feature of all inves-
tigated potentials.

IV. CONCLUSION

The problem of a string crossing a potential barrier is
more complicated than the corresponding one-particle
problem, because the extremal trajectory obeys a partial
differential equation. The situation simplifies for poten-
tials with nearly degenerate minima, when the size of the
nucleus is much larger than its wall. Making use of a
small parameter F «1 (F describes a linear bias of an
originally symmetric potential), we have calculated the
decay rate in an exponential approximation in the full
temperature range. The action 3 in the exponent of the

0.3—

We have developed a novel approach to calculate A in
the crossover regions close to Tp and T, .

The preexponential factor B depends weakly on tem-
perature up to T = T„when it exhibits a steep decrease.
With a further rise of temperature the preexponential
factor increases, reaches a Aat maximum and then de-
cays rather slowly, tending to an asymptotics B ~ T
This high-temperature behavior of the preexponential
factor is universal and does not depend on the particular
form of the metastable potential. The Arhennius law for
a string has the form

D ~ T exp( Eb/T)—

and differs from the one-particle case, when the preex-
ponential factor does not depend on temperature. '

No effects of dissipation manifest themselves in our
considerations. Therefore, the results obtained hold in
an intermediate range of dissipation when the friction
strength g, is small compared to the typical frequency
~p ', but the energy loss per an oscillation is large com-
pared to temperature, gg »T. These inequalities define
an interval of the friction strength, where our results are
applicable,

0.2— 1 »'g&p)& T&p/g

O. f—

I

I

0 I

20

FICx. 8. Temperature dependence of the preexponential fac-
tor for a cubic potential.

In the overdamped regime the decay rate of a metasta-
ble state of a string has been calculated by Buttiker and
Landauer in the classical case (see also Ref. 26), and by
Hida and Eckern in the quantum case, but with the use
of a variational procedure. In the underdamped regime
the motion of a string in the classically allowed region
becomes relevant, and one has to derive and solve either
the Fokker-Planck equation, or an equation for the
Wigner transform of the quantum density matrix. In
this regime, bounces of the string back from the final
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into the initial well become probable. These effects have
been investigated for the Brownian particle in a double-
well potential' and in a tilted periodic potential. The
quantum e6'ects for a particle in a tilted periodic poten-

tial have also been considered. It seems, however, that
a much more elaborate approach is required to extend
these results to the problem of a string in a tilted period-
ic potential.
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