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Precise specific-heat measurements were made on low-density samples of bcc He in the vicinity
of the various magnetic ordering transitions. The data obtained for magnetic fields of 0, 6, and 10
kOe span the temperature range 0.6—10 mK. At H =0, the data exhibit an extremely sharp peak
indicative of a first-order transition. Below Tz the specific heat is proportional to T and yields a
spin-wave velocity (v,p;„) in excellent agreement with a previous determination. Above Tz, the re-
sults show no anomalous satellite peaks as seen in other experiments and as suggested by theoreti-
cal calculations. Within the precision of the measurements, the effect of changing the density is
only to rescale the temperature. The data obtained at 6 and 10 kOe, when plotted as a function of
T/T„nearly fall on a universal curve with a shape characteristic of a A,-type transition. A de-
tailed analysis of the density distribution in the solid He samples supports the claim that this
transition is second order. At 10 kOe, T, is found to be proportional to V", where V is the molar
volume. It is demonstrated, however, that this dependence is consistent with the exchange ener-
gies being proportional to V', in agreement with other experiments. As a function of increasing
field, v,p;„decreases for H &4 kOe and increases at higher fields. Above 4 kOe, v,„;„is proportion-
al to T, . The field-induced increase in the paramagnetic-phase specific heat can be described well

by the free-spin expression with an effective magnetic moment equal to 0.83pz. Magnetization re-
sults inferred from the specific-heat data are in excellent agreement with direct measurements.
The H-T phase diagram which is thermodynamically consistent with the new data is presented.
Also included are results for the field-dependent boundary resistance between solid 'He and silver.

I. INTRODUCTION

The thermodynamic properties of solid He at mil-
likelvin temperatures are completely dominated by the
contribution from the nuclear-spin ( —,') system. ' This
implies spin interactions which are several orders of
magnitude larger than the direct dipole-dipole term.
The overpowering effective interaction is a consequence
of atom-atom exchange which is non-negligible in the
low-density solid due to the very large zero-point motion
of the He atoms about their average locations in the bcc
lattice. Exchange therefore also explains the extremely
high nuclear-spin ordering temperature: roughly 1 mK
(Ref. 3) in zero magnetic field. Another intriguing as-
pect of the spin ordering is the modification induced by
a relatively weak applied magnetic field. The pioneering
work in this area was done by Adams and co-workers
more than ten years ago. Their measurements dernon-
strated the existence of boundaries in the H-T phase dia-
gram which separate the plane into three distinct re-
gions. Although there has been significant subsequent
progress, both experimentally and theoretically, the
three "phases" are still not completely understood; in
fact, several quite fundamental issues remain unresolved.

In this paper we add to the data base for solid He by
presenting the results of high-precision specific-heat
measurements, performed in the vicinity of the various
magnetic ordering transitions. In addition to demon-
strating the order of the transitions, the data give infor-
mation about the elementary excitations in the ordered
phases. At somewhat higher temperatures the results

show the significant departures from the limiting high-
ternperature behavior. The new results are compared in
detail with other thermodynamic measurements. We
demonstrate, in particular, thermodynamic consistency
with previous magnetization results. The implications in
regard to the H-T phase diagram are also discussed.

II. EXPERIMENTAL DETAILS

A. Calorimeter

A cross-sectional drawing of the calorimeter is shown
in Fig. 1. It is comprised of three major components:
the sample cell, the LCMN (lanthanum-diluted cerium
magnesium nitrate) thermometer chamber, and a physi-
cally small high-field superconducting solenoid which is
thermally isolated from the cell. Thermal contact be-
tween the cell and the PrNi5 cooling stage is made via a
superconducting tin heat switch. The cell and magnet
are each rigidly positioned above the same flange using
thermally insulating screws and spacers. This flange, in
turn, is clamped to the cooling stage using a heavy post
machined as part of the silver flange. The magnet is
thermally connected to the mixing chamber of the dilu-
tion refrigerator with a copper bus.

The cell and thermometer chamber are made primari-
ly of high-purity silver because of this material s high
thermal conductivity and also because of its small nu-
clear heat capacity in a magnetic field. The annular
sample chamber is centered at the midpoint of the rnag-
net and is packed with 3.63 g of fine silver power at
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the paramagnetic salt. The thermometer chamber is
joined to the sample ce11 with a short length of 3.2-mm-
diam silver rod, which is welded to the cell and hard-
soldered to the thermometer chamber. Wound on this
rod and near the thermometer is a 165-Q Pt-W calorime-
ter heater. Both the thermometer and heater are
covered by a niobium shield.

The superconducting magnet is patterned after others
described in the literature. " It features a compensa-
tion coil counterwound concentric with the main coil
which reduces the field to near zero at the radial posi-
tion of the niobium shield. The i.d. of the solenoid is
11.7 mm and the field-to-current ratio is 1.95 kOe/A.
Central uniformity of the field is better than 1% over a
length of 1.8 cm. The coils are wound on copper man-
drels using insulated 0.15-mm-diam copper-clad NbTi
monofilament wire. The persistent switch for the mag-
net is located on the still of the dilution refrigerator.

Using a physically small magnet permits an extremely
rigid mounting relative to the sample cell. This is im-
portant for reducing the amount of eddy-current heating
of the calorimeter. It also makes it possible to have the
susceptibility thermometer in close proximity to the
sample cell. Moreover, problems associated with electri-
cal leads passing into a high-field region are eliminated.

B. Thermometry

FIG. 1. Calorimeter.

42% of solid density. The i.d. , o.d. , and height of the
cavity are 3.2, 8.3, and 17.8 mm, respectively. Because
of the large specific heat and small thermal conductivity
of solid He at very low temperature, the sample is
confined to the small pores in the silver sponge in order
to obtain internal thermal relaxation times on the order
of minutes near the ordering transitions. Having all of
the sample in close proximity to the metal surface also
serves to reduce the spin-lattice relaxation time. The
central post passing through the sample chamber ensures
good thermal contact between the cell body and the
silver sponge even though there is a slight expansion of
the annealed cell under pressurization. In an attempt to
further improve the contact to the cell body, the silver
powder was not sintered at elevated temperature because
of the consequential shrinkage. Moreover, heating of
the packed powder would have reduced its surface area.
The total surface area in the cell is estimated to be 10.5
m, which implies an average pore diameter of about
2000 A. Consequently, roughly l%%uo of the He atoms
are in direct contact with the metal surface. The total
open volume of the cell is 0.45 cm ~

The LCMN thermometer, Fig. 1, is housed in a
separate chamber to isolate it from the magnetic field
applied to the solid sample and to permit liquid He to
be used as the contact between the LCMN powder and
the metal container. Compressed into the bottom por-
tion of this chamber is 1.3 g of silver powder with a total
surface area of 3 ~ 8 m . Roughly, 0.7 cm of liquid He
completely submerges the lower coil, Fig. 1, containing

The self-inductance LCMN (5% CMN) thermometer
is in most respects identical to the one described in Ref.
2. It was calibrated assuming the Curie-Weiss relation

1

T—6
= Ag+B,

with A, B, and 6 adjustable parameters. These parame-
ters were determined by measuring the susceptibility at
three fixed points: T, (0), the superfluid transition tem-
perature of liquid He under vapor pressure; Tz, the
superfluid transition of liquid He on the melting curve;
and T~, the superconducting transition temperature' of
tungsten. The transition at zero pressure was easily lo-
cated by the kink in the warming curve observed with
the sample chamber empty, but with liquid He partially
filling the thermometer chamber. The two higher-
temperature calibration points were obtained (with the
heat switch closed) by comparisons with a melting-curve
thermometer, ' see Fig. 1. Temperatures were assigned
to these points, namely 0.93, 2.49, and 15.57 mK, based
on the temperature scale presented in Ref. 12. The
Weiss constant 6 for this thermometer was found to be
—0. 118 mK.

Before filling the sample cell with helium, determina-
tions of the LCMN bridge ratio at T,' were made with
the sample cell subjected to magnetic fields of 0, 1,2, and
5 kOe. The high fields did not affect the thermometry;
to within the precision of the measurements, all of these
bridge ratio values were the same.

C. Specific-heat measurements

The heat-capacity data were obtained using the stan-
dard heat-pulse technique. A typical measurement in
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zero applied field is shown in Fig. 2 for a temperature
near 1.5 mK. Here the time needed to reestablish
thermal equilibrium between the cell and sample follow-
ing the heat pulse is of the order of minutes. However,
at higher fields the relaxation time was much longer, as
indicated by the dashed curves in the figure. The im-
plied dramatic field dependence of the thermal boundary
resistance is discussed in the Appendix. The relaxation
time also increased with decreasing temperature. As a
result only three or four heat-capacity measurements
could be made per day near 1 mK and in a field of 10
kOe.

The number of moles of sample was computed using
the cell volume and the molar-volume-versus —pressure
relation given by Eq. (2) in Ref. 12. The cell volume was
determined by the constraint that the measured molar
entropy of the solid He sample be R ln2 at high temper-
ature. This volume differed by only 3% from that com-
puted using the linear dimensions of the sample chamber
and the mass of the silver powder.

D. Addendum heat capacity

The addendum contribution to the total measured
heat capacity is due almost entirely to the liquid He in
the thermometer capsule. This quantity was measured
with a precision of about 1% between 1 and 10 mK be-

3
7

fore He was admitted to the sample chamber. From the
data obtained near 10 mK it was determined that the
thermometer chamber contained 0.75 cm of He. The

2.0

heat-capacity data at the higher temperatures are pro-
portional to the temperature; however, as the tempera-
ture is decreased an excess contribution becomes pro-
gressively more significant. This excess was also ob-
served in previous measurements of the heat capacity of
liquid He. ' As in Ref. 12, this contribution could be3 12, 15

adequately described by Ae with B=1.0 mK. In
the present work 3 =0.40 mJ/K, whereas in Ref. 12
3 =1.0. These two values scale accurately with the sur-
face areas of the respective containers, but not with the
masses of the silver powders which had undergone
different heat treatments. The evidence is therefore that
the excess is due to a surface effect and not to impurities
in the sinter.

The addendum heat capacity was not measured below
T,'. Because of its small size relative to the solid He
heat capacity, it was sufficient to approximate the bulk
contribution as being proportional to T with the
coefficient adjusted to give the correct jump' at T,'.

Although the electronic heat capacity of the silver cell
is completely negligible, the nuclear-spin contribution to
the addendum in nonzero fields must be considered.
This heat capacity is given by C=A(H/T) with
A=1.38&&10 " J K kOe cm . This relation implies
that the heat capacity of silver (per cm ) at H=-5 kOe
exceeds that of liquid He below about 1 mK, and that
of solid He below a few tenths of a mK. The lowest
temperature at which we made measurements is 0.6 mK,
and here the silver contribution is several percent of the
sample heat capacity. However, only a fraction of this
contribution is actually probed by our measurements be-
cause of the very long spin-lattice relaxation time for
silver. The Korringa constant is 11 s K, which implies a
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FIG. 2. Typical heat-capacity measurement in zero magnet-
ic field. The dashed curves show the much longer relaxation
times encountered at higher fields.

FICx. 3. Comparison of sample and addendum heat capaci-
ties.
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TABLE I. Some parameters of the 'He samples studied.

V
(crn )

I
J.. I

~ka'
(mK)

TN

(mK)

H=0
C/R T
(mK-')

LFP
U spin

(cm/s)
T.

( K)

H =10 kOe
C/RT
(rnK )

HFP
U spin

(cm/s)

24.22
24. 126
23.900
23.418

0.751
0.703
0.600
0.425

093
0.88
0.76

0.68
0.96

7.0
6.2

1.262
1 ~ 163
0.975

0.430
0.562

6.5
6.0

'Based on Eq. (6).
From Ref. 12.

relaxation time of 5 h at our lowest temperature. We
deemed it unnecessary, therefore, to include in the ad-
dendum any contribution from the silver cell.

As Fig. 3 shows, near 10 mK, the addendum due to
the liquid He in the thermometer chamber is about
equal to the heat capacity of the sample. It is mainly for
this reason that the heat-capacity measurements were
not extended to higher temperatures. We also note that
above 10 mK the LCMN thermometer has little sensi-
tivity and also a long thermal time constant.

III. RESULTS AND DISCUSSION

All of the specific-heat results on bcc He presented in
this paper were obtained in the vicinity of the various
magnetic ordering transitions. The measurements were
made at molar volumes of 24. 13 and 23.90 cm, in fields
of 0, 6, and 10 kOe and for temperatures in the range
0.6—10 mK. Above 1.5 mK the data have a precision of
about l%%uo. Other numerical information for each of the
samples is given in Table I.

The results at H =0, shown plotted on log-log scales
in Figs. 4 and 5, show obvious qualitative differences

from the 10-kOe data presented in Figs. 6 and 7. This
refiects the crossing of a different phase boundary, Fig.
8. At H=O, the transition is from the low-field phase
(LFP) to the paramagnetic phase (PP). At H =10 kOe
the transition is from the high-field phase (HFP) to the
paramagnetic phase. The LFP is believed to be antifer-
romagnetic with ferromagnetically aligned (100) planes
in the sequence up-up-down-down' (u2d2 phase); the
HFP is expected to be pseudoferromagnetic with a cant-
ed antiferromagnetic structure. ' In the remainder of
the paper we use the notation that the LFP-PP transi-
tion occurs at T&. We also associate the HFP-PP transi-
tion with T„and the LFP-HFP transition with TI&.

A. Zero-field specific-heat results

l. General comments

The dominant feature of the H =0 data shown in
Figs. 4 and 5 is the extremely sharp peak, which corre-
sponds to the specific heat changing by nearly 2 orders
of magnitude for a change in temperature of only 100
pK. This is the clear signature of a first-order transi-
tion. The peak is not infinitely sharp because of small
density gradients (Sec. III A 5) in the samples contained
within the pores of the silver sponge (Sec. II A); different
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FIG. 4. He specific heat at a molar volume of 24. 13 cm'
and in zero magnetic field. Also shown is the specific heat of a
Heisenberg nearest-neighbor antiferromagnet computed using
the ten-term high-temperature series expression from Ref. 21.
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FICx. 5. 'He specific heat at a molar volume of 23.90 cm'
and in zero field.
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FIG. 6. 'He specific heat at a molar volume of 24. 13 cm
and in a magnetic field of 10 kOe. The long-dashed curve
shows the implied entropy. Also shown for comparison are the
smoothed specific-heat results obtained in zero field.

portions of the sample pass through the transition at
slightly di6'erent temperatures. The sample at 23.90
cm /mole was grown more slowly than the lower-density
sample and exhibits a somewhat sharper peak. The
short-dashed curves near Tz in Fig. 4 show the expected
behavior of the specific heat neglecting the contribution
from the latent heat.

For temperatures below T& the data at both densities
are consistent with C ~ T . This is the expected T
dependence because the elementary excitations are the
spin waves, which, for an antiferromagnetic structure,
have a linear dispersion relation.

10

23.90 cm&/mole
H=10 koe

100

FIG. 8. Field-temperature phase diagram for bcc 'He at

melting density showing the notation use in the text.

For T &~ T& the data are tending towards a 1/T tem-
perature dependence. This is the high-T temperature
dependence for the specific heat of a two-level system.
The splitting in the ground state is due to the exchange
interactions between the He nuclear spins.

Assuming that the He nuclear-spin system can be de-
scribed by a Heisenberg Hamiltonian, the high-T series
expansion' ' for the H =0 specific heat is

C(T,O)/R =3P J„„—3P J „„+
where J, etc. are particular moments of the unspecified
exchange Hamiltonian and P = l /ks T. The dashed
straight line in Fig. 4, indicating the limiting high-T be-
havior, corresponds to the value of J extracted from
specific-heat measurements performed above 50 rnK.
Also shown for comparison in Fig. 4 is the specific heat
computed using the ten-term series expansion ' of the
Heisenberg nearest-neighbor antiferrornagnet. The
divergence of the calculated curve away from the experi-
mental results is not unexpected since it has been known
for a decade that this simple model is inadequate for
describing solid He at low temperatures. Theoretical
explanation of the experimental results for the specific
heat requires the inclusion of more complicated ex-
change processes.

-1
10

2. Comparison unth previous specific heat results-

10
10 10

T (mK)
10

FIG. 7. He specific heat at a molar volume of 23.90 cm'
and in a magnetic field of 10 kOe. The long-dashed curve
shows the implied entropy. Also shown for comparison are the
smoothed specific-heat results obtained in zero field.

There have been only two other experiments per-
formed which directly measure the specific heat of solid
He near the ordering transition: the early measure-

rnents of Dundon and Goodkind and the very recent
work by Sawada et al. These two sets of data, each
with a precision of roughly 10% or 20%, are represent-
ed by dashed curves in Fig. 9, where a comparison is
made with the present work. In all three experiments
the standard heat-pulse technique was used to measure
the specific heat of solid He samples contained within
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FIG. 9. Comparison with previous direct measurements of
the specific heat of low-density solid 'He.

FICx. 10. Specific heat extracted from pressure-temperature
measurements for 'He on the melting curve.

the small pores of copper or silver powder sponges. In
addition to the much smaller specific-heat values near 1

mK, the Dundon-Goodkind data also exhibit two bumps
for temperatures greater than Tz. There is no evidence
for either of these features in the more recent experi-
ments.

Although the results of Sawada et al. are qualitatively
quite similar to ours, there are significant quantitative
differences. The broader and less symmetric peak at Tz
may simply be due to larger density gradients in their
samples. More difticult to explain, however, is the large
discrepancy near 10 mK. We note that the present data
tend with increasing temperature towards the extrapola-
tion of results obtained above 50 mK where ther-
mometry is much less of an issue.

The specific heat of solid He along the melting curve
can also be inferred from measurements of the melting
pressure versus temperature using the thermodynamic
relation C (T)=T(dSldT) and the Clausius-
Clapeyron equation

Also shown in Fig. 10 are the specific-heat curves
based on the melting curves measured by Halperin
et al. and by Kummar et al. In these experiments the
temperature scale was based on measurements of the He
latent heat of solidification. Both of these curves show a
complicated structure with peaks appearing above T&, in
qualitative agreement with the Dundon-Goodkind curve
shown in Fig. 9. Halperin et al. have ruled out their
peak near 2 mK being an artifact of their data analysis.
Nonetheless, it seems probable' that the unexpected
peaks above T& are due to errors in the respective tem-
perature scales.

The issue of the possible existence of a second
specific-heat peak at H =0 is important since recent
mean-field calculations by Stipdonk and Hetherington
and also numerical calculations by Cross and Bhatt
have suggested this possibility. Again, our data show no
evidence of any anomalous structure.

(T) =&t (T)—( Vt —V, )
dP

(3)
3. Spin-wave velocities and transition temperatur es

In the low mK range the main contribution to the
specific heat is determined by the term in d P/dT; con-
sequently, the melting pressure must be measured ex-
tremely accurately. The results are also sensitive to the
choice of the empirical expression used to fit the P-
versus- T data.

The solid curve in Fig. 10 was computed using the
P-T relation and liquid-helium specific-heat results from
Ref. 12. The difference between the liquid and solid mo-
lar volumes was taken to be constant and equal to 1.314
cm /mole. Except for the shallow minimum near 1.5
mK, this specific-heat curve is very similar to the
present (but higher-density) results shown in Figs. 4 and
5. The shallow minimum in the specific heat computed
for the melting curve presumably rejects the inadequacy
of the fitting function used to describe the P-T data, for
temperatures near T&.

The molar specific heat and the average spin-wave ve-
locity are related by

'3
C 2n n2V kg T
R 15 N Av, p,„

(4)

U SPln

which is analogous to the expression for phonons. In
the LFP, n (the number of modes) is two. Equation (4)
is strictly valid for T « Tz,' however, via their melting-
pressure measurements, Osheroff and Yu have demon-
strated that the specific heat retains a T temperature
dependence to very near T&. This is also consistent with
our findings. With T measured in mK, V in cm /mole,
and U,~;„ in cm/sec, Eq. (4) can be written as

1/3
4. 90n V

(5)
C/RT
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Values of Tz and v,"~";„extracted from our specific-
heat measurements are listed in Table I and are plotted
versus the molar volume on log-log scales in Fig. 11.
For comparison, the solid straight line shows

~ J„„~/ks
from Ref. 20. In that work it was determined, in good
agreement with other experiments, that

i J„„~/ks ——3.04X10 V' (6)

1.5

~V

1.0— V 8.7

0.9—
0.8—

0.7—

with
I J„„~/ks in mK.

The H =0 results for both T& and v,"z",„are, within ex-
perimental uncertainties, consistent with the same
molar-volume dependence. This would be the expected
result if there were a dominant exchange process. But
various experimental findings, including the present
specific-heat results above T&, indicate that there must
be several competing interactions. The unsetting con-
clusion seems to be that all of these exchange processes
must have a very similar molar-volume dependence.
The observation that T& ~

~
J„„~ was first made by Hata

et al.
The values of T& (Ref. 12) and U,"~";„(Ref.28) plotted

in Fig. 11 at a molar volume of 24.22 cm correspond to
measurements performed on the melting curve with bulk
samples of solid helium. The general agreement between
these quantities and the respective values obtained for
the samples contained within the pores of silver sinter is
evidence that there are no serious size-effect problems.
We note too that the spin-wave velocity plotted in Fig.
11 and attributed to Osheroff and Yu, namely 7.7
cm/s, is smaller than the value they actually reported,
8.4+0.4 cm/s. The difference corresponds to our using
their melting-pressure data obtained above 0.4 mK rath-
er than at lower temperatures and also to the correction
needed because of the different T scales used.

C/R =0.43(T/T~) (7)

For temperatures between 1 and 8 mK, a least-squares
fit yielded

7

C/R = g a„(T&/T)",
fl =2

with

a2 ——3.0683, a 3
———9.817,

a4 ——13.6917, a 5 ———8.8361,

a6 ——2.0135, a7 ——0. 1097 .

The rms deviation from the fit is 0.5 Jo. The data very
near Tz which were obviously affected by the latent-heat
contribution (see Sec. IIIA5) were excluded from this
analysis. In addition to describing the experimental re-
sults above 1.2T&, Eq. (8) also provides a reasonable ex-
trapolation of the high-T results down to about 0.8T&.
It should be stressed that Eq. (8) is only an empirical
description of the data. Because of the large number of
parameters and the strong correlations between these pa-
rameters, no significance should be placed on any of the
individual values.

Smoothed results for C/R and S/R based on Eqs. (7)
and (8) are shown in Fig. 12 plotted on linear scales.
The specific-heat curve neglects the latent heat. Our
determination for the jump in entropy at T& is

hS/R ln2=0. 41+0.02 .

4. Empirical expressions for C at H =0

If, as suggested by the T& and v,~";„results, all
relevant energies have an identical density dependence,
then the two sets of specific-heat results showns in Figs.
4 and 5 should be related, over the complete tempera-
ture range, by a simple rescaling of the temperature.
That is, the data when plotted on log scales should differ
only by a uniform displacement along the T axis. To
within the precision of the measurements, we find this to
be true. Consequently, we write the zero-field specific
heat as a universal function of T/Tz( V, O).

Below Tz( V, O)

0.5—

0.4—

0.3
23.4

I J„„I /k~ (mK)
T„(mK)

H=0
yLFP /10 (cm/sec)spin

~ T (mK)
y P /10 (cm/sec)

$ pl fl

I I I I I

23.6 23.8
v (cm~)

I I

24.0 24.2

FIG. 11. The molar volume dependence of T~ and v,"~";„at
K =0 compared with that for T, and v,~";„atK =10 kOe. The
solid curve for

~
J„„~ is based on data from Ref. 20.

This value is comparable to previous determina-
tions; ' ' however, there is a quantitative discrepancy
with the most precise of these earlier results. From mea-
surements of the melting pressure near Tz, Osheroff and
Yu determined, via the Clausius-Clapeyron equation,
S /R ln2=0. 19 and S+ /R ln2=0. 68. These values
have been adjusted to our temperature scale. Our corre-
sponding values are 0.21 and 0.61. The uncertainty in
all four of these numbers is roughly 0.01. The difficulty
is thus localized to the results for S+. We note though
that our melting-curve slope from Ref. 12 implies
S+/R ln2=0. 62, in good agreement with our present
determination.
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0.5

0.4—

H=O
where L is the molar latent heat and n is the total num-
ber of moles of sample. As discussed in the preceding
subsection, the size of the jump in entropy at T& is
found to be independent of molar volume and equal to
0.41R ln2. Therefore,

L ( V) = TJv ( V)b,S =0.41 T~R ln2 . (12)

0.2— The derivative of Eq. (11) can be evaluated using the
molar-volume dependence of T~ given by Eq. (6), name-
ly T~~V'

For temperatures near T&, energy applied to the sam-
ple goes both towards supplying the necessary latent
heat and also towards raising the temperature, i.e.,

0.0-
0.8

0.6—

dQ =nC dT+dgt„, „t .

Therefore,

Cmeas 1 dg C 1 dglatent

R nR dT R nR dT&

(13)

(14)

~ 04—
CO

0.2—

DS/RZA 2=0.41

Here, C is the molar specific heat that would be mea-
sured in the absence of any latent heat and is given ap-
proximately by the ideal behavior indicated again by the
short-dashed stepped curve in Fig. 4. Combining Eqs.
(11), (12), and (14),

C „,(T)
R

C;d„i( T)
+0.0168Vf ( V) . (15)

O.O—
0

FICi. 12. Smoothed results for the specific heat and entropy
of low-density solid 'He determined using Eqs. (7) and (8).

V is the molar volume corresponding to a transition at
temperature T. The smooth curves in Figs. 4 and 5
which fit the data in the vicinity of the peak very well
correspond to y values [Eq. (10)) of 30 and 40 cm ', re-
spectively. y =40 implies that 90/o of the sample had a
local molar volume within 0.03 cm of the average value.

B. Specific-heat results for H )0

5. Density gradients

The density gradients in our solid He samples (grown
via the blocked-capillary technique) can be inferred from
the zero-field specific-heat data, knowing that this transi-
tion is first order. This information will be used later
(Sec. III 8 1) in support of our claim that the HFP-PP
transition is second order.

We assume first that the true specific heat of a
uniform-density sample can be described well for tem-
peratures near Tz by the short-dashed curves in Fig. 4
which are just simple extrapolations of the behavior ob-
served away from the transition. We also assume that
the local molar volume follows a Gaussian distribution
with the fraction of the sample within dV of V being
given by

(v —v jf(V)dV=(y j&vr)e dV . (10)

The latent heat due to the fraction of the sample with
transition temperatures between T& and Tz +d Tz is
therefore

dg~„,„t ——f ( V) d T~nL ( V),dV
N

l. Order of the HFP PP transition-

The specific-heat data obtained in a field of 10 kOe,
Figs. 6 and 7, exhibit peaks which appear to be qualita-
tively quite different from the zero-field results, indicated
for comparison by the dashed curves. An immediate
conclusion, which we support later, is that if the zero-
field transition is first order the transition at 10 kOe (and
also at 6 kOe) cannot be. This statement could be recon-
ciled with the claim by others ' that the HFP-PP tran-
sition is first order, at least at somewhat smaller fields, if
there were a tricritical point on the T, line in the vicini-
ty of 5 kOe. However, there are other very recent (non-
equilibrium) measurements which suggest that there is
no latent heat liberated at T, in the field range between
4 and 5 kOe. The proposal that the "transition" might
be only the Schottky ordering of the He spins by the
external field is ruled out by the sharpness of the mea-
sured specific-heat peaks.

The specific-heat results at 6 and 10 kOe and at two
molar volumes are plotted on linear scales in Fig. 13.
The three sets of data plotted in this manner nearly coin-
cide, with the composite set of data exhibiting a peak
which is suggestive of a X-type transition.



36 NUCLEAR SPECIFIC HEAT OF bcc 'He NEAR THE. . . 6861
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C3
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24.15 cm~/mole
=10 kOe

Tc 1.26 mK

25.90 cm~/mole
H=10 kOe
T, =1.16 mK

(
H SkQe
Tc=0 94 mK

tion inferred from the H =0 results (Sec. III A 5) and an
estimate of the "latent heat" based on the measured
specific heat away from T, .

Although it is not possible to completely rule out a
small latent heat at T, at lower fields, we proceed with
the assumption that the HFP-PP transition is a continu-
ous second-order transition from at least 10 kOe down
to the polycritical point. This conclusion is based on the
melting-pressure measurements of Tang et aI. , the
magnetization measurements of Prewitt and Goodkind
(to be discussed in Sec. III C), and on our own specific-
heat data.

0
0

T/Tc

FIG. 13. Reduced plot of the specific heat measured near T,
at two different molar volumes and at two magnetic fields. The
composite set of data exhibits a peak characteristic of a A,-type
transition.

24.13 cm~/mole
M=10 kOe

I

I
II

II
II
II
II
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II
II
II
II
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1.5

FICx. 14. Comparison of the measured specific heat near T,
with that expected if this transition were first order.

As explicitly demonstrated in Fig. 14, the width and
shape of this peak are inconsistent with this transition
being first order. The solid curve shows the smooth ex-
perimental results. The dashed curve shows the expect-
ed specific heat, if the transition were first order. This
curve was computed using the sample density distribu-

2. Molar volume dependence of T, and v,Hr~

The T, values measured in a field of 10 kOe are shown
plotted versus the molar volume in Fig. 11, where com-
parison is made to Tz at H =0. This transition temper-
ature shows a much weaker density dependence than
T~(0), as we verified with an additional determination of
T, at 23.418 cm /mole. Assuming a simple power-law
dependence leads to T, (10)~ V . Although this ex-
ponent is only slightly more than half of the correspond-
ing exponent for T&(0), it is nevertheless also consistent
with all exchange energies being proportional to V' .
This consistency is demonstrated in Fig. 15, where the
T, values measured at 10 kOe are shown on a reduced
plot of H versus T, . If all of the exchange energies are
shifted by a uniform factor f when the density is
changed, then the thermodynamic properties of the sys-
tem can be expressed as a universal function of H/f and
T/f. The scaling of the axes in Fig. 15 is under the fur-
ther assumption that the energies scale as V'. The refer-
ence volume is taken to be that corresponding to the
sample at melting pressure. Our expectation is that the
results plotted for a particular value of x, namely 17,
should coincide with the melting-pressure T, -versus-H
curve, and we find this to be true within our uncertain-
ties. Unfortunately, considerably more weight must be
given to the points at the two larger molar volumes,
since the solid curve [based on Eq. (39)] is only an extra-
polation of T, results obtained below 10 kOe.

Although the HFP specific-heat data obtained below
T, do not extend to low enough temperatures to allow
an accurate determination of the temperature depen-
dence, they are consistent with a T temperature depen-
dence. The T behavior is expected on the basis of pre-
vious melting-pressure experiments, which extend to
much lower temperature, and also as a consequence of
our claim that the HFP-PP transition is second order.
The spin-wave velocities extracted from the ordered-
phase data, assuming a single spin-wave mode, are also
plotted in Fig. 11. Although less precise than the T,
determinations, the results for v, p",„show a very similar
volume dependence. This leads us [see Eq. (4)] to de-
scribe the low-density, low-temperature HFP data at 10
kOe by the relation

3

(16)
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FIG. 15. Reduced plot of H vs T, showing T, values ob-
tained at 10 kOe and at three different molar volumes. The
points nearly coincide with the extrapolated curve for T, (H) at
melting density if x = 17.

FIG. 16. Field dependence of the spin-wave velocity at
melting density. Comparison is made with previous results in
both the low-field phase and high-field phase.

This equation is obviously consistent with the universal
behavior of the low-temperature specific heat when plot-
ted as a function of T/T„Fig. 13. The fact that the 6
kOe results also fall on this same curve in Fig. 13 sug-
gests the generalization

C T
R '

T, VH
—(V, H) =0.86

3

(17)

Further support for this relation is given in the following
subsection.

for the velocity in cm/s and T, in mK. T, (H) will be
discussed in Sec. III D 2 and is given by Eq. (39). Near 5
kOe the curve agrees well with the plotted points, espe-
cially the value from Ref. 34.

3. Field dependence of v,~;„and v,~;„

Figure 16 shows the spin-wave velocity plotted versus
magnetic field at melting density, i.e., at 24.22 cm /mole.
Our results at 0 and 10 kOe were extrapolated to this
molar volume using Eqs. (7) and (17), respectively. All
of the other data points plotted derive from melting-
pressure measurements above 0.4 mK and have been ad-
justed to our temperature scale. This correction reduces
these velocities by roughly 15%%uo. At 0 and 10 kOe the
agreement with Osheroff and Yu and with Osheroff,
Godfrin, and Ruel is within a few percent.

The solid curve for the HFP is based on Eq. (17),
which, together with Eq. (4), yields

(18)

The solid curve drawn for the LFP is based on

—=(0.43+0.003 17H )ttT/T~(0)]
R

(19)

with H measured in kOe. The field dependence of C was
inferred from a thermodynamic analysis of the phase di-
agram which will be discussed in Sec. IVD. A decreas-
ing velocity with increasing field implies that the entro-
py, at fixed temperature, is increasing. This is the be-
havior expected for an antiferromagnet. For the HFP,
which is pseudoferromagnetic, the opposite effect is ob-
served. At the LFP-HFP boundary the LFP has the
smaller entropy which must be true since H~~ decreases
with increasing temperature. The difference between our
results at 4 kOe and the measurement from Ref. 34 is
6%. This is within the combined uncertainties.

4. C at "high" temperature, H &0

The generalized high-temperature series expression for
the increase in the specific heat induced by a small ap-
plied magnetic field is

bC C(T, VH)
R R

T '2
pH
kBr

C(T, V, O)

R
2

B B

(20)

Obviously, if the temperature is not large compared to
~

J
~
/ks, many terms must be retained in the series.

Consequently, for the range of temperatures covered in
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0.24

0.20

0.16 (23)

We also define

using these equations. The difference, which shows a
step discontinuity at T„ is defined as C,„. The size of
this step is given by

CHFP( T ) CPP( T
R R R

0.12

0.08

CPP C HFP

The excess specific heat below T, is described well by

(24)

0.04

0.00
0.00 0.10 0.20 0.30

(mv )

0.40 0,50

FIG. 17. Increase in the specific heat induced by an applied
magnetic field. Results are shown for fields of 6 and 10 kOe
and for two difterent densities.

R
=a(T/T, )

For T&T„
C„ a+ (T/T )
R R

Thermodynamic consistency requires

(25)

(26)

Sex

R
a+ 5C /R

20 28
5S
R

(27)

hc(T, H)
R

=aH T (21)

with a =0.0042 mKkOe . This equation can also be
rewritten as

the present experiment we would expect AC to have a
rather complicated temperature dependence. The exper-
imental results show, however, that this is not the case.

In Fig. 17, AC is plotted versus 1/T for fields of 6
and 10 kOe at two molar volumes. To within the pre-
cision of the measurements ( —2%) and independent of
the sample density, the results are described by

which becomes the defining equation for the parameter
a(V, H).

The smoothed curves passing through the data points
in Figs. 4—7 and also in Figs. 13 and 14 were computed
using the empirical equations for the specific heat.

Figure 18 shows the entropy at melting density ob-
tained by integrating the smoothed results for C/T. The
number associated with each of the curves gives the field
in kOe. The dashed curve shows T, for the curves with
H )4 kOe. At T„S/R ln2 5 0.5.

hC
R

2
PeaH

k~T
(22) 0.70

with p,e
——0.83@ (p, /ks ——0.078 mK/kOe). That is, the

free-spin relation can be used to describe the field-
induced increase in the PP specific heat at low tempera-
tures, if p is replaced by an effective magnetic moment.
This simple, but intriguing, relation suggests that it may
be worthwhile to consider models different from the usu-
al multiple-spin-exchange theories to describe solid He
at very low temperatures.

0.60—

0.50—

0.40—

0.30—

5. Empirical expressions for C near T,

Empirical expressions are now given for the specific
heat very near the T, line, in order to complete the
description of the low-density specific heat of solid He
for T ~ 10 mK and for H ~ 10 kOe. The complete set of
expressions will be used later to determine other thermo-
dynamic quantities and also in an analysis of the T-H
phase diagram.

For T &~ T, the HFP specific-heat results are de-
scribed by Eq. (17), while for T &&T, the PP results are
described by Eqs. (8) and (21). Near T, the measured
specific heat is considerably larger than that computed

0.20—

0.00
0

FIG. 18. Smoothed results for the entropy derived from
specific-heat measurements. The curves are plotted for several
magnetic fields between 0 and 10 kOe.
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C. Magnetization 40

A check for consistency with other thermodynamic
data, obtained from very different types of measure-
ments, can be made by applying the Maxwell relation

aM

H

as
aK

(28)

30—
Curie-
(8 =—

M(T) =aRH/T (29)

or, equivalently, the Curie relation
2

Peag=aR /T =R
k~

(30)

to the empirical equations for the entropy and extracting
values for the magnetization. The assumption, of
course, is that the simple empirical equations are
sufficiently accurate to justify this type of analysis.

Equations (21) and (22) for the specific heat in the
paramagnetic phase implies quite directly

20—
H =10koe

0

0 i

0

g=R p
k~

2

T
—(1+4PJ „+12PJ„„„+' ' ' ) . (31)

These equations are expected to be valid for T &5 mK.
At higher temperatures the relative uncertainty on the
field-induced contribution to the specific heat becomes
very large, and it is this term which leads to Eqs. (29)
and (30). One immediate test of our results can be made
by comparing our susceptibility at T„(the superfluid
transition temperature of liquid He at melting pressure)
with previous determinations. Our value for 10 7 is
1.40+0.05 mole '. Osheroff and Anderson, Kummer
et al. , and Godfrin find respective values of 1.44,
1.53, and 1.49 with uncertainties of about 0.03. We note
that all three of these values derive, via a Clausius-
Clapeyron relation, from measurements of the field
dependence of the melting pressure at Tz and are in-
dependent of temperature scale.

Our results can also be compared with the direct mag-
netization measurements of Prewitt and Goodkind.
These authors made measurements in the temperature
range 0.5 —2 mK using a superconducting quantum-
interference device (SQUID) magnetometer and also
found M/K to be independent of H at sufficiently high
temperatures. Their universal curve is consistent with a
1/T temperature dependence and with a coefficient
within 10% of the new value.

The high-temperature series expression for the molar
susceptibility is

FIG. 19. Smoothed results for H/M computed using Eqs.
(33) and (34) at several different magnetic fields. Comparison is
made with both the Curie and Curie-Weiss relations.

dT
R dH

aRH R T
T+27 T,

The second term implies a rapid rise in M as T, is ap-
proached from higher temperatures. For K H~, &„, the
proximity of the second-order transition is treated by
simply extrapolating the transition line into the LFP.

In the HFP, the expressions for the specific heat [Eqs.
(17) and (25)] lead to

The dashed curves, to be compared with our higher-
temperature results, correspond to the Curie and Curie-
Weiss relations. The departure from the Curie-Weiss
curve observed at low temperatures can be explained as
being due to the higher-order terms in Eq. (31), but it is
also possible to interpret the experimental results as ex-
hibiting a rather sharp crossover from Curie-Weiss be-
havior to Curie behavior with an effective moment only
20% smaller than the true moment.

For T= T„ there is an additional contribution to the
paramagnetic magnetization corresponding to the excess
specific heat given by Eq. (26). The complete empirical
expression describing M for T ~ T, is

' —27

For temperatures not too low this relation can be rewrit-
ten as

dT.
M ( T,H) M(O, H) = —R—

dH
0.215 T

C

R (elks )x=
T —0 (32)

21
cx T
21 T,

where 0=4J „.This Curie-Weiss relation with 0= —2
mK describes experimental data well for T ~ 10 mK.

In Fig. 19, HM„, /M is plotted versus T. Here, M„,
is the saturation magnetization, Xp=6.472 Oe/mole.

(34)

With increasing temperature, the magnetization de-
creases away from its limiting zero-temperature value as
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T at low temperatures and much more rapidly near T, .
At extremely low temperatures the specific heat may de-
viate from a T temperature dependence; consequently,
the T dependence for M may also be incorrect in the
limit T~0.

Values for M(O, H) in the HFP are determined by
evaluating Eqs. (33) and (34) at T, . The results are
shown in Fig. 20 plotted as a solid curve.
M/M„, =0.60 agrees reasonably well with other more
direct determinations, ' ' ' especially the very recent
and precise values of Osheroff et al. , which are shown
plotted as open circles in the figure. A quantitative com-
parison with their values, however, is meaningful only at
the higher fields. At the lower fields our curve is not in-
dependent of their results since our T, -versus-H transi-
tion line [i.e., dT, /dH in Eqs. (33) and (34)] was deter-
mined in part using their magnetization results. This
will be discussed in Sec. III D.

Smooth curves for HM„, /M versus T determined us-
ing Eqs. (33) and (34) are shown in Fig. 19 at several
constant fields. These curves can be compared with the
results of Prewitt and Goodkind, who have plotted
their data obtained for fields between 0.8 and 5.8 kOe in
a similar manner. Their curves are qualitatively similar
and also show, with decreasing temperature, the smooth
breaking away from the limiting high-temperature be-
havior. This is indicative of a second-order transition.
We note that Prewitt and Goodkind took the onset of
these departures, rather than the inflection point of the
curves, as the indicator for T„which explain their T, s
being roughly 0.1 mK too high. Their results are con-
sistent with our assumption that the HFP-PP transition
remains second order between 6 kOe and the polycritical
point.

For the LFP, Eq. (19) for the specific heat leads to

M ( T,H) —M (O, H) =0.000 65R T H /T~(0), (35)

0.07
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this work
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(0.8koe)
——- Hata etal. (0.26koe)

which implies that the magnetization increases relative
to its zero-temperature value with increasing tempera-
ture. That is, the effect of increasing temperature is to
decrease the amount of antiferromagnetic order. In
evaluating Eq. (35), we have taken M (O, H) from
Osheroff et al. , who find M "

(O, H)/M„, H =0.020
kOe

Comparison is made to some previous results for
M/H in small magnetic fields in Fig. 21. The tempera-
tures have been normalized so that T& coincides with
our determination. The solid curve was computed using
Eqs. (29) and (35) with H =0.8 kOe, which corresponds
to the field at which Prewitt and Goodkind obtained the
data shown as open circles. The long-dashed curve was
computed for H =0.26 kOe for comparison with the
data of Hata et al. Their smooth results are represent-
ed by the short-dashed curve, which has been normal-
ized to agree with our curve at 2 mK. These two sets of
results agree reasonably well. We note, in particular, the
small increase in their M/H values for T Tz, which is
predicted by our Eq. (19). The temperature dependence
of M/H observed by Prewitt and Goodkind in the LFP,
but at a larger field, is steeper than that of Hata et al.
This is also consistent with our relation, as are the 4-kOe
results from Ref. 33 (not shown in Fig. 20). These latter
data show a temperature dependence near Tz which is
about 4 times stronger than the 0.8-kOe results.

As a possible explanation for the fact that the
Prewitt-Goodkind data lie systematically below our
curve, we speculate that a portion of their sample, con-
tained within the pores of a sinter, may have been in the
liquid state. The melting curve for He in the pores of a
sinter is shifted relative to that for the bulk, but their
stated molar volume is very close to that for bulk He at
melting.

In Fig. 22 the magnetization is plotted directly as a
function of the temperature for several constant fields.
Of the curves plotted, the behavior at 4 kOe in the LFP
is subject to the largest uncertainties and needs testing

H (koe) 0.00
0

l

T (mK)

FIG. 20. Field dependence of the zero-temperature magneti-
zation. The solid curve for the HFP is based on Eqs. (33) and
(34). The data points p1otted for both the LFP and HFP are
from Ref. 34.

FICx. 21. M/H at sma11 magnetic fields. Comparison is
made with the work of Prewitt and Cioodkind (Ref. 33) at 0.8
kOe and with the work of Hata et al. (Ref. 29) at 0.26 kOe.
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FIG. 22. Smoothed results for the magnetization of solid
'He derived mainly from specific-heat measurements.

D. Phase diagram

l. General comments

The field-temperature phase diagram for solid He at
melting pressure, Fig. 23, was first mapped out by Kum-

10—

I I t I I I

this work
e Osheroff et.al

o Tang et. a I.

o sawada et. al,
~ Osheroff
+ Prewit t 8 Goo

H I GH —F I ELD PHAS

by direct measurements. We also note that unpublished
NMR measurements by Osheroff and Ruel at 5.2 kOe
show a much steeper change in M at T, than that deter-
mined by our empirical expressions. This may suggest a
much sharper transition close to the polycritical point
than we see at higher fields.

mer et al. more than ten years ago and has remained
qualitatively unchanged by subsequent more precise mea-
surements. ' ' ' In fact, there is still not a quantita-
tive consensus for the exact placement of the various
phase boundaries. More importantly, there also remain
uncertainties about the nature of the various transitions,
particularly the transition separating the high-field and
paramagnetic phases. It is generally conceded, though,
that Tz versus H is a first-order line, which is certainly
consistent with our zero-field specific-heat data.

Our specific-heat results at fields of 6 and 10 kOe
clearly show, at least for H &6 kOe, that there is a
second-order transition at T, ~ At lower fields theoretical
calculations suggest that there may be a tricritical point
on the T, line, below which the transition becomes first
order. Although this issue has not yet been completely
resolved experimentally, the existence of a tricritical
point would seem to be inconsistent with the magnetiza-
tion measurements of Prewitt and Goodkind (see Sec.
III C) and also with the very recent melting-pressure re-
sults of a Tang et al. This latter group made measure-
ments at several fields below 5 kOe and, to within the
precision of their measurements, detected no latent heat
at T, . Moreover, their determinations of TI~ are a
smooth continuation of their T& values, i.e., there is no
obvious discontinuity in the slope at Tpp]y This also im-
plies, via the Clausius-Clapeyron equation, that there is
no latent heat associated with the HFP-PP transition at
Tp: Tpo]y As noted by Tang et al., the H -T Phase dia-
gram for solid He appears, therefore, to be similar to
the P-T diagram for He, where the A, line meets the
melting curve.

The actual temperature and field coordinates of the
polycritical point have been determined in many
different experiments. All of these yield a value for
Hp &y

of about 4 kOe. We adopt a value of 3.90 kOe.
The uncertainty in T„,&y

is much larger, even if the vari-
ous T scales used are normalized to agree at T~(0). It
seems likely that in most cases this is attributable to the
field-dependent boundary resistance between the solid
He sample and its container (see the Appendix). From

the analysis discussed in the following subsection we
determine T~,~y

——0.88 mK.
Two other special fixed points in the phase diagram

are T& at H =0 and H&& at T =0. Based on the T scale
of Ref. 12, T&(0)=0.93 mK. Osheroff et al. find

H~h(T =0.4 mK)=4. 492 kOe. Note that the Clausius-
Clapeyron equation

LOW -Fl ELD PHASE

= —AS/AM
dT

(36)

I i I I m ( I I i I.L I i I I I

0.5 1.0 1.5

FIG. 23. Field-temperature phase diagram for solid 'He at
melting density. The solid curves are based on an analysis of
thermodynamic data. The T, -vs-H boundary is described by
Eq. (39). Coordinates for the other boundaries are listed in
Table II. T~(H) T~(0)~H— (37)

requires the T& line to be perpendicular to the tempera-
ture axis at H =0, since AM =Mpp —M I Fp =0. It also
requires that the T&h line be perpendicular to the field
axis at T =0 since AS=—SHFp —SLFp=0. Experimental-
ly, it is found that, for small fields, AM ~H, while AS
remains approximately constant. From this it follows
(again from the Clausius-Clapeyron equation) that, in the
limit H ~0,
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Assuming that the entropy in both the LFP and HFP re-
tains its T temperature dependence at very low temper-
atures, we have, for T~O,

Hih(T) Hg—, (0) ~ T (38)

20

2. T, versus H;Tp Iy

In this subsection a relation between T, and H at
melting pressure is determined for fields between Hp Iy

and 10 kOe. It is thermodynamically consistent and
agrees well with our direct measurements of T, at 6 and
10 kOe.

Shown in Fig. 24 as a dashed curve are values of the
derivative dH /d T, determined by simply passing a
smooth curve through our measured T, values and
through the point (T,~„, H, ~„)=(0.82 mK, 3.90 kOe).
This temperature assignment for Tppfy is based on the
work of Osheroff ' and also Tang et al. , with their
respective temperature scales normalized to give 0.93
mK for T&(0). Values for dH/dT, can also be extract-
ed from Eqs. (33) and (34), which describe the tempera-

T, =0.876 ln(0. 286H + 1.62 ), (39)

with H measured in kOe and T, in mK. Equation (39)
gives T, values which agree with our measured tempera-
tures to within 1% and leads, via Eqs. (33) and (34), to
value of M(O, H) which agree with those of Ref. 34 also
to within 1%. We note that Eq. (39) continues to pro-
vide a good description of T, data ' at fields up to 80
kOe.

ture dependence of the magnetization, if M(O, H) is tak-
en from other experiments. The open circles in Fig. 24
result from using the zero-temperature magnetization
data of Osheroff, Godfrin, and Ruel. The huge
discrepancy between the two different determinations of
the derivative, for fields near 4 kOe, are reduced if Tp ]y
is allowed to increase. We comment here that Osheroff '

used NMR resonance shifts in the LFP to measure tem-
peratures relative to T&(0). It is possible that these tern-
peratures are in error. A higher value for Tpp]y is also
in line with the results of Prewitt and Goodkind and
Sawada et al.

Our analysis repeated using T,&

——0.88 mK results in
the solid straight line passing through the points at 6
and 10 kOe and the revised point (solid circle) at 4 kOe.
The simple field dependence for dH/dT, leads directly
to

3. TN versus H

15

E

O
—10
D

rpoly

—=b (H)
C T
R T~(0)

(40)

Here we determine Tz(H) in a self-consistent manner
by applying the Clausius-Clapeyron equation [Eq. (36)]
to the existing set of thermodynamic data, under the
constraints that T&(0)=0.93 mK and Tz(3.90
kOe)=0. 88 mK. The second constraint is needed, in
part, to compensate for the scarcity of precise thermo-
dynamic data in the LFP for H & 0, but also to guaran-
tee consistency with the analysis of the preceding subsec-
tion.

To proceed with the calculation we write
3

The T dependence for the specific heat at nonzero fields
is consistent with the LFP findings of Tang et al. at 2.66
kOe and with the findings of Osheroff et al. at 4 kOe.
We are forced to assume next that the field-dependent
amplitude can be described reasonably well by a function
of the form

0 4
I

10
b (H) =ho+ b (H», (41)

H (k0e)

FIG. 24. Slope of the HFP-PP transition line. The dashed
curve is based on the transition line determined by the new T,
values at 6 and 10 kOe and on T~,~y

——0.82 mK from previous
experiments. The circles are values of dH/dT, determined by
comparing the directly measured zero-temperature magnetiza-
tion from Ref. 34 with that implied by Eqs. (33) and (34). Con-
sistency between the two methods for determining the slope is
obtained if T„,~~ is taken to be 0.88 mK.

where y is an integer.
These equations imply that

1 3
b(H)

3

S
R

and that

Rgb' T4
M(T) —M(0) = H»

12 T~(0)

(42)

(43)
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Note that b& is expected to be positive for an antifer-
romagnet. A positive b& means that S increases with H
at fixed temperature or, equivalently, that M increases
with T at fixed field, i.e., an increasing temperature
and/or field weakens the antiferromagnetic order. Equa-
tion (43) implies immediately that y&1, since y =1 leads
to a nonzero magnetization even for H =0. Taking
y=2 is also ruled out since this value implies field in-
dependence for M/H, which contradicts the work of
Prewitt and Goodkind. Qualitative agreement with their
measurements is obtained, however, with y =3, Sec.
III C, and so we adopt this value.

The iterative procedure for obtaining both b
&

and Tz
versus H was as follows: First, T& versus H was simply
taken to be given by the straight line joining the (T,H)
coordinates (0.93 mK, O) and (0.88 mK, 3.90 kOe). For a
given b &, the quantities AS, AM, and, via the Clausius-
Clapeyron equation, dT&/dH were determined at equal-
ly spaced values of H. The derivative values were then
integrated to obtain T~(H). Adjustments were made in

b& until T& (3.90 kOe) was equal to 0.88 mK. These re-
sults for T& versus H were then used as a starting point
for the next iteration. After three iterations the input
and output temperatures, at all values of H, agreed to
within better than 1 part in 10, for bj ——0.00317. Fig-
ure 25 shows the final results for bS/R, hM/M„„and
dT&/dH plotted versus the field. The very sharp field
dependence for H~3. 5 kOe is a consequence of the
proximity of the T, transition line. A listing of T&(H)
values is given in Table II.

It should be noted that the determination of b
&

from

TN

{mK)

0.880
0.893
0.901
0.909
0.915
0.921
0.926
0.929
0.930

H
(1 Oe)

3.90
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

Tlh

(mK)

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.88

H
(kOe)

4.500
4.499
4.497
4.491
4.477
4.449
4.390
4.241
3.900

this analysis is very sensitive to the temperature assigned
to the polycritical point. A smaller value of Tpp]y im-
plies a smaller value of b &,'for Tpp&~ =0.83 mK, b

&

——0.

4. H~I, versus T

The general scheme followed in determining the LFP-
HFP transition line is similar to that described in the
preceding subsection for Tz(H). However, here there
were no adjustable parameters and therefore no guaran-
tees that the inferred transition line would be consistent
with the remainder of the phase diagram. This then
provided an important thermodynamic check on the
empirical equations describing the specific level in both
the low- and high-field phases.

Coordinates of the LFP-HFP transition line are given
in Table II. Use of these in evaluating AS, AM, and
dHlg/dT, see Fig. 26, led, by integration, to output
values of HIq which agreed with the input values to

TABLE II. H-T coordinates for the boundary between the
LFP and PP, and for the boundary between the LFP and HFP.
These values are based on the thermodynamic analysis dis-
cussed in Sec. III D.

0.10—

0.10—

0.05

0.05—

0
0 2

H (koe)
0 0.2 04

T (mK)
0.6 0.8

FIG. 25. First-order jumps in the entropy and magnetiza-
tion at T~, and the implied derivative dT~/dH.

FIG. 26. First-order jumps in the entropy and magnetiza-
tion at H» and the implied derivative dH/dTI&.
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within better than 0.3% for T &0.8 mK. At T =Tpo/y
the self-consistency in HIh was 2.5%%uo. Bearing in mind
the uncertainties in the empirical equations describing
the thermodynamic results, especially in the vicinity of
the polycritical point, the results are satisfactory. Re-
peating the analysis with b& =0 led to inconsistencies in
HIh that were an order of magnitude larger for tempera-
tures near Tp Jy.
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APPENDIX: THERMAL RELAXATION TIMES
AND BOUNDARY RESISTANCE

As a consequence of the thermal resistance, there was
a significant difference between the temperature of the
cell body (i.e., the temperature measured with the
LCMN thermometer) and that of the 'He sample when
heat was being applied to the calorimeter. This
difference slowly relaxed away after the termination of
the heat pulse. As indicated in Fig. 2, the size of the
temperature overshoot and also the time needed to rees-
tablish thermal equilibrium increased with increasing
magnetic field. In Fig. 27 the thermal time constants,
extracted from the relaxation curves near equilibrium
conditions, are plotted as a function of temperature for
fields of 0, 1, and 6 kOe. Other data obtained at 2, 4,
and 10 kOe coincided with the 6-kOe curve; i.e., there
was no detectable increase in the time constants for
fields greater than 2 kOe. For temperatures greater than

roughly 8 mK the heat pulses did not cause a tempera-
ture overshoot; instead, the measured temperature slow-
ly increased toward the equilibrium value. This change
in response occurred when the relaxation time became
comparable to the thermometer time constant. At lower
temperatures the thermometer time constant was much
smaller than the thermal equilibrium times.

In the vicinity of the specific-heat peak there were
dramatic changes in the H =0 recovery times. On ei-
ther side of the peak, where the specific heat was chang-
ing rapidly with temperature, the recovery times were 4
or 5 times larger than might have been anticipated from
the higher-temperature data and could not be described
by a single relaxation time. At the peak the times were
about 1 min. Presumably, the anomalous behavior near
the transition is associated with the fact that the transi-
tion is first order and also with the nonuniformity of the
sample density. In the following only time-constant data
obtained well above Tz are considered.

The assumption is made that the spin-lattice relaxa-
tion time is extremely short for our sample contained
within the sma11 pores of the silver sponge. The internal
time constant should then be governed by the thermal
diffusivity. It is estimated that this time is roughly 15
sec at 1 mK and decreasing rapidly with increasing tem-
perature. The much longer thermal relaxation times ob-
served are thus associated with the thermal boundary
resistance.

The measured times correspond to the thermal mass
provided by the liquid He in the thermometer chamber
coming into equilibrium with the thermally-more-
massive solid He sample. The main impedances occur
at the liquid- He —to —silver boundary in the thermome-
ter with resistance RI and at the solid- He —to —silver
boundary in the cell with resistance R, . Since the heat
capacity of the liquid, cI, is small compared to that of
the solid, the relaxation time is given approximately by

5, r =ci(Ri /A i +R, /3, ), (Al)

5000

C

O
CA
C

O

EP

E 2—
O
E
4)

1— H=O 0
o o0

4000

CV

3000
hC

2000

—1000

T (rnK)

FICx. 27. Time constant associated with the reestablishment
of thermal equilibrium following a heat pulse into the calorim-
eter. The scale on the right gives the implied boundary resis-
tance between solid 'He and silver powder.

where 3& is the surface area of the silver sinter in the
thermometer (3.8 m ) and A, is the area in the cell (10.5
m ). Using cI ——2.78nRT=0. 460T J/K (Ref. 12) and
RI ——(250/T) K m /W, '

cIRI/AI ——30 s .

Therefore,

(A2)

R =
S (r —30)= (r—30) .

CI T (A3)

At H =0, ~ is nearly temperature independent and equal
to 60 s (Fig. 27). We thus find R, =(690/T) K m /W
( V =24. 13 cm /mole). The scale along the right-hand
side of Fig. 27 gives TR, determined using Eq. (A3).
For fields greater than 2 kOe the boundary resistance is
described well by R, = (8/T ) K m /W.

It is interesting that very recently Osheroff and
Richardson found very similar results for the boundary
resistance between liquid He and silver powder from
measurements covering the same temperature regime;
they found RI ~ 1/T in zero field, RI ~ 1/T for nonzero
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fields, and essentially no field dependence for H ~ 2 kOe.
Although the magnitude of our R, is roughly a factor of
3 larger than their R&, the true values might agree more
closely. Certainly a good portion of the difference might
be attributed to our correction for the boundary resis-
tance in the LCMN thermometer and to our estimates of
the surface areas. It should also be noted that Osheroff
and Richardson observed R& to increase somewhat with
applied pressure. Certainly the overall agreement
strongly suggests that the interfaces in the two experi-
ments are very similar, which is consistent with there be-
ing several layers of solid helium on the silver surfaces
even though the bulk of the sample is liquid.

The large boundary resistance makes it dificult to
cool solid helium samples at very low temperatures and

in large fields. Using the expression R, C, n/3, the time
constant for cooling is estimated to be roughly 4 h at 1

mK. This value is based on C, =0. 1R, n =0.02 mole,
and 2 = 10.5 m . Here, R is the gas constant. The time
needed to remove the latent heat nL is given by
nLR, /AT A. Using AS=0.4R ln2 and AT =0.5 mK
leads to a time of about 20 h. It should be noted that
both of these times depend on the ratio n /3 and thus
do not change with the size of the cell. Shorter times
can be achieved by reducing n/3, but this would in-
crease the fraction of He surface atoms, which might
behave very differently from those in the interior. A
substantial reduction of these times would then seem
possible only if the thermal boundary resistance could
somehow be reduced.
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