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We have recently found a phase transition in the dynamics of a particle that diffuses in the pres-

ence of a hierarchical array of barriers. The transition occurs as R, a parameter that controls the rel-

ative size of the barriers, is varied. For R & R„ the system is diffusive; as R ~R,+ the diffusion con-

stant vanishes. For R &R„ the system is subdiffusive; the mean-square displacement grows slower

than linearly with time, with an exponent that varies continuously with R. Analytic as well as nu-

merical renormalization-group methods are introduced and used to solve some specific models; how-

ever, the tools developed here are applicable to more general situations as well. In one dimension we

present, in addition to a renormalization-group solution for the asymptotic behavior, several new re-

sults; in particular, scaling arguments that predict transient behavior as well. We show that the

asymptotic regime is approached algebraically, on time scales that obey a law of a Vogel-Fulcher
form near the transition. Higher-dimensional systems that also have such a transition are introduced
and studied. Finally, possible connections to many-body systems such as dynamic spin models and

glassy materials are suggested and discussed.

I. INTRODUCTION

Judging on the basis of recent literature, anomalous re-
laxation appears to be the rule rather than the exception
in many dynamic processes. Relaxation to equilibrium in

glassy materials' often follows a stretched exponential
law. Electron-hole transport in amorphous semiconduc-
tors is governed by algebraic relaxation (recombination). '

Anomalous relaxation processes were observed in a
variety of systems and models, that include spin glasses,
diffusion limited chemical reactions and photoexcited
proteins. Some of the systems of interest are of high
technological relevance, such as particulate materials used
for magnetic recording, that exhibit anomalous decay of
the magnetization. Others are of less applied, but high
theoretical interest, such as fractals, for which diffusion is
anomalous.

A number of recent theoretical papers considered a
variety of models that exhibit anomalous dynamics. Pal-
mer et al. ' consider hierarchically constrained g'assy dy-
namics, in which slow degrees of freedom can relax only
after the faster processes have taken place. Klafter and
Shlesinger' have shown, that this model yields results
similar to what can be obtained by two other theories.
Diffusion in ultrametric spaces was considered by a num-
ber of groups, and shown to yield anomalous behavior,
the nature of which depends on assumptions made on the
hopping rates. " The spaces considered" can be viewed as
the lowest levels (leaves) of various trees, with hopping be-
tween any two leaves possible, with rates that depend on
their (ultrametric) distance.

A central common feature of all systems and models
mentioned is the existence of a hierarchy of time scales as-
sociated with various stages of the relaxation process. A
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FICs. 1. Hierarchical farrier structure. The height of a bar-
rier is inversely proportional to the transition rate. The largest
rate (smallest barrier) is normalized to 1. The other rates are
given by R' (0&R & 1, l is an integer) where 1 denotes the level
of the hierarchy, as illustrated.

particularly simply model, in which this basic feature ap-
pears in a straightforward manner, was recently studied
by Huberman and Kerszberg' (HK). They considered
diffusion on a linear chain, with a hierarchically assigned
set of barriers between neighboring sites (See Fig. l).
Denoting by R a parameter that controls the relative
strength of barriers, HK were able to analyze the problem
in the R « 1 limit (which corresponds, for the case of
thermal activation, to T~O). HK found' the surprising
result that the autocorrelation function decays algebraical-
ly, e.g. , Po(t) —t '~I, with a power x(R ) that varies con-
tinuously with R. The intriguing question, how this be-
havior is connected to the normal diffusion result x= —,',
expected at R =1, was resolved' by identifying a dynam-
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ic transition at R, :

[D(R )t] '~, R )R,
Po(t}- '

I„) R &R, .

Such a transition was first observed by Alexander et al. '

These authors considered diffusion in one-dimensional
random systems, with nearest-neighbor hopping rates W,
taken from a distribution P(W). In particular, they stud-
ied the long time behavior of the autocorrelation function
and its dependence on the behavior of P( W') for 8'~0+.

It should be emphasized that one dimensional diffusion
problems of the kind discussed have trivial steady state
solutions. ' The inverse diffusion constant D ' is given
by the average inverse transition rates. ' This relationship
holds' as long as D ~O.

In this paper we present details of a previously reported
investigation' (Secs. II and III) as well as several exten-
sions and new results (Sec. IV and on). In Sec. II we in-
troduce a renormalization-group (RG) —based framework
to solve such problems. Our solution applies in the non-
trivial, subdiffusive regime as well. The renormalization
group ideas are implemented in Sec. III, in three different
ways; decimation, ' perturbation theory and numerical
evaluation of the /3 function. ' '' The pertubative ap-
proach allows us to solve the problem in more than one
dimension. The numerical approach we present can also
be used for higher dimensional and more general diffusion
problems. Thus we are able to go way beyond the trivial
evaluation of the diffusion constant. It should be noted
that as opposed to the models of Ref. 11, in the classes
treated here the topology of the space is regular, not ul-
trametric; only the hopping rates between neighboring
sites are assigned hierarchically.

In Sec. IV we compute various physically relevant
quantities. First we show how the diffusion constant can
be derived from the RG formalism. Next we derive the
diffusion constant for R ~R, using the standard argu-
ment. ' ' Subsequently a simple, scaling derivation of
the result (1.1) in the subdiQusive regime is presented.
Two other issues of interest are addressed in Sec. IV. We
consider the problem of transient (nonasymptotic) behav-
ior. It is shown that the dynamic process satisfies a gen-
eralized diffusion equation: (,X (t)) =2D(X(t))t where
D(X) is a local diffusion constant determined by the bar-
riers which have, on the average, been passed over at time
t. (X (t) ) as well as D(X) are calculated analytically and
by numerical simulation. The two methods are in excel-
lent agreement. Using the analytic form of D(X), we esti-
mate the time it takes for the system to approach the
asymptotic regime. Surprisingly, a Vogel-Fulcher —type
law' is found. Subsequently, motion in a constant force
field superimposed on the hierarchical barriers is studied
analytically and numerically. For small force the Ein-
stein relation between mobility and the diffusion constant
is found.

In Sec. V, a problem of hierarchical barriers in d ~ 1 di-
mensions is solved using the perturbative approach of Sec.
III. Our results are discussed and summarized in Sec.
VI.

II. MODEL AND RKNORMALIZATION-GROUP
METHOD

A. Statement of model

=——g Mk, k Pk
k'

(2.1)

where the rates WI, ~+~ define the master equation matrix
MI, ~ . The rates W& I, + &

of our model are assigned
hierarchically as shown in Fig. 1 (the transition rate is the
inverse of the barrier height).

Wpp+) ——R, R &1

if k(mod2')=0 for all /(m. At the boundaries we take
confining walls, i.e., W=O.

From (2.1), it is clear that the time evolution of the sys-
tem will be controlled by the eigenvalues IA, ; ) of the mas-
ter equation matrix M& I, . To make this connection pre-
cise, it is convenient to consider the autocorrelation func-
tion Po(t), defined as the probability that the particle is at
time t at the same position it started from at time t=0,
averaged over all starting positions. In Appendix A we
rederive the relationship

Po(t)= f "g(X)e 'dl, , (2.2)
0

where g(A, ) =N '+, 6(k —A, ; } is the density of eigenvalues
of MI, I, ~ We will be interested only in the long time
asymptotic behavior of the system as the size N~ao.
From Eq. (2.2) we clearly see that the long time behavior
is governed by the low-lying eigenvalues of M, i.e., g(A, ) as
A, ~O.

A second convenient measure of the asymptotic time
evolution of the system is the average distance squared
traveled by the particle in a time t, (X (t ) ). A scaling ar-
gument, which we rederive in Appendix A, relates this
quantity to the autocorrelation function

(X'(r))-P, (r) ' as r (2.3)

Sections IIB and III are devoted to the calculation of
Po(t ) as t~ oo, via the calculation of the density of states
g(A, ) as A, ~O.

B. Renormalization-group method: General formalism

The method we use to calculate the density of states
g(k) is the renormalization group. Such an approach is
suggested by the self-similar structure of the hopping
rates. We will discuss three different implementations of
the RG as applied to this problem: decimation, perturba-
tive, and numerical, which together allow us to predict
the behavior of our model for the complete range of the

The model we consider, ' shown in Fig. 1, consists of a
linear chain of sites k=1,2, . . . , N=2". A particle can
hop from site k to sites k+1 with transition rates
W& &+&

——WI, +& &. The motion is governed by a master
equation for the probability Pk(t) for the particle to be at
site k at time t. Probability conservation gives

dPg

dt
~k k~1( k+1 Pk)+ ~k —1k( k —1 k)
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parameter 0(R ( 1.
Although the implementation in each case will be

slightly different, the RG framework used will be the
same. Hence we discuss the general framework first. The
main idea is to regard R, the parameter of our model (the
ratio of transition rates from one level of the hierarchy to
the next), as the scaling parameter of a RG transforma-
tion. We compare a system of size 2' described by the
matrix M1,1, (R ) at parameter R, to a system of size 2"
described by the matrix Mi,'k (R') at a new value of the
parameter R'. We wish to choose this new R' such that
the long time behavior of the two systems will be the
same in the limit n ~ oo. This procedure determines a re-
cursion relation

R'=/3(R ),
which describes how the system scales after the smallest
barriers have been eliminated from the problem. The re-
cursion relation determines the flows and fixed points of
our RG transformation. It is supplemented by a relation
that describes how the density of states g(k) of the origi-
nal problem is related to that of the new problem. Solu-
tion of this scaling relation for g(A, ) at the fixed points,
R*=/3(R*), allows one to solve for g(k) at general R, as
explained in detail below.

The condition that the two systems, described by
M(R, 2") and M'(R', 2" '), have the same long time be-
havior can be restated precisely in terms of the eigenval-
ues of these matrices, Ik;} and IX,'I. We require

are particularly interested in solving it at the fixed points
R * =/3(R *). At such R * we have

g(k) = g(a*A.),
2

(2.6)

g(A, )-A. ~, y= 1 —ln2/lna* . (2.7)

Substituting this into Eq. (2.2) we get for the autocorrela-
tion function at the fixed point R *,

P0(r, R *) t-
x =1—y =ln2/lno. '* .

(2.8)

If our RG procedure is self-consistent, i.e. , scaling as in
(2.4) holds, we expect that for any initial value of R the
system will flow, under the RG transformation, to some
final fixed point R*(R ). The long time behavior of the
autocorrelation function at R will thus be algebraic, with
an exponent given by (2.8) determined by the behavior at
the attracting fixed point R *(R ).

III. RENORMALIZATION-GROUP
IMPLEMENTATIONS

What needs to be done is to calculate the flows from
/3(R ), and the scale factor a(R) at the fixed points R *.
There are various ways of accomplishing this. We first
discuss the method of decimation.

where a*=a(R*). The solution is found by assuming a
power-law form for g(k) and thus finding

k,'(R')=a(R)k;(R) as X;~0, n~co (2.4)

i.e., the low-lying eigenvalues of the two systems should
be related by a simple scale factor a(R ). Such a condition
ensures that as n ~ ~, the autocorrelation functions P0(t)
will have the same asymptotic long time behavior, within
a rescaling of time (see also Sec. IV A).

We stress at this point, that there is no a priori way to
know that an R ' =/3(R ) can in fact be found such that
scaling, as in Eq. (2.4), exists. This is merely the state-
ment of our scaling hypothesis, which must be explicitly
verified by the specific implementation of the RG, which
will also enable us to calculate the functions a(R ) and
/3(R). We further stress that we look for such matching
only in the long time limit, i.e., as A, ~O.

Assuming such scaling exists, we now derive a recur-
sion relation for the density of states under the RG trans-
formation, in terms of the functions a(R ) and /3(R ). Us-
ing the definition of g(A, ) in terms of the A. s, equation
(2.4) and 1V'=N/2 we have

A. Decimation method

This method' consists of taking the set of equations
(2.1) and explicitly solving for the probability P; at every
other site [those marked by an x in Fig. 2(a)] in terms of
the probability at its neighbors P; + i and P; ]. This is
possible since the master equation (2.1) only connects
nearest-neighbor sites. The resulting set of equations de-
scribe a system of half the size, and so if the new effective
hopping rates between sites i —1 and i + 1 have the same
hierarchical structure as in the original problem, though
perhaps with a new value of R, we can read off thc
desired scaling functions /3(R ) and a(R ).

It is more convenient to work here with the Laplace
transform of the master equation (2.1) or equivalently the
eigenvector equations of the matrix Mi,. 1, . If 1/ is an
eigenvector of M with eigenvalue A., the explicit equations
for three nearest-neighbor sites 1, 2, and 3 [see Fig. 2(a)]
are

g(X)—=—

gati(k

—A,;)=,+5N, .
' 2N'

, g 5(ak, —A. ,')= —g'(aX) .
2 N', .

' 2

~i/2 1241+ ~23 03 ( 12 + ~23 )1/2

~41 ~01(t0+ ~1202 ( ~01 + ~12 )41

~43 ~23 02+ W3404 —( &23 + W34 )1/3

(3.1)

Therefore the recursion relation for the density of states is
Solving for the decimated sites 1/, and 1/3 and substituting
into the equation for 1/2 gives

g(X, R ) = g(a(R )A, , /3(R ) ) .
a(R )

2
(2.5) ~l I +~ ]6= colo+ c404 l &0+&4 l&»—(3.2a)

The above recursion relation is valid for all R, but we where



36 DIFFUSION AND DYNAMICAL TRANSITION IN. . . 687

(a) From (3.3a) we thus see that as R~O, the hierarchical
structure is maintained with a new parameter R' exactly
equal to the old R, i.e., for R «1, all R are fixed points
of this decimation. Thus we have the results, as R ~0:

P(R)=R,
a(R ) =(2/R )[1+0(R)] .

(3.4)

2 3 4 5 6 Substituting these results into Eq. (2.8) gives the auto-
correlation function at small R

Rk

(b) Po(t)-t —"'"', x(R)=
ln2 —lnR

(3.5)

This is precisely the result of Huberrnan and Kerszberg'
obtained by different methods.

Z. The R =1 limit

0
X X X, X

2 5 4 5 6 7
For R =1—6, 6 « 1, we find

W24 ——R '" "~ [1+0(5)], (3.6a)

W12 W23a= +
Wpi + W12 —A, W23+ W34 —A,

W01 W12 W23 W34
cp= c4=

W01+ W12 k W23+ W34
(3.2b)

Since we are only interested in the A, ~O limit (asymp-
totically long times), we can set A. =O in the terms a, co,c4
to regain a master equation of the form (2.1). We wish to
normalize the new effective hopping rates of Eq. (3.2) to
have the same form as the original problem, i.e., the
lowest barrier, now between sites 0 and 2, should have a
rate of unity. We thus divide all terms in Eq. (3.2a) by co
and read off the new hopping rates and eigenvalues;

W02 1 &24 =c4/co ~'=k[1+a]/co (3.2c)

Finally we have to check that the new rates Wz4 have the
same hierarchical structure as the original problem, and
that A,

' is independent of position in the chain. For the
choice of sites as in Fig. 2(a), i.e.,

Wpi = W23 = 1y W12 R y W34 —R k

we consider two limits, R « 1, and R =1.
(3.2d)

The R &&1 limit

We find

&24 ——R " '[1+0(R)],
A, '=2k, [1+0(R)]/R .

(3.3a)

(3.3b)

FICx. 2. Section of the hierarchical structure near a barrier of
rate R . We decimate over sites marked by an & by solving for
the probability at these sites in terms of their neighbors. Substi-

tuting the results back into the master equation eliminates these
sites from the problems. In (a) decimation is over every other
site (sites 1,3,5,7, . . . ) and corresponds to the analysis of Sec.
III B. (b) Representation of the decimation scheme of Maritan
and Stella (Ref. 22), where every other pair of sites is eliminated
(sites 1,2,5,6, . . . ).

A, '=4k, [1+0(5)] . (3.6b)

From (3.6a) we see that as 5~0, the structure again
remains hierarchical, but now with a new parameter
R'=i/R. Thus R near 1 flows under successive itera-
tions of the RG to the fixed point R *=1. We have as
5~0, i.e., R =1,

p(R)=v'R

a(R)=4[1+0(5)] .
(3.7)

Using (3.7) in Eq. (2.8) gives, for the behavior at the
R'=1 fixed point,

(3.8)

the expected answer for the equal barrier chain, i.e., nor-
mal diffusion.

For a general value of R, the new effective rates
W24 ——C4/cp will not have the appropriate hierarchical
structure; nonhierarchical couplings are generated. Thus
the new decimated problem is not of the same form as the
original one, and this RG scheme breaks down. Howev-
er, the two limits where this scheme works, R «1 and
R = 1, provide enough information to predict the qualita-
tive structure at all R. At small R, there is a line of fixed
points. ' The autocorrelation function Po(t) has anoma-
lously slow algebraic decay with an exponent that con-
tinuously varies as a function of R. (This is reminiscent
of fixed line problems in usual thermodynamic RG's).
For R close to 1, the system flows into the R *= 1 fixed
point which characterizes ordinary diffusion. There
presumably exists therefore an intermediate critical value
R, at which the line of fixed points present at small R
ends, and the flow to R'=1 begins. Such an R, results
in a sharp transition between the two regions of anorna-
lous and ordinary diffusion. This scenario is now verified
in the following sections.

We point out that an alternative decimation RG has re-
cently been introduced in a very nice calculation by Mari-
tan and Stella. Instead of decimating over every other
site as in Fig. 2(a), they choose to decimate over every
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other pair of sites as in Fig. 2(b). The resulting decimated
master equation is found to have the required hierarchical
structure for all initial values of R. Exact recursion rela-
tions are found, which verify all our results that were pre-
viously found by the methods discussed below.

B. Perturbative RG

Although the decimation procedure discussed above
strongly suggests a line of fixed points that terminates at a
critical R„an alternative scenario is also possible; the
R &&1 calculation could indicate that R *=0 is marginal-

ly unstable, with no line of fixed points, and so no transi-
I

tion. To resolve this question, as well as to calculate
a(R ) to higher order in R, we need a new scheme which
will allow a systematic expansion in powers of R. To do
this, we calculate the eigenvalues of the master equation
matrix Mk q (R ) directly, using ordinary Rayleigh-
Schrodinger perturbation theory in R. Comparison of
these eigenvalues for matrices of different sizes will enable
us to extract the scaling functions a(R ) and /3(R ), as dis-
cussed in Sec. II B.

Rayleigh-Schrodinger perturbation theory is particular-
ly easy in our case. To see this, note that the matrix (2.1)
for a system of size 2" can be easily decomposed as fol-
lows (01, &&i denotes a k X k' matrix of zeros):

0(2n —l 1) ~ 2n —l 0(~n —I
1 ) 2n

M(n —1)
M(n ) =Mo(n )+Mi (n ) =

2 ' — ~ 2'

02n — l . ~n -1

M(n —1)

0 0
+R 00

0( 2'

0 —1 1 0 0
0
0 . (3.9)

l 1)~ gn —l 0(2n —]
1 )

211 — l

0 1 —1 0 0

The first term Mo represents the matrix for two decoupled
half systems of size 2" '. These half systems are coupled
through the second matrix M1, the perturbation which de-
scribes hopping between the half systems over the largest
barrier of rate R " ' connecting them [see Eq. (2.1)]. Be-
cause of the symmetry of the system, eigenvectors are al-
ways symmetric or antisymmetric with respect to
reflection about this tallest middle barrier. So if g(n —1)
is an eigenvector of M(n —1), with eigenvalue k, we con-
struct as the zeroth-order eigenvectors of M(n ), the sym-
metric and antisymmetric direct products of g(n —1), i.e.,

M.;(n —1) n —m, —1

6k;(n ) R
=—[1+0(R ' )] . (3.13)

which represents the higher-order corrections, in the limit
n —~co. p, (R) is diAerent for the diFerent eigenvalues i,
but does not depend on the system size 2". The finite-size

n —m,corrections to the n~ oo limit are of order O(R '),
where m; is some integer of order log2i. The important
point is that for i finite, m; remains finite as n ~ ap.

Thus the ratio of splittings from level n to n —1 is

P'+'(n )= (g(n —1), +P(n —1)) .v'2 (3.10)

If g(n —1) is symmetric then it is clear that
Mi(n )g'+'(n ) =0 and hence P'+'(n ) remains an exact
eigenvector of M(n) with eigenvalue A, . The remaining
g' '(n) gives rise to a new higher eigenvalue, separated
from A, by O(R ). Similarly, if f(n —1) is antisym-
metric, then g' '(n) is an exact eigenvector. Therefore,
the eigenvalue spectrum changes as n increases as
schematically shown in Fig. 3. The splitting of each new
eigenvalue from the old remaining one is given, to lowest
order in R, by

n —1

For n~ oo, but i finite (i.e. , A, ~O) we thus see that
k,'(R, n —1)=(2/R )A. , (R, n ) or f3(R)=R and cz(R) =2/R.
These are precisely the results of the decimation calcula-
tion, but now demonstrated to all order in R as n~ac,
A, ~O. Thus our RG does have a fixed line, and the ex-
ponent for the autocorrelation function decay given in Eq.
(3.5) is exact to all orders in R.

QA, "'(n )= (f'o'(n )
~

M&(n )
~

P' ) =2
2

(3.1 1)
-3

where we use the fact the elements of P+(n) are, to lowest
order in R, just + 1/(2" )

'

One can now calculate 6k; to higher order in R by con-
tinuing the perturbation theory. Due to the recursive na-
ture of the way M(n ) is constructed from M(n —I ), it can
be seen that 5A, ;(n ) has the following form:

n —1

F 2P-2
(D

pn-I

Eiqenvo lues X.

R
5A, (n)=2I 2

[1+p,(R)+O(R ')) . (3.12)

The leading term is simply the first-order correction
(3.11). p, (R ) is an infinite series in R (of lowest order R )

FIG. 3. Schematic representation of eigenvalues of the
master-equation matrix (2.1) for systems of size 2". All eigenval-

ues of a system of size 2" ' remain eigenvalues of the system of
size 2'. An additional eigenvalue splits oft from each of these
old ones by an amount of O(R" '/2" j.
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C. Numerical RG

@=A,)/A, q, (3.14)

In Sec. III 8 we have shown that to a11 orders in per-
turbation theory in R, we have R'=P(R ) =R, i.e., a line
of fixed points, and that a(R ) =2/R. However, from Sec.
III A it is clear that this line of fixed points must ter-
minate somewhere in the interval 0 &R & 1. At some crit-
ical R, we expect level crossing to cause perturbation
theory to break down, end the line of fixed points, and
mark the transition to ordinary diffusion. To study this
transition we now proceed to a numerical method. The
RG procedure we follow' is analogous to that of the per-
turbation method of Sec. IIIB, only now we calculate
directly (numerically), instead of perturbatively, the eigen-
values of the matrices M(R, n ). Although for our particu-
lar one dimensional problem we will find in Sec. IV a
simpler way to directly compute this critical R„ the
method we outline in this section is completely general
and should be applicable to other models and higher di-
mensions.

We compute low-lying eigenvalues for systems of sizes
2 up to 2' . The matrices are tridiagonal and our algo-
rithm, based on the negative eigenvalue theorem com-
bined with bisection, was found to be extremely efficient
and stable. In Fig. 4 we plot the results for

y„~y„, it is clear that P(R )
—=R ' —R must go to zero for

0&R & —,', where y„has finite slope, and that P(R ) may
be nonzero only for —,

' &R &1 where y has zero slope.
This clearly establishes the critical value R, = —,

' as the
point where the line of fixed points at small R ends, and
the transition to ordinary diffusion takes place.

For 0&R & —,
' therefore, R'=R and from perturbation

theory we know that A,
&

of a system of size 2" ' is equal
to kz of a system of size 2". Thus y =—k

& /kz ——A,
&
/

ki ——1/a(R ) from the definition of a in (2.4). So
a(R ) = 1/y =2/R as expected [Eq. (3.4)]. For
—,
' &R & 1, y is just that of the equal barrier R =1 mod-
el, and so the long time behavior must be ordinary
diffusion.

In Fig. 5 we plot /3(R):—R' —R as determined by the
above numerical matching for the sizes considered. As
expected, as n ~ oo, P(R ) converges to a well-defined
function where P=0 for 0 & R & —,', while giving a Row to-
ward R'=1 for R ) —,'. Near R =1, we find agreement
with the decimation results of Sec. III A, R'=i/R.

Finally, we have checked the P functions of Fig. 5 for
consistency in matching other low-lying eigenvalue ratios
k&/A, ; for i =3, . . . , 6, and find good agreement. This
numerically verifies the validity of our one-parameter scal-
ing hypothesis (2.4).

the ratio of two lowest nonzero eigenvalues, as a function
of R. The limiting (n~ oo ) curve (dashed line) is clearly
seen to be the straight line y(R)=R/2 for 0&R & —,',
which joins continuously the line y(R ) = —,

' for —,
' & R & 1.

By comparing curves of y„ to y„& for finite n, we can
construct the P function R'=P(R) by matching

(3.15)

This ensures that these lowest two eigenvalues are scaling
linearly as required by condition (2.4). As n~co and
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FIG. 4. Ratio of lowest two nonzero eigenvalues
y„=k, i(n )/A, z(n ) vs R for systems of size 2'. Main graph shows
numerical results for sizes 2' and 2 . As n~ao the limiting
curve (dashed line) is y =R/2 for R &R, = —' and y = —' for
R ~ R, . Inset shows curves for sizes 2", n =9, . . . , 15 on an ex-
panded vertical scale.

Fl&. 5. Scaling functions p(R) between systems of size 2"
and 2" ', i.e., R'(2" ')=R(2")+P(R), as obtained by matching
y„&(R')=y„(R) from the curves of Fig. 5. Curve 15, for ex-

ample, results from comparison of the system of size 2' to one
of size 2' . For R & R, =0.5, the curves converge to zero as
n~ oo, and one has a line of fixed points. For R, &R &1, R
Rows to R =1 under successive iterations. Near R =1, the de-
cimation result R'= &R is found (dashed line).
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IV. SCALING AND THE DIFFUSION CONSTANT:
TRANSIENTS AND EXTERNAL FORCES

For n ~ oo the geometric series (4.6) diverges for
R & R, = —,', i.e., D =0, while for R )R, one obtains

A. Dift'usion constant: renormalization approach D(R ) =2(R ——,
'

) /R . (4.7)

Having established in the previous sections a dynamic
phase transition at R, = —,', between anomalous and ordi-

nary diffusion, it remains an interesting question to calcu-
late the diffusion constant D of the system in the ordinary
diffusive region —,

' & R & 1. We define D as,

D= lim (X (t))/2t . (4.1)

Po(t, R) = ,'Po[t/—a(R ),P(R)] . (4.2)

For —,
' &R & 1, we now iterate Eq. (4.2) until R flows to

R*=1, to obtain

Po(t, R)= lim Po t Q, ,),l, (4.3)
~

2"; 0 a(R")

where R "=p"(R ) is the ith iterate of the RG.
But for R*=1, the equal barrier model, we know

Po(t, l) —t ', so that Po(t, R) —(Dt) '~, where

We expect D~O in some characteristic way as R ~—,
'+.

In principle the diffusion constant D may be calculated
from the scaling functions a(R) and p(R ) defined in Sec.
II. Using the recursion relation (2.5) for the density of
states g(A. ,R ), and the relation (2.2) between g(A, , R) and
the autocorrelation function Po(t, R ), we can derive the
recursion relation for Po,

Therefore the diffusion constant vanishes linearly as
R R+.

This approach allows us to make a more general state-
ment. Since the sum (4.5) is independent of the ordering
of the barriers, there will be a dynamic phase transition
from ordinary to anomalous diffusion as R decreases
through R, = —,', for any spatial arrangement of barriers,
provided they have the same distribution of rates as in our
hierarchical model. One may now ask whether the auto-
correlation function exponent x(R), see Eq. (3.5), in the
anomalous region R &R, depends in general on the spa-
tial arrangement, or just on the rate distribution as in the
case of D(R). For the case of randomly positioned bar-
riers exactly the same results (3.5) for x(R ) were found in
an explicit calculation by Alexander et al. ' For the more
general case, we believe that the scaling arguments
presented below in Sec. IV C show x(R ) to remain equal
to our result (3.5) for all chains which possess a reason-
able N~ oo limit.

C. Anomalous diffusion from scaling

Finally, we can use the result (4.6) to calculate the au-
tocorrelation function exponent x(R ) in the anomalous
region via the following scaling argument. For a system
of finite size N=2", the diffusion constant is finite and
given by (4.6) as

D(R)= P ()
, a(R")

(4.4) D(N)= 1 —(1/2R) N)+)na j)~2

1 —(1/2R )"
(4.8)

B. Diffusion constant: standard treatment

A very general result' ' proved by Zwanzig' shows
that for any one-dimensional arrangement of N barriers,
the diffusion constant is simply related to the hopping
rates by

(4.5)

In our models, for a system of size N=2" there are
2" ' barriers of rate R . So the sum becomes

1
1

D p (2R)
(4.6)

Since: D in Eq. (4.4) sets the time scale of diffusion at
—,
' &R & 1, and the diffusion constant at R =1 is just unity,

D(R ) of Eq. (4.4) is precisely the diffusion constant in the
ordinary diffusive region.

In order to calculate D(R ) from (4.4) we need to know
the scaling functions P(R ) and a(R ) accurately, particu-
larly near the critical point R, = —,'. The numerical

methods discussed here were not sufficiently accurate to
do this. However the analytic recursion relations derived

by the decimation scheme of Maritan and Stella can be
used successfully to calculate D(R), as discussed else-
where. We turn instead to an easier method.

The time it takes a particle to move a mean-square dis-
tance of order N, the size of the system, is thus given by

N~-D(N)r . (4.9)

Substituting (4.8) in the expression (4.9) and rearranging
powers of N gives

N2 t 2 1n2/(1n2 —1nR ) (4.10)

Pk(r+&r ) —Pk(t) =( Wp+, k bt)Pk+, (r)

+ ( Wk —), k At )Pk, (t )

[(~k, k+1+ ~k, k —1)~r ] k(r)

(4.11)

The initial position of a particle was chosen randomly
in the central third of a long chain, and a random walk
was generated. At each time step a random number
0 & r & 1 was generated, and a move decided according to

This, combined with the scaling relation (2.3) connecting
the mean-square distance to the autocorrelation function,
reproduces the anomalous exponent found in (3.5).

We have verified Eq. (3.5) and (3.8) by doing numerical
simulations for several values of R both above and below
the transition R, = —,'. A discrete-time version of the mas-
ter equation was used:
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—1, r&8'~~ ~At

Zk= +1, r)1—W, , + at
0, otherwise .

(4.12)

Since one must have Wq I, &
At & 1 —W& A+] At, we

used the largest possible value At can take, i e.,
At =1/(1+R). Ensembles of more than 5000 such walks
were generated to calculate the average distance squared,
(X (t) ) = ([k(t) —k(0)] ), averaging initial positions
k(0) over a large (albeit finite) number of sites. Boundary
effects were treated by allowing addition of sites beyond
the boundary, if the diffusing particle reaches it. In prac-
tice this happened extremely rarely.

Our results, ln (X (t ) ) versus lnt for two values
R =0.7&R, and R =0.2&R, are shown in Figs. 6(a)
and 6(b). The asymptotic behaviors agree with those pre-

dieted in Secs. III and IVB and IVC. For long times,
the slope of Fig. 6(a) is unity, corresponding to ordinary
diffusion, while the lnt =0 intercept is just lnD, D =0.57
[as compared to the prediction from Eq. (4.7), D =0.572].
For Fig. 6(b), the slope is 0.61 compared to the predicted
value 2 ln2/(ln2 —InR ) =0.60.

D. Transient response

Until now we have only treated the asymptotic (t~ oo )

behavior of the hierarchical chain. In this section we turn
to consider the transient behavior at intermediate times.
Our purpose is to predict (X (t)) =((k(t) —ko) ), the
average squared displacement as a function of time, where
we average over initial position kp.

Motion at intermediate times is conveniently described
in terms of a local time dependent difFusion constant D(t),
defined by

(X2(t)) =2D(t)t . (4.13)

IO

Given D(t), one can calculate the average displacement
(X (t)) as above. Equivalently, we can choose to define
a local, length-scale-dependent diffusion constant D(X).
The time required to move the mean-square distance
X—:((X ) )' is then just

8
Al

OC t(X)=X'/2D(X) . (4. 14)

2-
4

8
[n t

8
In t

10

IO

12

12

Clearly D(X) is simply related to D(t) by D(X)
=D(X(r ) ).

We now make the following ansatz about the function
D(X), based on the success of the scaling method of Sec.
IVC. We assume that D(X) must scale with X in an
hierarchical way, representative of the hierarchical struc-
ture of our chain. That is, we assume that at time t, the
system has effectively sampled barriers in the chain, only
up to some level of the hierarchy n(t). That is, only bar-
riers of rates R ', l & n(t), have as yet played an important
role. The mean-square distance X traversed in this time,
is just proportional to the distance N=2"'" required to
sweep out these barriers. We can thus compute D(X), via
Eq. (4.5), by averaging the inverse hopping rates of the
barriers up to this level n of the hierarchy. This calcula-
tion has already been done in Eq. (4.8), where we have
written an explicit equation for D(N), the diffusion con-
stant for a chain of length N=2', containing barriers up
to the nth level of the hierarchy. Thus the D(X) defined
by Eq. (4.14), can be expressed in terms of D(N) of Eq.
(4.8);

D(X)=D(N =X/f ), D(N) = 1 —1/2R
1 —(1/2R)"

N =2" (4.15)

FIG. 6. Results of numerical simulation for displacement
(X (t 1)—:([k(t)—k(0)] ) vs time t, on a log-log scale. (a) is for
R =0.7~ R, ; the slope as t~ oo is unity, as expected for ordi-
nary diffusion. The diffusion constant, determined numerically
from the lnt intercept is D =0.57, as compared to the theoretical
value 0.572 from Eq. (4.7). (b) is for R =0.2&R„ the slope is
0.61, corresponding to anomalous diffusion, and is in good agree-
ment with the theoretical value 0.60, as obtained from Eqs. (2.3)
and (3.5).

where f is an unknown proportionality constant. Equa-
tions (4.14) and (4. 15) thus completely specify the tran-
sient behavior of the system, and enable us to directly cal-
culate t(X).

We have tested this scaling ansatz by checking against
numerical simulations. The details of the simulation
method have already been presented in the preceding sec-
tion. In Fig. 7(a) we present results for (X ) versus t for
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n (r, ) = —In@/ln(2R ), N = 2" . (4.16)

(4. 14)—(4.15) for the transient behavior, we can ask what
is the time scale on which the system crosses over to its
asymptotic long-time limit. From Eq. (4.8) we see that
D(N(r ) ) approaches its asymptotic limit algebraically.
Hence no sharp crossover time exists. For R ~R„we
can define instead a time r, which is the time it takes for
the diffusion constant to reach its asymptotic value to
within a fraction e, i.e., D(N(r, ))=D(oo)(1+@). From
Eq. (4.8) for D(N) we have

UJ

0 I 2

TIME t (IO )
—1n21ne/(R —R, j

e

R —R,
as R~R,+ . (4.17)

Combining this with Eq. (4.14) then gives r,-N /
D(N)-2'"/D(m) or

I
I
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This relaxation time ~, therefore obeys a Vogel-Fulcher
law near the transition. Similarly, for R &R„we can
define ~, as the time it takes for the diffusion constant to
reach within a fraction e of its asymptotic scaling behav-
ior, i.e., D(N(r, ))=D(N(ca))(1+a). By D(N(r, )) and
D(N( cc )) we mean the exact and large N scaling expres-
sions for D, as given by the middle and right most terms
in Eq. (4.8), respectively. This r, thus measures devia-
tions from the asymptotic behavior (4.10). Again one
finds n (r, ) = inc/In(2R ) and so a similar Vogel-
Fulcher —type law is obtained. Note that since R depends
on temperature T, linearization of R ( T ) near T, [defined
by R ( T, ) =R, ) yields the conventional Vogel-Fulcher
form.0 20 40 60 80

MEAN SQUARE DISTANCE I:~ x ( t ) ~ ] E. Response to an external force

FIG. 7. (a) Mean-square displacement (X (t)) vs time, for
R =0.501&R, . The solid line represents results of numerical
simulation, compared with the theoretical prediction (diamonds)
based on Eqs. (4.14) and (4.15) with f=0.29. (b) D(X) vs X, as
obtained from simulations (crosses), using Eq. (4.14), compared
with the analytic expression (diamonds) from (4.15). The param-
eter f=0.29 was obtained from best fit.

a value of the parameter R =0.501 ~ R, . We have chosen
a value close to R, in order to have the largest transient
effects. The solid line represents the numerical data from
the simulation, while the diamonds represent our theoreti-
cal prediction as computed from Eqs. (4.14)—(4.15). Ex-
cellent agreement is obtained for a value of f=0.29. In
Fig. 7(b), we plot D(X) versus X, in order to highlight the
transient effects in Fig. 7(a). The crosses represent values
D(X)= (X (r ) ) /2t obtained from the simulation data,
while the diamonds are the values computed from Eq.
(4.15). The transient effects are now more clearly present-
ed, with D(X) decaying toward its asymptotic value (4.7)
as X~ op. Agreement between simulation and our an-
satz, obtained by best fitting a single parameter f, remains
excellent. Thus the validity of our ansatz is verified.

Similar agreement is found for R =0.499 &R, . The
only difference is that for R &R, the asymptotic value of
D(X) vanishes. Having established the validity of Eqs.

Wk, k+1=&Wk+ 1, k

—AE!k~ T —Fdo/k~ Ta=e ' =e
(4.18)

where do is the lattice spacing.
The master equation takes the form

dPk

di
~k + I, k Pk + I ( t ) + II k —I, k Pk —I ( r )

( ~k, k + I + ~k, k —I )Pk ( t )

The steady-state solutions Pk' is obtained by setting
dPk'/dt=0. The explicit solution can be obtained using

In this subsection we study motion in the presence of
the hierarchical barriers described above, and a uniform
external force. Since the diffusion constant is proportion-
al to the mobility (Einstein relation), one expects the mo-
bility to vanish for R & R, ~ Hence in this anomalous re-
gime the net average velocity of the system vanishes; no
current is generated in (linear) response to the external
force.

The external force can be represented by breaking the
(left-right) symmetry of the transition rates, e.g. ,
Wk k+ && Wk+1 k. We assume that the rates Wk k+1 are
determined by thermally activated hopping over energy
barriers. The uniform force I' is derived from a potential
of constant slope, and hence for all k
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V"(R ) = (a —1)D(R ), (4.21)

with D(R) given by (4.5). For small forces, I'do «ksT,
the linear response, i.e., Einstein relation

V"(R ) D (R) d
k T

(4.22)

is found.
For R & R„D(R ) & 0 and finite mobility (or a constant

steady state) velocity V" is obtained. This means linear
drift (X(t)) = V"t For .R &R, the response to a uniform
external force is not a constant steady state current.
Rather, the motion in the anomalous regime has the form

(X(t) ) —t~, P= —ln2/1nR (4.23)

the methods of Van Kampen and Derrida. The steady
state velocity is given by

y"k=, (IVk, k+i —IVk, k .)~"V"= (4.20)
Xik = i k

If we now use the hierarchical rates of the last sections for
Wk+~ k and the solution ' for Pk', we obtain in the
N~oo limit

We calculate P by a method similar to that of Secs. IV B
and IVC. We first consider a finite system; from (4.21)
and (4.8) we have

V(N ) D (N ) N
lnR/In2+ 1 (4.24)

Hence the time needed to traverse distance N is t(N),
given by

(N) N —
I R/1n2 (4.25)

and from this we finally get f3 of (4.23). Hence in the nor-
mal diffusive regime (R & R, ) the linear response to a con-
stant external force is a steady-state current, with constant
velocity. The mobility is proportional to D (Einstein rela-
tion). In the anomalous, subdiffusive regime mobility and
diffusion constant vanish; the system responds to the
external force by a nonlinear drift, given by (4.23).

The predictions (4.21) and (4.23) were confirined in nu-
merical simulations, the details of which were described in
Sec. IV C. Ensembles of more than 5000 such walks were
generated to yield (X(t)) —= (k(t) —k(0)). The results
were found to be in excellent agreement with (4.21) for
R &R, or (4.23) for R &R, . Deviations, of order 2%, are
due to the fact that averaging over initial positions was
taken over a subset (5000 out of 10 ) of the allowed sites.

Representative simulations are shown in Figs. 8(a) and
8(b), for R =0.65&R, and R =0.4&R„respectively, us-

ing a =0.5 for both. For R =0.65 the measured and cal-
culated velocities are V=0.235 and 0.240, respectively.
For R =0.4 the exponent 13 was measured (predicted) to
be 0.75 (0.756).
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V. HIGHER DIMENSIONS

We consider now the generalization of our hierarchical
model to higher dimensions. The case for d =2 is shown
in Fig. 9. We will focus here on d=2 for description

0 I

Int
FICx. 8. Results of numerical simulations for displacement

(X{t)) = (kit) —k(0)) vs time t, in the presence of a uniform
applied force F, where a = exp( —Fdo/k&t) =0.5. (a) is for
R =0.65&R„ the asymptotic velocity from the simulation is
v=0. 235 as compared to 0.230 as calculated from Eq. (4.21).
(b) is for R =0.4&R„ the asymptotic behavior is governed by
the exponent P [Eq. 14.181] which is found in the simulation to
be 0.75 as compared to 0.756 as calculated from Eq. (4.23).

FIG. 9. Hierarchical model in two dimensions. The system
when in cell r can hop only to its nearest-neighbor cells, r+x
and r+y. The height of the barriers between cells is proportional
to the thickness of the lines in the figure. Moving along any
column or row one sees the same sequence of barriers as in the
one dimensional model of Fig. 1. The highest central barriers
(thickest lines) split the system into four quadrants which form
the basis of the perturbation theory of Eq. (5.1).
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sake, but the generalization to arbitrary d is trivial. In
Fig. 9, the thicker the line, the higher the barrier it
represents. Moving along the system down any column
or across any row, one sees the same sequence of barriers
as in the one dimensional model of Fig. 1. The master
equation connects nearest-neighbor cells; i.e., cell r is con-
nected to r+x, r+y, etc. The master-equation matrix
M(n), for a system of length 2", factors in a similar way
as the one-dimensional case discussed in Sec. III B [see
Eq. (3.9)].

M(n ) =M (n —1)+M, (n ), (5.1)

where the first term is just the decoupled direct product of
the 2 subsystems of length 2" ', and M& is the coupling
between them due to the tallest barrier connecting cells
along the common edges of these subsystems. In terms of

the two dimensional example of Fig. 9, M (n —1) con-
tains the matrix elements describing the hopping among
cells contained within each of the four largest quadrants
(assuming an infinite barrier at the quadrant edges); while
M((n) contains the matrix elements describing the hop-
ping between quadrants across the tallest barrier (thickest
line) separating them. M((n ) is of order R"

In two dimensions, let xy and x'y' denote sites on the
lattice. Then M((n) is a 2 "X2 " matrix, whose elements
are most naturally characterized by two indices;
[M((n)]„~„~ represents that matrix element connecting
site xy to site x'y'. The only nonvanishing elements of
M((n) are associated with the internal boundary sites of
the four largest quadrants; i.e., a site xy, on the boundary
B of one quadrant, from which one can hop to a site x'y',
on the boundary B' of a different quadrant. Labeling
these internal boundaries B;, I, =1,2, 3,4, we have

gn —1 xy =x'y'HB; any i

[M ((n)]„~ = —R" ', xy&B;, x'y'&BJ, i&j, xy and x'y' nearest neighbors

0, otherwise .
(5.2)

As in the one-dimensional case, each eigen vector
P(n —1) of M(n —1), with eigenvalue A, , must either be
symmetric or antisymmetric with respect to reOection, in
any one of the d directions about the tallest barrier in the
center. Thus we can construct from each P(n —1)
the 2 degenerate eigenvectors, with eigenvalue k, of
M2 (n —1), which form the zeroth-order approximates to
the eigenvectors of M(n). These are just the symmetric
and antisymmetric direct products of g(n —1). In two di-
mensions they are

q( )(n ) q(o)(n )

(5.3)

These zeroth-order approximates have a reAection sym-
metry determined by the original symmetry of g(n —1),
and the symmetry of the direct product taken. Thus for
example, if g(n —1) is symmetric with respect to
refiection in x and antisymmetric with respect to reAection
in y, then the product gz

' of Eq. (5.3) will be symmetric
in x and symmetric in y, while the product g(( ' will be
symmetric in x and antisymmetric in y, etc.

The splitting of each eigenvalue A. of M(n —1) into 2
new eigenvalues of M(n) is given to lowest order by the
diagonal matrix elements (off-diagonal elements vanish by
symmetry)

(o)(n )
1

(2dn)1/2

x I —1

x 1 —1

x 1 —1

x 1 —1

(5.5)

0 2 —2 0
0 2 —2 0

'O 2 —2 O

0 2 —2 0

(5.6)

To obtain (5.4), the linear product (PJ( '
~
g) has to be tak-

en; this will yield [see Eqs. (5.5) and (5.6))

i.e., a function symmetric in y and antisymmetric in x.
To lowest order in R, all elements of gI

' are +1, with an
overall normalization of 1/2 "

To evaluate (5.4) we just consider the function

/=M, (n)g( '(n),

with M( as given in (5.2). The only nonzero elements of
g are at xy EB;. Say x'y' is the nearest neighbor to which
xy is connected by M(. The xy element of g will be
nonzero only if the signs of fI ' on xy and on x'y' are not
the same; that is, g„~&0 only if g~(

' is antisymmetric with
respect to the reAection that maps xy~x'y'.

Hence, for our example PI
' of (5.5) we get

M~"(n)= (QJ( '(n)
~
M((n)

~

l(J"'(n) ), (5.4)
(y(.0~

~ q) —R"—()&2—
"&&4&&2' (5.7)

where j=1, . . . , 2 . We now evaluate this matrix ele-
ment, to lowest order in A. In two dimensions we consid-
er for example

The last factor of 2' ""comes from the fact that in d di-
mensions there are 2'" "" sites along a single boundary
surface that separates the system into two halves.

For general d and any P~( ', we proceed in a similar
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manner. If the initial QJ(
' is antisymmetric about d' out

of the d possible directions in d dimensions, then the
above arguments hold for each antisymmetric direction
and the result is simply multiplied by O'. We thus have
in general that the splittings of the new eigenvalues to
lowest order in R are

transition at R, = —,
' between anomalous and ordinary

diffusion, and the autocorrelation exponent x(R ) is just d
times the one dimensional value. For a d-dimensional
problem in which the barriers are placed in a manner oth-
er than our spatially hierarchical way, such as randomly,
the results are expected to be more complicated.

M.„"'(n ) =2(R /2)" 'd', (5.8)

g(A, , R ) = g(a(R )X,P(R ) )
a(R )

(5 9)

and so identical arguments as presented in Sec. III give
for the autocorrelation function along the fixed line,

P, (t,R)-t '~', x(R)= (5.10)
1n2 —lnR

Thus we have anomalously slow diffusion with an ex-
ponent which is just the one dimensiona1 result, multi-
plied by the dimensionality d. Since the exponent associ-
ated with ordinary diffusion in d dimensions is simply
x =d /2, if we assume x(R ) to be a continuous function of
R through the transition, as in one dimension, we again
get R, = —,'.

We can demonstrate the validity of this last assumption
regarding the continuity of x(R ), by just noting that if p»
is an eigenvector of Mqk for the 1d problem, with the ei-
genvalue A, , then we can construct an eigenvector of the d
dimensional problem by letting t(»»» ——g» for all

k2, k3, . . . , kd (where k&, k2, . . . , kd are the site coordi-
nates), i.e., we just let p vary as in the ld case in one par-
ticular direction, and copy it identically in all the trans-
verse directions. The resulting eigenvalue is the same k as
for the ld P». The subset of eigenvalues of the d-
dimensional problem obtained this way, therefore scales in
exactly the same way as the 1d problem and so we get the
same functions P(R) and a(R). The perturbation result
tells us that all eigenvalues must scale this same way
along the fixed line, and if we assume the same is true in
the ordinary diffusive region, we therefore must have

R, = —,'.
Thus the generalization to d dimensions produces no

qualitatively new results. There is again a dynamic phase

where each M.d" has degeneracy d!/(d'!)(d —d')!, i.e., the
number of ways to select the d' antisymmetric directions
from the d possibilities. Note that for that particular
product (5.3) which gives a g, '(n) symmetric in all direc-
tions, i.e., d'=0, M&QJ '=0, so 5K=0, and this g,' '(n ) is
an exact eigenvalue of the new system. Thus as in one di-
mension, all eigenvalues of the system of size 2" ' remain
eigenvalues of the system of size 2", with 2 —1 new eigen-
values splitting off from each old one, each splitting of or-
der R" ' as in Eq. (5.8).

To higher order in perturbation theory, we can again
argue that the recursive nature of the matrices produces
an expression of the form (3.12) and so as n~ oo we
again find that the eigen values scale with the same
coefficient, kd(n —I)/Ad (n, R)—:a(R), where a(R)=2/R
as in one dimension. Thus we again have a line of fixed
points R'=R.

In d dimensions the recursive relation for the density of
states is trivially found to be modified as

VI. SUMMARY AND DISCUSSION

We have solved the problem of diffusion in the presence
of a one-dimensional hierarchical set of barriers (Fig. 1),
where the hopping rates from one level of the hierarchy to
the next scale with a constant factor 0&R & 1. We find a
phase transition in the asymptotic long-time dynamics at
R, = —,'. For R, (R we have ordinary diffusion; the auto-
correlation function behaves as Po(t) —t '~ and the
mean-square distance as (X (t ) ) -Dt, where the diff'usion

constant vanishes linearly as R~R,+. For R &R, we
have anomalously slow diffusion. The autocorrelation
function behaves as Po(t) —t ' ', where x(R ) =ln2/
(ln2 —lnR ) ( —,

' is a continuous function of R and equals —,
'

at R =R, . We solved the problem in the presence of a
constant external force. The Einstein relation was found
to hold, producing a steady-state current in the diffusive

regime, and an anomalous response in the subdiffusive re-
gime. We also found analytical estimates for the time it
takes for the asymptotic (long-time) behavior to set in.
We have considered a generalized hierarchical structure in

arbitrary dimensions d and conclude that the same behav-
ior as in the 1d case remains; a transition occurs at R, = —,

'

only autocorrelation function exponents are now just
dx(R). For the ld case we have also considered diff'erent

spatial orderings of the barriers. We find that, provided
the distribution of hopping rates is the same as in our
hierarchical model, there remains a transition at R, = —,',
and that the long-time behavior is identical in the ordi-
nary diffusive region for all possible spatia1 orderings.
For the particular case of random ordering, ' the auto-
correlation exponent in the anomalous region R &R, is
also identical to our hierarchical model. These observa-
tions suggest that the type of transition we find may be of
a more general nature than just describing the particular
model considered here.

Although the problem we have considered is a single-
particle problem, the scenario for the dynamic transition
we find here may be of relevance for certain many-body
thermodynamic systems. For example, dynamics of spin
systems can be viewed as a random walk in phase space.
Usually the possible transitions are severely restricted (sin-
gle spin-Hip, or some finite number of spins can be fiipped
in any one time step). Such restrictions force the system,
in order to reach some point of low energy, to transverse
points with high energy. This produces large barriers be-
tween low-lying states. Even though phase space is high
dimensional, in some circumstances ' dynamics may be
dominated by a small number of phase-space trajectories,
and hence our model may have applicability.

In particular, we wish to mention the possible connec-
tion between dynamical transitions as in our model, and
behavior in glassy systems. Our model, consisting of a
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single particle, has no interesting equilibrium thermo-
dynamic behavior. Nevertheless we found a diverging
time scale 1/D at a well-defined value of our parameter
R, . Similarly, the glassy transition is often characterized
as being a purely dynamic phenomenon; ' a time scale
diverges causing the system to "freeze" (i.e., have a van-
ishing self-diffusion constant ), at a temperature where
the correlation length g remains finite (and so has no
divergent equilibrium behavior). A scenario for such a
purely dynamic phase transition in a many-body system is
sketched in Fig. 10, in terms of the flows of the system
under a dynamic renormalization group. We imagine
that the parameter space for the system is described by
two variables; the equilibrium temperature variable T, and
some dynamic variable R. The physical many-body sys-
tem is described by a trajectory Ro(T) in this plane. Un-
der iterations of the RG however the system will flow oA'

the trajectory, into the (R, T) plane. Since there is no
equilibrium phase transition in the system at finite T (i.e.,
g finite), the system must flow to infinite temperature, i.e.,
somewhere on the line T= ap. Along the line at infinite
temperature, the system, as expressed in suitable coordi-
nates, should separate into noninteracting single-particle
pieces. If one of these single-particle problems has a dy-
namic phase transition, for example of the sort discussed
in this paper and sketched in Fig. 10, then the original
physical system will also have a dynamic transition at the
point on the trajectory Ro(T) which crosses the separatrix
between flows to the diA'erent dynamical fixed points on
the line T= ~. Such a point will be characterized by a
diverging time scale, but smooth equilibrium correlation
functions.

Although we are far from producing a physical many-
body model with an explicit flow diagram as in Fig. 10,
these arguments suggest )hat it is of direct interest to
study the simpler possible single-particle dynamic transi-
tions. All many-body cases such as Fig. 10 must fall
into one of these single-particle classes.
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APPENDIX A

In this appendix we rederive several relationships con-
cerning the autocorrelation function Po(t). First we prove
Eq. (2.2) connecting Po(t) to the density of states g(k)

Po(t)= J g(A, )e 'dk .
0

Let gi (k) be an eigenvector of the matrix Mi,. i, with ei-

genvalue A, ;, where we choose normalization

(A2)

Since M is symmetric, the set I/i ) form an orthogonal
basis for expanding any vector P(k). For the initial prob-
ability distribution P( kt =0) we expand

P(k, O)= g g P(k', 0)itg (k')Qg (k) . (A3j
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It is now straightforward to see, by direct substitution
into the master equation (2.1), that the solution for the
time evolution of P(k, t ) is simply

P(k, t)= g g P(k', 0)gi (k')iti (k)e
k'

(A4)

P(ko, r)= g pi*. ( 0)gg (ko)e (A5)

If we take as the initial condition P(k, O)=5i, i, , i.e. , the

particle starts off' at site ko, then the probability to remain
at ko after time t is simply

Temperature T

FIG. 10. Schematic renormalization-group flow diagram for a

glassy transition. The T axis is the thermodynamic variable tem-

perature, while the R axis represents some dynamic parameter.
The physical system is described by an initial trajectory Ro(T)
(dashed line). Under the RG the system flows off this initial tra-
jectory into the (R, T) plane. Since there is no thermodynamic
phase transition, all points flow to the T= m line. If at T= m,
there is a dynamic transition in the R variable, the physical sys-
tem will have a dynamic transition at the point C which is the
intercept of the initial trajectory with the seperatrix for flows into
the different fixed points at T= ~.

Averaging (A5) over this initial ko, and noting the nor-
malization conduction (A2) for it~, gives for the auto-

I

correlation function,

Po(t) —= —g P(ko, t) = —g eX . cV~
(A6)

Noting the definition of the density of states g(A, )

=—(I /N) g, 5(A, —k;), completes the demonstration of our
result (Al).

Secondly, we demonstrate the relationship, Eq. (2.3),
between the autocorrelation function Po(t) and the aver-
age distance squared traveled by the particle in a time t,
(X (r)). Approximating the discrete sites by a continu-
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urn X, one assumes that the probability to be at X at time
t, given one started at X=O at t=O, is given by the fol-
lowing scaling relationship as t~ oo ..

n-3 0"'

P(X, t) =C(t)P(X!g(t)), (A7) 2 fl-2

where f2= (X2(t)) is the average distance squared, and P
is chosen so that P(0)=1. The autocorrelation function is
just Po(t)=P(0, t)=C(t). Normalization of P(X, t) re-
quires

1= f dXP(X, t)=C f dX &(X/g) =Cg f dy P(y),

(A8)

2"
4 5
+

therefore g ~ 1/C or

(X'(t)) ~1/Po(t) .

APPENDIX B

R
6A(n ) =,2

2
[1+bR+O(R )] . (B1)

Here we wish to calculate the coefTicients b of this lowest-
order correction and show explicitly that it does not de-
pend on the system size n.

To second order in perturbation theory, the correction
to the eigenvalue is given by Rayleigh-Schrodinger pertur-
bation theory as

[ (@I '(n )
(
M, (n )

)
QJI '(n ) & [

'
g "(n ) —~I"(n )

(B2)

We do the calculation for the lowest nonzero eigenvalue
Others may be alone similarly. The eigenvalue struc-

ture for four levels of matrices of sizes 2",2", 2"
and 2" is shown in Fig. 11. We have labeled the eigen-
states of the lowest level according to their symmetry with
respect to reAection about the central barrier. Since M& is

symmetric in rejections, only eigenstates of the same
symmetry will have a nonzero matrix element. Thus the
lowest order in R term in (B2) will come from the state
with closest eigenvalue, and the same symmetry. For k],

In this appendix we wish to calculate the lowest order
correction in R to the first order perturbation result, Eq.
(3.11), for the splitting in eigenvalues as the system size is
doubled. That is, if A, ; is an eigenvalue of the system of
size 2" ', we found that A,; remains on eigenvalue of the
system size 2", and new eigenvalue appears separated
from A, by

n —1 this correction comes from the coupling between 1(tI '(n)
and f3 '(n). We have for the zeroth-order eigenvalues of
the states: kI '(n ) =Ao(n —1)=0; and XI3 '(n )

=A, ~(n —1)=2(R /2)" [1+O(R )] by the first-order re-
sult of Eq. (3.11). The matrix elements of fP' and Pq

'

are [1/(2")' ][+1+0(R" ')]. Combining these results
we get to lowest order in R,

bzI"(n) = ~
( PI '(n )

~
M)( )

~ P3 '(n ) )
~

'
A, ', '(n ) —k' '(n )

2
4 Rn —&

2' R

R
17——2

——2

2
2

(B3)

Combining with the first order result (3.11) gives
n —].

M. , (n ) =2 R
2

R + 0 ~ ~

2
(B4)

or b = —,
' in Eq. (Bl). Note that b does not depend on the

matnx srze n.

FIG. 11. Low-lying eigenvalue structure for four levels of ma-
trices of sizes 2" ', . . . , 2". The lines indicate how each eigen-
value of a system of size 2 ' splits into two new ones in the
system of size 2 (see also Fig. 3). The splitting at size 2n is
0(R " '/2" ). The zeroth-order perturbation value of an ei-
genvalue is given by the parent eigenvalue of the system of half
the size. The eigenstates at the lowest level 2" have been labeled
(+) to indicate their symmetry with respect to reAection about
the central barrier. Only states with equal symmetry are coupled
in perturbation.
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