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The properties of an acoustical medium containing a random array of identical discrete scatter-
ers are investigated in detail. The cases of hard scatterers, soft scatterers, and permeable scatter-
ers are considered for two- and three-dimensional configurations. Curves describing the diff'usion

coefficient, the localization length, and the phase boundaries are presented and the results are re-
lated to the single-scattering properties. The consequences of a modification in the self-consistent
theory cutoA' are examined. The onset of localization in three dimensions is shown to satisfy ap-
proximately the Ioffe-Regel condition.

I. INTRODUCTION

It has been shown' that it should not be too dificult
to localize acoustic waves in a three-dimensional com-
posite formed by two media whose acoustic indices of re-
fraction are different enough. This prediction contrasts
with that for hard-sphere acoustical scatterers, which
are probably incapable of localizing acoustic waves. It
is, therefore, interesting to explore in detail how the
properties of individual scatterers can affect the intensity
of localization phenomena. We have started this investi-
gation with a description of how the frequency depen-
dence of some parameters that play an important role in
the analyses of localization (renormalized speed of
sound, scattering and transport mean free paths) varies
when the characteristics of the scatterers are modified.
In that work, hereafter to be referred as I, we showed
explicitly the connection between the structure of the
frequency dependence of these parameters and that of
the total scattering cross section.

Considerable progress has been made in the study of
acoustic localization in one-dimensional disordered
media (a case in which all excitations, except, perhaps,
for a set of measure zero, are predicted to be localized).
Depollier, Kergomard, and Laloe have found evidence
for localization studying acoustic waves in a long pipe.
The disorder was introduced by a series of randomly or-
dered, resonant, closed branches that emerged periodi-
cally to the main pipe. These authors have also re-
viewed the previous one-dimensional work. He and
Maynard studied the transverse excitations of a steel
wire along which a set of small, identical masses were at-
tached in random positions. They also found strong evi-

dence for localization.
Some time ago, we proposed an experiment to localize

third-sound waves on a helium film adsorbed on a disor-
dered substrate. ' The "index of refraction" scatterers
of Ref. 4 are the one-dimensional analogs of some of the
scatterers to be discussed in this paper. The work in

higher-dimensional systems has been mostly theoretical.
John, Sompolinsky, and Stephen used a field-theoretical
method to study the transition from extended to local-
ized states in a disordered elastic medium. Kirkpatrick
adapted the self-consistent theory' (SCT) to analyze the
localization of sound by hard-disk and hard-sphere
scat terers. The properties of third sound in a two-
dimensional (2D) disordered configuration as well as the
influence of flow on one- and two-dimensional localized
acoustic excitations have also been investigated theoreti-
cally. " ' The intensity fluctuations (speckle pattern),
described by the intensity-intensity correlation function,
have been studied by Shapiro. ' Flesia, Johnston, and
Kunz' performed a numerical analysis of the propaga-
tion of waves through a network of wave guides with a
randomly varying index of refraction.

The study of the localization of electromagnetic (EM)
waves, on the other hand, has received a great impulse
due to several successful experiments on the enhanced
coherent backscattering of light. ' This phenomenon
is considered a precursor of Anderson localization.
Closely related is Genack's measurement of the parame-
ters of optical propagation in a wedged random medi-
um. Although not performed with the idea of localiza-
tion in mind, some older experiments on the backscatter-
ing of light and sound by random media, described in
the review paper by Kravtsov and Saichev, are also
relevant. The theoretical literature related to EM
coherent backscattering and localization is also
vast. ' Although the EM problem has been often
treated in the framework of a scalar wave equation, po-
larization effects must be accounted for if a complete un-
derstanding of the resonant backscattering experiments
is desired.

The problem of the localization of classical waves in
the presence of finite scatterers was first analyzed in Ref.
9. It was there pointed out that since the boundary con-
ditions for sound waves incident on hard spheres are of
the Neumann type, there would be important qualitative
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differences with respect to the case of electrons in a
Lorentz gas, for the electron wave function satisfies Dir-
ichlet boundary conditions at the surfaces of the scatter-
ers. At high frequencies the Dirichlet and Neumann
scattering cross sections are equivalent; a delocalization
tendency occurs in both cases due to the compactness of
the excitations, which in d = 3 can easily diffuse through
the inhomogeneous medium. At low frequencies the
Dirichlet scattering cross section goes to a constant,
leading to low-energy. electron localization. On the oth-
er hand, the Neumann cross section vanishes as E"+' at
small frequencies E. This makes the scattering very
inefficient and the sound waves tend to be delocalized.

The analysis of the Neumann problem in Ref. 9 led to
the conclusion that in two dimensions all states are lo-
calized, although the localization length g diverges rap-
idly at high and low frequencies. The possibility was
suggested that for d =3 there could be a region of local-
ized states at intermediate frequencies. Correspondingly,
the existence of two mobility edges was predicted. In
Ref. 2 we used the "pseudosphere" approximation (PA)
to obtain quantitative predictions for the Neumann
problem: While for d =2 values of g' small enough to be
observable are possible —at least at high scatterer
densities —for d =3 the calculation suggests that all
states are extended.

In their study of the localization characteristics of a
two-component composite, Sheng and Zhang' showed
that the situation is very different if the wave is allowed
to penetrate the scatterers. If the relative index of re-
fraction of the minority component is high enough, reso-
nant behavior is possible and they predicted the ex-
istence of a multiplicity of localization regions and mo-
bility edges. Arya, Su, and Birman ' studied the effect
of the Mie resonances of metallic spheres on the locali-
zation of EM waves. They keep the vector character of
the waves and consider explicitly the resonant behavior
of the I =1 partial wave.

It is therefore important to make a comparative
analysis of how the different characteristics of various
types of scatterers influence the localization phenomena.
Here we apply the SCT to describe the diffusion or local-
ization of acoustic excitations in the type of two- and
three-dimensional disordered media described in I.

In Sec. II we put forward the models to be considered
and describe the similarities and differences with respect
to the model used in Ref. 1. The theoretical formulation
of the solution to the localization problem is then briefly
discussed. The explicit results for the three-dimensional
case are presented in Sec. III, where the phase diagrams,
localization lengths, and diffusion coefficients resulting
from the various models are evaluated. The diffusion
coefficient is also plotted in terms of the Ioffe-Regel pa-
rameter [(wave number)&&(transport mean free path)],
which yields information on the approach to the mobili-
ty edges. The results for the two-dimensional models are
obtained and analyzed in Sec. IV. Throughout, the
properties of the excitations in the disordered media are
related to the characteristics of the individual scatterers.
Some further analyses are made in Sec. V.

We have neglected dissipative effects completely. This

is a reasonable approximation if the inelastic scattering
length l; is much larger than the scattering mean free
path. Of course, localization will be observed only if the
localization length is also shorter than I.;. A simple
way to estimate l; was suggested in I. Various aspects of
the problem of localization in media such that dissipa-
tion is nonnegligible were studied in Refs. 26 and 27.

II. MODELS AND FORMALISM

The models we will study are the same as those in I.
We consider a collection of uncorrelated, identical, ran-
domly distributed spherical (disklike if d =2) scatterers
immersed in a uniform lossless medium. The radius of
the scatterers is a and their number density is n. The di-
mensionless number densities (i.e., the volume fractions)
are n =m.a n (d =2) and n =(~3)n.a n (d =3). The
background medium is characterized by a mass density p
and a compressibility ~. The pressure waves can be de-
scribed using a velocity potential P(x, t), which in the
absence of scatterers satisfies the wave equation

a2

at2
—c V P(x, t)=0, (2.1)

a4, ay
Br ar

We will not consider here solid scatterers, for which a
description in terms of p, and ~, is not complete. In this
case two different wave numbers, corresponding to
compression and shear modes, enter the description and
the formulas became considerably more involved. Our

where c =(1/~p)' is the speed of sound.
We will analyze the localization phenomena for pres-

sure waves in the presence of three types of scatterers,
whose properties can be expressed through appropriate
boundary conditions.

(a) Hard (Neumann) scatterers: These are considered
in Refs. 2 and 9. The fluid velocity normal to the
scatterers vanishes and this leads to the vanishing of the
radial derivative of P at r =a.

(b) Soft (Dirichlet) scatterers: As mentioned before,
an electronic wave function satisfies a Dirichlet condi-
tion at the surface of an impenetrable sphere. This is
also the case for pressure waves scattered by an ideally
rigid, empty bubble, at whose surface the pressure, and
thus P, must vanish.

(c) Permeable scatterers: The wave is allowed to
penetrate the scatterers, which are characterized by a
mass density p, and a compressibility x, . (The subscript
s will indicate a magnitude associated with the scatter-
ers. ) As in I, we find it convenient to describe the
scatterers in terms of the density ratio, 5=p/p„and the
index of refraction, M =c/c, =(p, v, /px)' . The case
6=1,I & 1, which, as we will see, yields the most in-
teresting behavior, was considered in Ref. 1. The re-
quirements of continuity in the pressure and normal
component of the fiuid velocity generate the boundary
conditions at r =a,
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description is accurate for fluid scatterers and for solids
such as silicone rubber, for which there is negligible
shear conversion at the scatterer surface.

Sheng and Zhang' considered scatterers having
different compressibility from that of the surrounding
medium. They combined the SCT with an effective-
medium approximation and treated the two components
of a composite on an equal footing. This treatment is
appropriate when the volume fraction of the minority
component is close to or beyond that of the percolation
threshold; in this case there would be what can be
schematically thought of as a large admixture of the
wave traveling in component A and being scattered by B
with that traveling in component B and being scattered
by 2. If the density of the minority component is
below, and not too close to, that of the percolation
threshold, we feel that it is better not to make the
effective-medium approximation and to consider the ex-
citation as propagating in the majority matrix and being
scattered by spherical inclusions. This is the case we
consider here. Although our results are perfectly com-
patible with those of the effective medium, there are
some differences; in particular, we predict the onset of
localization at lower values of the density of the minori-
ty component.

The analysis of wave propagation and localization in a
random medium makes use of two equations which can
be discussed in terms of diagrams: ' the Dyson equa-
tion, satisfied by the configurational average (G ) of the
Green's function, and the Bethe-Salpeter equation,
satisfied by the average (GG) of a product of Green's
functions. In particular, the spectral components of the
velocity potential at (x, t) generated by a point source at
(x,O) are given by the averaged retarded Green's func-
tion

e ik. (x —x')

( Gg+(x, x') ) = (2m )
"f d k

E ck Xk(E—)—(2.2)

At low scatterer densities, the self-energy can be writ-
ten in terms of the diagonal elements of the T matrix

X&(E)=(2n) n (k
~

f'(E)
~

k) =yk(E)+io i(E) . (2.3)

1 1 11—
[ ( c)E]2 c2 E2 (2.4)

while the attenuation length obtained from cr i,(E) is
equivalent to the scattering mean free path l„=(nS)
We call S to the total scattering cross section for a single
scatterer.

Due to energy conservation, it can be shown that the
energy density propagator, (PE ), which is the Fourier-
Laplace transform of the averaged double Careen's func-
tion, is proportional to a diffusive hydrodynamical pole,

The real and imaginary parts of the self-energy lead,
respectively, to a renormalization of the speed of sound
and to a randomness-related attenuation of the excita-
tions. These effects and their connections to the indivi-
dual properties of the scattering centers were discussed
at length in I. Here we note that the renormalized speed
of sound c(E) is defined as

1

—ico+D (E,co)q
(2.5)

D (E,~)=Dpi(E)+
d oEq, (E)D~(E)'

2~0dc
C

X fQ dq'
icuD (E,co) —(q')~

(2.6)

Here B1——1, A2 ——~, and Q3 ——2~. A wave-number
cutoff, Q, has been introduced. It is reasonable to as-

Here q, co~0. We are interested in the properties of the
diffusion coefficient D (E,co) when the external frequency
co~0. In this limit, D(E,co) describes the diffusion of
energy at very long times and its behavior will thus pro-
vide the information we require about localization.

The Bethe-Salpeter equation can be solved making a
perturbative diagrammatic expansion of the energy den-
sity propagator. If only the ladder diagrams —and thus
incoherent processes —are kept, we get the "Boltzmann
equation" value for the diffusion coefficient:

D(E,co~0) =Dg(E) .

This approximation is appropriate if n' is very small
or if the scattering is weak (i.e. , if b, :—1 and M =1). As
we will see, it is also suitable for low frequenecies (except
in the Dirichlet case) and very high frequencies. The
function Dti(E) is used to define a transport mean free
path, lT dDti(E——) jc, whose properties were also ana-
lyzed extensively in I.

To describe the "weak localization" phenomena inves-
tigated in Refs. 16—24, it is necessary to include in the
perturbative expansion the contribution due to the con-
structive interference of conjugate waves traveling in op-
posite directions along the same closed path. The
relevance of these coherent processes to the backscatter-
ing of waves from a disordered medium was first dis-
cussed by Watson in his investigation of the multiple
scattering in a plasma. This problem was further stud-
ied by de Wolf and Barabanenkov. This last author
expressed the coherent contributions in a diagrammatic
language, in terms of the cyclical or maximally crossed
diagrams (MCD). A few years later, this phenomenon
was found to be an essential component in the descrip-
tion of electron localization.

Although successful to explain "weak localization, "
the perturbative approach is insufficient to describe the
"strong" or Anderson localization. However, since the
MCD represent coherent phenomena, they can be used
as a starting point in the formulation of a self-consistent
theory. ' That this SCT is adequate can be verified by
comparing its results with those of the exact Berezinskii
calculation' ' (if d =1) and of computer simulations.
We note that the SCT—at least in its usual form —does
not give an accurate description if the time-reversal sym-
metry of the problem is broken. This would be the case,
for example, if a flow is created in the background medi-

12, 13

The SCT leads to the following algebraic equation for
the diffusion coefficient when co~O:
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sume that Q-lr ' since this is the wave-number scale
where the (q') approximation for the diffusion pole
breaks down. However, within the SCT theory the ul-
traviolet cutoff is not uniquely given and other cutoffs
are possible. For example, one could argue that Q-a
so that the order of the leading density correction to D~
agrees with perturbation theory results. ' Even if one
insists that Q-lT ' the proportionality constant is not
known. We shall investigate below how different possi-
ble cutoffs affect our results numerically. We will write

Q =rdlT ', and analyze how our results depend on the
value of r. In the Appendix we present the results for
the case Q = ra

In Secs. III and IV we consider, separately, the three-
and two-dimensional cases.

are strong and a mobility edge cannot be far away.
The relevant formulas are obtained immediately by

combining the results from I and Ref. 9. Let us first
define the following auxiliary functions:

and

51(vl, )™Jt(21.)[JI(21 )]

a( j I'(——g) 5((—rl, )j((rl ), (3.1)

fl =yi (rl) &I(—rl, )yl(21)

Here rl=Ea/c, g, =Mrl, ji, and yi are spherical Bessel
functions and the primes denote derivatives with respect
to the argument.

The total scattering cross section is given by

III. LOCALIZATION IN d =3

The Anderson localization of acoustical excitations
can be analyzed in terms of D (E,o3~0). In the frequen-
cy domains where the excitations are localized,
D(E,co~0) vanishes linearly in co. Otherwise the exci-
tations will be delocalized. In the delocalized regime,
the ratio D(E,co~0)/D~(E) yields a convenient mea-
sure of the contribution of coherent effects. When this
ratio is close to unity, the diffusion is mostly incoherent
and the Boltzmann description is adequate. For values
of E such that D (E,co~0)/D&(E) &&1, coherent effects

4~g 2 (2l + 1)ai
$(21)=

t oa=i+fi'
2

$)(21)

The renormalized speed of sound is given by

1 1 321* " (2l + 1)arfi
2 c2 ~3 a2+f 21+

and the Boltzmann diffusion coefficient is

(3.2)

(3.3)

D~(21)= 9n*
(21 + 1)a~

I =o (aI +fi )
2

2(l +1)alaI+1(aIa1+1+fifi+ i)
«I'+f(')«i+ i+fI'+»

acg
9n '$2(21)

(3.4)

(3.5)

Here g=Ea/c. We assume that the speed of sound is
renormalized everywhere.

These formulas are valid for permeable scat terers.
The Neumann and Dirichlet cases are obtained by let-
ting a& j/', f& ——yi'——, and a& ——j~, fi ——yi, respectively.

The total cross sections for several scatterer types are
depicted in Fig. 1. While the cross sections for Dirichlet
and Neumann boundary conditions are monotonous and
featureless, those for low speed (M ~ 1) scatterers show
peaks whose size increases with M. These peaks are gen-
erally due to the vanishing of fI in one of the terms in

Eq. (3.2). If there are peaks in the neighborhood of or
below g=1, they will be relevant because a large cross
section in that range favors localization effects. For the
same reason wave localization should occur for Dirichlet
and be impossible for Neumann scatterers. Curves for
c(rl) and for D~(rl), or more precisely, for the transport
mean free path lT(rl)=dD& lc, were presented and dis-
cussed in I. We will now see how the properties of these
functions determine the nature of the diffusion and local-
ization processes.

The points on the phase boundary n*"(g) separating
localized and extended states in the (rl, n') plane satisfy
the equation

81(n '*) rS, (rl)$2(21) =m71

Let us now analyze Eq. (3.5). First we note that,
roughly, n '*-r ': an increase in the cutoff decreases
the minimum scatterer volume fraction compatible with
localization. In Fig. 2 we show the phase boundary for
three values of r when the scatterers are characterized
by 6=1 and M =2. Although the curves have the same
general shape, they are not obtained from each other by
simply multiplying by a constant. The reason for this is
that c contains very rapid variations (see I) and so does
the "rescaling" from g to q. Even if this effect compli-
cates the picture, it does not obscure the main features.
We also note that r =2m/3 corresponds to the choice of
Sheng and Zhang. '

Equation (3.5) implies rl"-2l (DJ3/S)'~ . The factor
is responsible for the delocalization of the high-

frequency excitations. The minima of DJ3 (see Fig. 9 in
I) occur at frequencies close to those of the maxima in S;
this confirms the intuitively obvious conclusion that lo-
calization is favored by large cross sections. The renor-
malization of c causes the structure of n **not to always
follow that of S. For the sake of comparison we include
in Fig. 2 a curve (for r =2m/3) obtained using the un-
renormalized speed of sound.

At low frequencies, Eq. (3.5) formally (the physical
value of n ' cannot go above that for random close pack-
ing) goes to the limit
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n 'g 3 —(M2+ l )2+ 3( l +)
(2+b, )'

(M2+ l )2 3( l Q)
(2+6, )'

2(M'b, —l )( l

2+&

«N scatterers, n **
( l g~/77p )1/2- —3, f

scatterers n*'
'9; or Dirich et

These results indicate the
localization of 1ion of low-frequency excitations in the Dirichlet
problem and the delocalization that occurs in all the oth-
er cases.

The phase boundaries for 6= 1 and three values of M
are shown in Fi . 3. I'g. . t is evident that an increase in the
index of refraction is followed by f ty a ast increase in the
size of the localization region. In Fi s. 2 and 3 h

'
ered scatterers having the same density but higher

compressibilities than the backgrou d d . Sgroun me ium. Scatter-
ers having lower compressibilities than the background
are much less efficient and generally do not lead to local-
ization. This property, as well as the increase in the size
of the localization region with increasing M, were al-
ready discussed by Sheng and Zhang in Ref. 1. As we

and do not lead to localization. If we select scatterers
t at have the compressibility of the background but

'
n e ects are weak. Indifferent density, the localization eff t

5=0.25 M =
ig. 4 we show the phase boundary for the

lo
5,M =2 case, which corresponds to =4 Th

ocalized states are present only at high scatterer densi-
ties, even for the most favorable (r =2') choice for the
cutoff. In the same figure we present the Dirichlet phase
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boundary, which encompasses the low-frequency local-

The "pseudosphere" approximation (PA) used in Ref.
2 is equivalent to taking Sz ——S& and thus neglecting the

man ' define the cutoff in terms of l„, their results are
analogous to those obtained from our PA. The dot-

ashed curve in Fig. 3 represents the PA phase bound-
ar for M =1.9. For g 1 this result is in a very good
agreement with the "exact" curve. For higher values of
g the phase boundary still mimicks the gross features of
the exact curve, but suggests the onset of localization at

ese conc usions cansubstantially lower values of n *. Thes 1

be inferred directly from the graphs for lT and l„ in I.
These graphs also show that if g 5 1 the differences
should be more marked for Dirichlet scatterers. That
this is indeed the case can be seen from Fig. 4. Denot-
ing by n~'* the values of the phase boundary obtained
using the PA, we can write n**=n**(l„ll )'

p sc T
The localized states are characterized by a localization

length g(E) defined by

S
7TP

O. 15—

0. I
0—

0-
0

'9

FIG. 1. Total scattering cross section for a sphere of radius

a as a function of dimensionless frequency. The curves labeled

D and N represent the Dirichlet and Neumann cases, respec-

tively. The dotted line corresponds to (5=1, M =1.5), while

the structured solid line corresponds to (5=1, M =2). The

numbers above the peaks in the M =2 curve denote the value

of I for the term originating the peak.

0.05
0

'7

FIG. 2. Phase oundary for the case of scatterers of hi her
compressibility than the surrounding medium (6=1, M = ).

ree values were chosen for the cutoff: the solid line corre-
sponds to r =2m, the dotted line to r =2'/3, and the dashed
line to r =1. TT&e numbers below the curves indicate the posi-
tion of t e features corresponding to the e k Se pea s in g) (see

ig. 1 . The minima corresponding to the first maxima in S(g)
are indicated by m. The results obtained for r =2m/3 usin
the unrenorrnalized s

'
ed speed of sound are represented by the

e or r= ~ using

dotted-dashed curve.
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FIG. 3. Phase boundaries for scatterers characterized by
6=1 and three values of M, which label the corresponding
curves. The "most favorable" (r =2~) cutoff has been chosen.
Estimates for other values of r can be obtained by multiplying
the curves by the factor (2m/r)' . The horizontal line at
n*=0.155 represents the evolution of the parameter g as it
generates the trajectory depicted in Fig. 8. The dotted-dashed
curve is the pseudosphere approximation for M = 1.9.

D(E,co~0)= icing (E)+O—(co ) .

It is easy to verify that g satisfies

(3.6)

1 — ~ Qg=arctan(Qg) .
9n *QaS)

(3.7)

Clearly g —woo as we approach the phase boundary
from the localized region.

The localization length is plotted in Fig. 5 for
(b =1,M =1.75) scatterers. The value of g decreases
extremely fast as we move away from the phase bound-
ary and into the localization region. The strong effect of
varying the scatterer volume fraction n * is also evident
from the figure: A relatively small increase in n* leads
to a considerable shortening of the localization length.
In the higher-density cases, the value of g/a decreases
below unity. This seemingly unphysical result is due to
the large size of the cutoff for those densities and fre-
quencies. We believe that there should be a lower bound
of the order of the interscatterer distance for g. It may
be possible to introduce a crossover from a mean free
path related cutoff to a cutoff defined in terms of the in-
terscatterer distances. Since there is no compelling evi-
dence for a definitive choice, we will not pursue this
point further.

The diffusion of the extended excitations at long times
is described in Fig. 6, where we have plotted D (0)

D( ri, co ~0) in units of—the Boltzmann diff'usion

FIG. 4. Phase boundaries for the Dirichlet problem and for
high density (p, =4p) scatterers. As in the other cases, the lo-
calized states lie above the respective curves. We have taken
r =2m. . The dotted-dashed lines are the phase boundaries ob-
tained using the PA.
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FIG. 5. Localization lengths for the volume fractions
specified next to the corresponding curves. We have taken
6= 1, M = 1.75, and r =2m.

coefficient. The various curves have the same features,
which become intensified as the density is increased.
This result was to be expected, since the location of
these features is determined by the properties of the indi-
vidual scatterers. Two mobility edges are present for
n*=0. 14 and four for n'=0. 18. The explicit form for
the diffusion coefficient is
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g&2. 13 are related to variations in the vertical distance
from the n*=0.155 line to the phase boundary. The
segments composed of three thin lines describe regions
where the trajectory comes back approximately on itself
and then proceeds along its original direction of evolu-
tion. For example, the first "triple" region, located in
the neighborhood of the fourth mobility edge, is due to
the "kink" in the phase boundary at g=2. 25. We have
depicted only the portion of the curve that corresponds
to g &3.77. Although for higher values of q the trajec-
tory reenters the region klT &7, we have chosen not to
present the portion of the curve corresponding to
g & 3.77 in order not to obscure the figure.
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IV. LOCALIZATION IN d =2

The difFusion coefficient D (E,co +0) is —always zero in
two dimensions, and all states are localized. However, it
is possible that the localization occurs only on a very
large spatial scale; if this scale is bigger than the size of
the system or the inelastic attenuation length, the locali-
zation effects will not be very relevant. The single-
scatterer resonances lead to a considerable shortening of
the localization length and suggest the frequency ranges
where localization will be strongest.

The formulas we need are again easily obtained from
those in I and Ref. 3. Let us first remind the reader of
some definitions used in I:

0
0

I

4

FIG. 9. Total scattering cross section for a disk of radius a
as a function of g=Ea/c. The curves labeled D and N
represent the results for Dirichlet and Neumann boundary con-
ditions, respectively. The dotted curves corresponds to (6=1,
M =1.5) and the dashed curve to (6=0.5, M =&2). The
solid curve with the peaks corresponds to (b =1, M =2) and
the numbers above the peaks give the value of l for the partial
wave that resonates. The origin of the small maximum labeled
m is discussed in I.

h((gs ) =MD J((ris )[J((gs ))

p( =J((rI) ~((rl. )J((2)» (4.1)

scribed by DB, over scales larger than IT. The renormal-
ized speed of sound is given by

and

g, = Y('(()) 6((7),—)Y, (rI) .
c

1 4n" " (2 ~(,0)P(g(
2 2 + 2 2

C &'9 I 0 Pl +gl
(4.3)

Here JI and YI are cylindrical Bessel functions and the
primes denote derivatives with respect to the argument.
The formulas for the Neumann case are obtained by
writing p( ——J(' and g( ——Y('; those for the Dirichlet case
by lett1ng P( ——J( and g( = Y(.

The total cross section for an isolated scatterer is

4a p(
2

s(r) ) = Q (2 —5(0)
'I (=o

' p(+g('

T, (ri) .
7l

(4.2)

This function is plotted in Fig. 9 for several types of
scatterers. As in the three-dimensional case, an increase
in the index of refraction M leads to a richer structure of
peaks and valleys. Localization will be favored by the
peaks, mostly by those of relatively low frequencies. The
large value of S at low frequencies for the Dirichlet
problem also generates strong localization in that range.
The case (b.=0.5,M =+2), corresponding to ~, =~ and
p, =2p presents a broad maximum at g=4. 5. In spite of
the large size of the cross section in that region, there
will be no observable localization. For these short wave-
lengths the excitation propagates from scatterer to
scatterer; the strong interactions with the individual
scatterers will simply lead to the "normal" diffusion, de-

and the equation for the Boltzmann diffusion coefficient
1s

( )
7raC 71

B I
(2 f2(,0)p(—

I =0 Pl +gl
—1

2PIPI +1(PIP( + 1+glgl + 1 )

(Pl +gl )(Pl+ I +gl+1 )

~ac g
8n *T2(q)

(4.4)

D (2),01~0)= icing (g)+0—( )01. (4.5)

The explicit form for g(2)) is

ma 2)
2- 2

exp
4n "T,(F))

1/2

(4.6)

Although the right-hand side is evaluated using
r(=Ealc, in the graphs we will plot g as a function of

These functions have been plotted and described in de-
tail in I. As it is the case for the localized states in
d =3, the localization length can be obtained from
D (g, oI —+0) using
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ior. The localization length for the (5=1,M =1.5) case
turns out to be very long, showing that even a large
maximum in the total cross section (cf. Fig. 9) is not
conducive to observable localization effects if it occurs at
relatively high frequencies. Similarly, the curve for the
(6=0.5, M =&2) (i.e., p, =2p) problem does not ap-
pear in the graph. If we choose very dense (p, =4p)
scatterers, then the maximum in S is shifted to lower fre-
quencies and we get smaller values for the localization
length. For the sake of comparison we have also plotted
the results obtained using the PA. As in the d =3 prob-
lem, the PA overestimates the localization effects but
generates the appropriate structure of maxima and mini-
ma. The value of g for N scatterers is too long to appear
in the graph. This case was already analyzed in Ref. 2.

V. DISCUSSIQN
In this paper we have obtained explicit results for the

localization properties of acoustical excitations in media
containing random distributions of spherical (d =3) or
disklike (d =2) inclusions. We have considered the
cases of hard scatterers, soft scatterers, and scatterers
whose densities or compressibilities differ from those of
the background. The structure of the curves giving the
phase boundary, the localization length and the diffusion
coe%cient has been related to the properties of the indi-
vidual scat terers. Several points deserve further re-
marks.

(1) Undoubtedly, the most interesting case is that of
highly compressible scatterers, for which the total cross
section for the individual particles presents a rich struc-
ture due to partial-wave resonances. These resonances
have well-defined effects on the localization properties.
To observe these effects, it is necessary for all scatterers
to be identical, or nearly so, in composition, shape, and
size. Variations in scatterer radius generate a rescaling
of the dimensionless frequency g and consequently the
position of the peaks in S(r)) changes from scatterer to
scatterer. As the distribution P(a) of the radii is
widened, the structure of n "(g) and g(r)) becomes more
and more smeared out and localization due to resonant
scattering weakens.

Fluctuations in scatterer shape also lead to a smearing
out of localization effects; in this case, the scattering
cross sections for different scatterers cannot be obtained
from each other by means of a simple frequency rescal-
ing. Although a similar prediction can be made if one
has a distribution of values of K„ the results shown in
Fig. 3 indicate that some structure will remain, even for
a relatively wide distribution.

(2) Let us consider a composite material where the
value of n ' for the minority component is near or
beyond the percolation threshold, and there is a strong
admixture of two waves, each propagating mainly in one
of the components. In this case, the structure in the
functions describing localization will be smoothed out,
even if one of the components is present only under the
form of identical spherical particles: the wave that prop-
agates mostly in these spherical inclusions will be scat-
tered by the interstices, which do not have spherical
shape. Therefore, the best conditions for the observation

of the structures would occur when the scatterers are
identical and n* is reasonably high, but not so much
that the wave characteristic of the minority component
makes a significant contribution. In this case, we believe
our approach gives an essentially correct description, al-
though same smoothing out of sharp features should be
expected in view of the occurrence of many scattering
events in the near zone of preceding scatterers. If the
volume fraction is higher and there is an appreciable
amount of admixture, the effective medium approxima-
tion used in Ref. 1 is probably better. Under these con-
ditions, however, it appears that the averaging over
scatterer shapes would lead to the observation of only
two mobility edges.

It should also be mentioned that it may be possible to
have substantial admixture even below the percolation
threshold. This would be the case, for example, if the
minority component is created by a process of aggrega-
tion that leads to the formation of long chains or sizable
clusters.

(3) Our ignorance of the exact value of the cutoff in
the SCT makes our results somewhat imprecise, especial-
ly in three dimensions. For this reason, we have made
evaluations for several values of the parameter r. We
conclude that the frequencies at which the main features
in the phase boundary appear depend only weakly on r,
although a reduction in r implies that higher values of
the scatterer density are needed to obtain similar results.
The formulas obtained using an alternative, density-
independent cutoff are given in the Appendix.

(4) While in Ref. 31 the cutoff was defined in terms of
1„ instead of IT, in Ref. 2 the cutoff was defined in terms
of lT but then the PA was made. The PA simplifies the
calculation because it avoids the computation of Dz and'
effectively approximates lT by l„. We have analyzed
how the choices made in Refs. 2 and 31 would modify
our predictions. According to the results shown in Figs.
3, 4, and 12, and to the study of the mean free paths
made in I, we conclude that, although the magnitude of
the localization effects is probably overestimated, the
structure generated by the PA is essentially the same as
that obtained from the calculation presented here. This
confirms the usefulness of the PA. As explained in Ref.
2, it allows a reasonable estimate for problems involving
finite-size scattering centers while taking advantage of
the simplicity afforded by a gaussian noise model of the
inhomogeneities. The PA can also be applied to the
evaluation of the intensity-intensity correlation func-
tion. '

(5) Flesia et al. ' studied numerically the propagation
of classical waves through a network of waveguides with
a randomly varying dielectric constant e. They con-
sidered (I) a uniform probability distribution of E in the
wide interval [1,1+to] and (II) uniform distributions in
narrow bands next to 1 and 1 + w (with probability zero
outside of the bands). They conclude that localization
effects will be strongest in case (II), which is in agree-
ment with our discussion above. The numerical values
for the localization length are very sensitive to the
chosen geometry. Consequently, it is not surprising that
they predict values of g significantly larger than ours.
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For d =2 they fInd that localization effects are optimized
by selecting the frequency E5/c = 1.5 (5 is the bond
length, roughly equivalent to twice our scatterer radius).
This is also consistent with our results.

(6) A porous medium is a different kind of disordered
system, which may also be appropriate for acoustic lo-
calization studies. By the use of a coarse-grained
description, Guyer finds that for frequencies above cer-
tain mobility edge the excitations must be localized. If
there is a minimum scale a' for the pore structure (i.e. , if
the material is not a true fractal), our discussion indi-
cates that a second mobility edge should appear at a fre-
quency E'-c/a'. Below this edge the sound waves
would start diffusing again.

(7) Let us finally point out that the problem treated in
Ref. 4 is the one-dimensional counterpart of the problem
discussed in this paper. The main difference is that in
one dimension there are special frequencies at which
these scatterers become perfectly transparent and thus
extended states are possible. Those transmission reso-
nances cannot occur in higher-dimensionality systems
because the total cross section never vanishes at a
nonzero frequency.

ACKNOWLEDGMENTS

This research was supported in part by the National
Science Foundation through Grants Nos. PHY 83-51473
and DMR 86-07605.

g(rj) =—exp
r 4n *T (Al)

The quantitative differences with Eq. (4.6) may be no-
ticeable, mostly at small values of n *.

The three-dimensional case is more interesting. The
phase boundary is given by

n* =my /9rS& .

Choosing Q —IT
' yielded [see Eq. (3.S)] n "'

-g (rS, S2) ' . Consequently, the choice of r is more
critical here. The localization length solves the tran-
scendental equation

1—
9n *rSI

=arctan
a Q

(A3)

Note that if we take Q —lT '-n * in Eq. (3.7) we obtain
an (n') factor in the denominator of the second term
inside the brackets. This different dependence on the
volume fraction is even more obvious in the equation for
the diffusion coefficient, which reads as

In two dimensions, the equation for the localization
length is

1/2

APPENDIX: AN ALTERNATIVE CUTOFF D (0)=Ds 1—9m *S&
(A4)

As stated at the end of Sec. II, another possible choice
for the momentum cutoff' is Q =r/a. It is easy to write
the formulas that are generated by this option. A gen-
eral observation is that, since D~ enters the equations in
the main body of the paper through the cutoff; it will
not appear here (except as the obvious prefactor in the
diffusion coefficient).

The linear (in n*) correction to Dii results whenever
the cutoff is chosen to be independent of the scatterer
volume fraction. Aside from the modifications just dis-
cussed, the qualitative features of the graphs resulting
from the choices Q =r /a and Q = rcD~ ' are generally
similar.
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