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Predicting the behavior of simple two-dimensional, laminar, steady-state flow in the presence of
superfluid vorticity requires extension of the two-fluid model by an additional equation for the to-
tal superfluid vorticity and by the vortex nucleation rates at the boundary. For the case of
superfluid He in a rotating annulus driven by radial counterflow, predictions are made for the dis-

sipation, meniscus profile, heat torque, angular momentum, and positive and negative vortex densi-

ties. The sensitivity of the results to vortex nucleation rates, which are currently unknown, invites
their experimental measurement.

I. INTRODUCTION

Whether in a simple bucket' or in the annular space
between two concentric cylinders, rotating superfluid
helium achieves an equilibrium state consisting of an ar-
ray of quantized vortices that for sufticiently fast rota-
tion becomes uniform and causes the superfluid meniscus
to equal that of a norma1 fluid over distances larger than
the intervortex spacing. This result can be found in a
number of ways from the phenomenological two-fluid
equations when these are extended to include either
discrete or continuous superfluid vorticity. However, if
a small temperature difference is imposed between the
two boundaries of a rotating annulus the phenomenolog-
ical two-fluid equations become inadequate to describe
the resulting steady-state flow pattern, even in the sim-
plifying case of high vortex densities where individual
vortex effects are negligible. Further extension is re-
quired in the form of an equation for the total superfluid
vortex density N; only the net vortex density n is deter-
mined by the curl of V, . It turns out that radial
counterflow in a rotating annulus has no steady-state
solution for which the radial inflow velocities for all vor-
tices are zero at both inner and outer boundaries. This
is also true for a nonrotating annulus, but only the case
of rotation is considered here because the resulting align-
ment of the vortices parallel to the rotation axis is ex-
pected to justify two-dimensional calculations, especially
for long, narrow cylinders.

Also needed are vortex boundary conditions that are
currently unknown; namely, the nucleation rate of vor-
tices at a boundary when hydrodynamic forces favor
their entrance into the liquid. The calculations here are
done for various boundary conditions that should span
the effective, true value and permit an experimental es-
timation. Vortex line stretching that can lead to
superfluid turbulence is assumed to be unimportant here
principally because of low counterflow velocities and the
expected rectinlinear bias to the lines due to rotation.

In Sec. II driven dissipative superflow is shown to
have exact solutions for restricted vortex nucleation.
Numerical solutions are exhibited for unrestricted nu-
cleation. Some predicted properties of these solutions

II. EQUATIONS AND SOLUTIONS

A. Basic equations

All equations apply to the laboratory frame, with the
axis of rotation and the rectinlinear vortices parallel to
the z axis. The macroscopic two-fluid equations for the
superfluid and normal-fluid components are

d
ps Vs = —psVp F

dt

p„V„= V(P —p, p)+g—V V„+F,d
"dj

where the chemical potential p and mutual friction F
satisfy

Vp= SVT+ VP——— V
i

—V„—V,
i

1 1Pn
p 2 p

F=p, a X [n+(V +V, ) n(V ——V, )] . (4)

The positive and negative superfluid vortices have circu-
lations +a=+(h/m)z, densities n+, and line velocities
V+. The latter are related to V, and V„by

V~=V, +f'(V„—V, }kfz&&(V„—V, } .

The numerical values of f and f' used here are taken
from second-sound attenuation measurements of the
standard friction parameters B and B', '

are compared in Sec. III; namely, the dissipation, men-
iscus profile, heat torque, and angular momentum. Sec-
tion IV contains a brief summary.

Vortex boundary conditions also affect the transient
spin-up behavior of superfluid in a simple cylinder fol-
lowing a torque impulse. However, in this case the ex-
perimental data appear less sensitive to the details of
vortex nucleation than to something else, which was in-
terpreted as an additional drag between the vortices and
container walls. ' A motivation for the present work
was to study vortex density variations and nucleation
eff'ects in a context that allows (hopefully) easier experi-
mental control, i.e., involving steady-state instead of
transient processes.
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f =p„B/2p, f'=p„8'/2p . (6)

The dissipation is sufficiently small in the counterflows
considered here to neglect superfluid conversion and
temperature variation.

Also needed are the conservation equations for the
vortex densities,

a 1 8
p, V,p+p, V,„— rV, p

———Fp,at r Br
(15)

8 and its dimensionless form, w = 8'/Qr 2, will be
called counterflow. It is assumed the flows are cylindri-
cally symmetric, so the angular components of the veloc-
ities obey

a
at
—n~+V. n+ V+ ———an+n (7)

a la alap„V„~+p„V„„— r V„& F&+——i) — r V„&, (16)
Br r Br

where the decay parameter o. is the cross section per
unit time for mutual annihilation of antiparallel vortices.
Equations (1) and (7) are not independent since

V')&V, =nK,

where n is the net vortex density,

Fy —— p, ~[N—f ( V„~—V, &) nf '( V„—„—V,„)] . (17)

The net vortex density n and the trapped circulation
around the inner cylinder determine V, &

in a simple
manner, since the circular symmetry cancels the flow
due to vortex images. Explicitly,

n =n+ —n (9) V~(r, t)= —f" r'dr'n r, f —dt'(n+ V+„—n V „)„
rl 0

It is easy to verify the consistency of these equations.
Rewriting Eq. (1) as

r]
V,p(r ),0),

r
(18)

n+V—n[V, +f'(V„—V, )]+7 Nf z&((V„—V, )=0,

where N is the total vortex density,

N =n++n

(10)

N is the independent component of Eq. (7) and satisfies
the conservation equation

N+V N[V, +f'(V„—V, )]
a
at

+V nfzX(V„—V, )= ——,'cr(N —n ) . (12)

By ignoring density fluctuations the decay parameter
o can be found to first order by calculating the decay
time ~ for isolated, opposite vortices a distance r apart,

r=mr /2fa .

—V, +n+ a && V+ na—&( V = —V(p, /p, + V, /2),
at

and taking the curl gives the same conservation equation
for n as does Eq. (7),

n+ V+, ——n V

where, from Eq. (5),

(19)

where r& is the radius of the inner cylinder. The integral
over time in Eq. (18) accounts for the change in trapped
circulation due to vortex flux at r &.

A general solution requires the initial conditions
V, &(r&, 0), V„&(r,O), n+(r, O), and n (r, O), and the
boundary conditions n+(r, , t), n ~(r2, t), V„„(r2,t),
V„&(r, , t)=Or„and V„&(ri,t)=Qr2, where r2 is the ra-
dius of the outer boundary. The boundary conditions on
n+ are needed only where the vortex velocity is directed
into the fluid. Being dissipative, the system moves to a
steady-state fixed point (for a sufficiently small driving
force) which appears to be independent of the initial
conditions. (Being nonlinear, the system should show a
transition to chaos for increasing driving force. )

In the case of steady state it is possible to reduce Eqs.
(10), (12), (15), and (16) to only two, for N and n. The
derivation proceeds by assuming N ~ 0 and noting that
the vortex fiuxes must cancel (in steady state) at all
points,

The average distance between a positive vortex and a
given negative vortex is r =1/an+, and the decay of
the negative vortices obeys

ri = n /r . —

Substituting for r and r and comparing with Eq. (7) gives

Vg„———YR'/r+ f (V„~—V,~) .

Therefore, Eq. (19) becomes

YWn lr +f ( V„p—V,p)N =0,
where

(20)

(21)

cr=2~f .

B. Radial counterfiow and the steady-state
N and n equations

(13)
Y =(p. —f'p)/p. .

Substituting Eq. (21) successively in Eqs. (12) and (16)
gives, respectively,

p, V,„+p„V„„=O, (14)

where V„„=8'/r, 8' being a constant. For convenience,

In cylindrical coordinates r, P the radial components
of V, and V„are fixed by the counterflow condition

N(1 —x )—
r Br

a2 8'p„
r x — 1+

Br

N (1—x )=0, (22)

r Xx =0,~f 28
Jr

(23)
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where x =n/N. If these nonlinear equations could be
solved for X and n, then V,~ would follow at once from
Eq. (18) and V„~ from Eq. (21). Over intervals where
N =O„Eq. (16) can be solved exactly for V„&.

C. Exact solutions (restricted vortex nucleation)

There is a one-parameter family of simple, exact solu-
tions of Eqs. (22) and (23) for the case that n is every-
where zero. This means N =n, so Eq. (23) requires that
N be constant, i.e., n+ itself is constant. (The asym-
metry between n+ and n is a result of assuming that
the angular velocity Q of the container is positive. )

The family is parametrized conveniently by the
amount of vorticity within r2 when the counterflow
V„,= W/r is positive, and by the circulation around r&

when the counterflow is negative. Specifically, the solu-
tions can be labeled by a parameter a, defined by

V,&(r2 )/Qr2, W & 0a=.
V, t,(r, }/Qr„W(0 .

For fixed counterflow 8' there is only one value of a
that corresponds to constant vorticity filling the region
between r& and r2. This particularly simple solution is
called solid-body rotation (SBR) because of its similarity
to equilibrium. The SBR solution occurs if only positive
vortices are allowed to enter the liquid when counterflow
is applied to rotational equilibrium. This is also a limit-
ing solution in the sense that there are no solutions of
larger (smaller) a for positive (negative) W.

For other values of a the constant vorticity is inter-
rupted by a vortex-free gap at one of the boundaries.
This is called the conserved-vorticity (CV) solution be-
cause it occurs if no additional vortices enter the liquid
when counterflow is imposed on rotational equilibrium.
These two solutions will now be given in detail.

Finally, V„& can be found from Eq. (21), by substituting
the above expressions for V, 4, and n+,

V„p——Or, (26)

i.e., solid-body rotation. The parameter nsBR for this
solution is

1+YW/(f Qr2), W) 0
SBR

1+YW/(f Qr, ), W (0 . (27)

2. No vortex nucleation (conserved vorticity, CV)

These solutions correspond to finite regions of vortici-
ty which do not fill the entire volume when a is between

Whether or not this is also the physical solution (apart
from presumably small and controllable three-
dimensional effects) depends on the unknown boundary
condition for negative vortices in a positively rotating
container. From Eq. (20) it is obviously impossible to
have zero vortex velocity at the boundaries simultane-
ously for both vortex species whenever the counterflow
is finite. So, the SBR solution is physically unstable to
the entrance of negative vortices from the boundary, ei-
ther outer or inner as W is positive or negative. Within
the two-fluid model there is no basis to rule out the en-
trance of negative vortices.

Figures 1 and 2 show the angular velocities V„&, V+&
and vortex densities for W/Qrz ——+0. 1. The difference
between V„~ and V+~ remains fairly constant between r I

and rz, and changes sign according to the direction of
counterflow 8'. The equivalent vortex density n, inside
r

&
is also strongly affected by the sign of 8'.
The values of the superfluid parameters used here and

elsewhere in the paper correspond to He at T =1.7 K,
viz. , vl/p„=3. 17X10 cm /sec, f =0.127, f'=0.0122,
and p, /p =0.768.

I. Nucleation ofpositive vortices
(solid body rota-tion, SBR)

This solution is easily found from Eq. (21). Setting
n =N and evaluating at r& gives

w =0.1

Vpy

V t,(r, )=Qr, +(YW/f)/r,

Using this in Eq. (18),

(24)
0
2—

Ae

and comparing with Eq. (21) evaluated at rz gives

0 I

0.4
I

0.6
r/r2

O.S 1.0

n+ ——2Q/K, r& &r &rp . (25)

This is the same vortex density that occurs in equilibri-
um. The only effect of counterflow is to change the
magnitude of trapped circulation around the inner
cylinder; for 8' & 0 this circulation can even be negative,
according to Eq. (24). It is convenient to represent the
trapped circulation by an equivalent vortex density n,
inside r&,

n, =2 V,~(r ~ )/ar ~ .

FIG. 1. Upper: Angular velocities of normal fluid (solid
curve) and positive vortices (dashed curve) as a function of ra-
dial position in the annulus. Nucleation at the boundary of
positive (negative) vortices is unrestricted (suppressed), result-
ing in a vortex density distribution and an angular component
of normal fluid velocity equal to solid-body rotation (SBR).
Lower: Accompanying vortex density distribution. The mac-
roscopic superfluid circulation around the inner boundary r

&
is

denoted by an equivalent, but fictitious, vortex density n,, in the
region r & r

&
——0.Srz. The counterflow parameter w =0. 1

(inner boundary hotter than outer boundary).
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w= 0.1

1—
Vny

V+@I~~ I I

0
0.4

I

0.6
I

0.8 1.0

the limits

asBR I+(rl «2) &a +asBR

asBR (a (asBR —1+("2«& )',
(28)

The case a&1 corresponds to both counterflow and a

FIG. 2. Same as Fig. 1 for opposite counterflow (inner
boundary colder).

change in rotational velocity being imposed on
superAuid in equilibrium rotation, with no additional
vortices entering. In the region where n+ ~0 the solu-
tion is found as before from Eq. (21). However, a gap of
zero vorticity now occurs at the cold boundary, i.e., at
the outer or inner boundary for 8' greater or less than
zero, respectively. In this gap Eq. (16) is easily solved
for V„& because F& ——0. Then the solutions for V, &

and
V„& are joined at the boundary r3 between the vortex-
filled and vortex-free regions by making V,~, V„&, and
8V„&/Br continuous. This gives an equation for r 3

which can be solved numerically. The general solution
is given in Table I.

Typical behavior of the gap position r3 and the vortex
density n+ as a function of 8' is shown in Fig. 3 for
a = 1. The gap expands and then contracts somewhat as
the counterflow

~

8'
~

increases while the vortex density
decreases monotonically-, reaching zero when the limit
(opposite asBR) is approached in Eq. (28). Angular ve-
locities and vortex densities for W/Qr 22——+0. 1 are
shown in Figs. 4 and 5.

Like the SBR solution the CV solution is also physi-
cally (not mathematically) unstable, in this case unstable

TABLE I. Exact solution of the two-fluid dissipative equations describing radial counterflow in a
positively rotating annulus of inner (outer) radius r& (r2) when the negative vortex density is every-
where zero. The parameter 8' gives the strength of the radial counterflow velocity, W=rV„, . The
radius r3 is the boundary of the vortex region and is defined by h& ——0. The square brackets [r~, r3],
etc. under r define the region of the given solution for the vortex density n+K/2Q and the normal-

fluid angular velocity U„&/Qr2. The various functions hp, etc. are defined in the lower part of the
table along with the independent parameters n and A. The special case A = —2 requires the solution

given at the bottom of the table. Also, Y=(p„—f'p)/p, .

)0

73

[r(, r ]3

[r3~72]

n+K
2Q

h2(rl, r2)

V„p/Qr2

r&(1 —c) l—+—r
r2

h i(ri ) +hpr'1

P'2 7

&0 h3(1»l ] AD)3) =0 [r),r ]3

h2(r»r] )

h, (r2) +h pr'+'1

T2T

1 c
(1—c)r2 —+—r

I' 72

~p Vp(p2)/QTp 8 )0
( 2 + A )PP P 3 Q V,~( r

& ) /Qr 1, 8' (0

2
2 Ar3

h~(r~) =r]+c 2+A
—P'

I

h2(r~, rz)=(arz —r, —YW/Qf)/(r3 —r~ )

h3(r), r2, r3 ) =h (r), r2)[2(2r2+" r)rg" )+ A (rg r) )r—3 ]—(2+ A )(r2 —r ~ )r,"—=0

Special case A = —2

2r3 (rz —ar, +. YW/Af )ln( r3 /r, ) + [( 1 a)r
~ + Y/WQ—f](rz r3 ) =0 determi—nes r3

V„~ r2+c(r3 I p) cr3 ln(r/r3)+ ri &r (r3
Qrp Tl 2 ~&12
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FIG. 5. Same as Fig. 4 for opposite counterflow.
FIG. 3. Upper: The position of the boundary r 3 that

separates vortex-free and vortex-filled regions of the annulus
when all vortex nucleation is suppressed (conserved vorticity,
CV) as a function of counterflow w. The left- (right-) hand
scale is associated with negative (positive) w. Lower: Vortex
density for the CV solution in the upper graph. The vortex
density loses its symmetry around w =0 when a&1 (see text
for definition of a).

D. Numerical solutions (unrestricted vortex nucleation)

For the case that both positive and negative vortices
are nucleated at the boundary no exact solutions are
known. In principle, one could numerically solve the N
and n equations, Eqs. (22) and (23), but it is more in-
structive to integrate the original dynamical equations
over time until a fixed point is reached. A convenient
choice of independent equations consists of those for the
normal fluid velocity V„& and the two vortex densities
n+ [Eqs. (16) and (7)] with the boundary conditions
V„&(r&,t)=Orb, n~(rb, t)=n+ &0, where rb r„r2.——The
superfluid velocity V,&

is then determined by Eq. (18).
The equations were solved by a finite-difference

method on a staggered mesh (alternating densities and
velocities) using standard donor-cell difFerencing and
iteration of implicit solutions of the finite-difference
equations. Various consistency checks were performed
to verify the correctness of the solutions. These included
reproduction of the exact solutions, independence of the
final solution with respect to initial conditions, invari-
ance with expansion of scale, and agreement between
different solution methods. About 200 spatial grid
points are sufhcient to resolve the behavior, except near
the cold boundary, where BV„&/Br is large and a finer
mesh is needed. For the cases shown here about 2000
time steps are sufhcient to reach steady state; the exact
number depends on the initial conditions, the criterion
for steady state, and how conservatively the size of the
time steps is chosen for numerical stability.

Figures 6 and 7 show angular velocities and vortex
densities for the same counterflows W/Qr 2

——+0. 1 and
temperature T =1.7 K as before. The small plus sign on
the right-hand side of the vortex density graphs shows
the average of n~/2Q between the boundaries, and the
small horizontal line extends the average to include n„
i.e., its value is V,&(rz}/Qrz. The positive and negative
vortex densities at the boundary are given the same
value,

1 Q
V+p —(1 f '+if } 1 ———

r3 m
(29)

where co is the frequency and m the number of maxima
of the circular wave. Only the first term on the right-
hand side of Eq. (29) diFers from the result of Ref. 11,
and has the interpretation of being the wave velocity
when m ~ co, which must be the velocity of the outer-
most ring of vortices. )

w= 0.1

02—

Cs
CV

+

to the entry of both positiue and negatiue vortices For.
a = 1 the two vortex velocities into the fluid at the physi-
cal boundary of the gap are equal.

{The existence of a gap at the outer boundary r2 for
counterflow W ~ 0 is a favorable condition for the prop-
agation of generalized Kelvin waves on the boundary r3
of the vortex region. ' The previous derivation of10, 11

11these waves can be repeated for the case of radial
counterflow, and gives the complex dispersion relation

2m
r3

0
0.4

I

0.6 0.8 1.0
n+x/20=1 .

l/r2

FIG. 4. Same as Fig. 1 for the case that all vortex nu-
cleation is suppressed (CV).

The most obvious change from the previous solutions
is the large maximum in positive vortex density n+ near
the cold boundary, resulting in a sort of "space charge"
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2
I

w=O. 1 Vny———V+)----- V

2 — n e

0.
0.4 0.6 0.8 1.0

FIG. 6. Same as Fig. 1 for the case of unrestricted vortex
nucleation (UVN).

of vorticity. The maximum is itself approximately max-
imum at the counterflow value used here.

The negative vortex density n decreases monotoni-
cally from the cold to the hot boundary. Unlike the pre-
vious solutions there is a steady flux of total vorticity
from the cold to hot boundary. Because positive and
negative vortices mutually annihilate, the magnitude of
this flux decays over distance, but the vortex densities at
any location are constant in time.

Both vortex angular velocities V+& either lead or lag
behind the normal velocity V„& for positive or negative
counterflow, respectively. The greatest lead or lag al-
ways occurs for V+ &. It is this relative velocity
V~~ —V„& that causes most of the dissipation in the inte-
rior of the fluid.

Equating the vortex fluxes at the cold boundary
n+ V+„——n V „gives

n —YR'Irb f [&r„—&,y(rb )]-
—YWlrb+f [Orb —V,~(rb)]

Therefore, n+ n im——plies V,&(rb)=Orb. This is the
equilibrium superfluid velocity in the absence of

III. PROPERTIES

A. Dissipation

Multiplying Eqs. (1) and (2) by V, and V„, respective-
ly, adding, and integrating over the volume gives an
equation for the time rate of change of the kinetic ener-
gy, which is the dissipation rate. In steady state this en-
ergy loss is sustained by forces at the boundaries, such as
a temperature difference in the case of counterflow. The
dissipation consists of two parts.

1. Viscous dissipation

This occurs only for the normal fluid, and has the
well-known form'

D„=——,
' g f d r ( o „'„+2o „'&+o

&& ),
where

(30)

av„,

counterflow, so no net vorticity leaves the cold boundary
during the approach to steady state (starting from an
equilibrium state without counterflow). (The values of
n+ are irrelevant at the hot boundary because it is never
a source in steady state. ) The qualitative nature of the

0solution is not sensitive to the exact, finite values of n, +.
Reducing n+ by a factor of 10 reduces the maximum of
n (r) by a factor of 2 or less, and changes the meniscus+
profile by roughly 10%. Of course, the solution is quite
sensitive to zero values of n+, and for n+ ~0 the solu-0 0

tion slowly approaches the corresponding exact solutions
for restricted vortex nucleation.

Because the dynamical equations are used to find the
steady-state solutions, information on the transient be-
havior is obtained, as well. For example, starting from
rotational equilibrium without counterflow, the steady
state in Figs. 6 and 7 is reached in about 70/0 s after
the counterflow is switched on. The maximum in the
vortex density establishes itself sooner, in about 40/0 s.
Doubling the counterflow velocity reduces the time to
reach steady state to about 10/0 s.

Cy 1—

1 av„„av„,
"&=

~ ay
+ a.

1 av„, v„,
CT =2 +r a r

V„p

r

Cg
CV

+I 1

C

fle

It will be convenient to express the results as a dimen-
sionless viscous dissipation density d z, defined as

Dz —— pQr2 f d„d r.—
For the case here of angular symmetry and counterflow,

0
0.4 0.6

f aw+awmm mQ wm

0.8 1.0

'4

PQr2 Ar2

av„,
ar

Vny
2

FIG. 7. Same as Fig. 6 for opposite counterAow. (32)
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2. Vortex dissipation

This takes the form

D„= p,—xf J d rN
~
V, —V„~ (33)

or, in terms of a dimensionless vortex dissipation density
d„, defined like dz in Eq. (31),

C4

L 0
Cy

U)

d„=2 fN—ps

p
p
Ps

2 2
r2

Q,r ' r

N0 -0.2

-0 ~ 4
0 ' 5 0.6

I

0.7 0.8 0.9 1.0

+( V, p
—V„p)

1

(Ar~)
(34)

FICx. 8. Meniscus profiles corresponding to the solutions in
Figs. 1, 4, and 6.

The total dissipation is sustained by the temperature
difference across the two boundaries,

2vrpSrV„„T
~

„', =Dq+D, ,

2r= —2m. dr r (p, V,~+p„V„~)
Bt

or

D„+D„
T2 T$ 2npS8'

(35)

=2vrr p„V„„(V,p
—V„p)+g

Vny Un

Br

(37)

The temperature differences of interest are so small that
the entropy S can be taken as constant over the volume.

B. Meniscus

One of the ways the vortex distribution can reveal it-
self is through the shape of the meniscus at the free sur-
face. Capillarity and surface tension will be ignored, be-
cause the capillary constant for helium is only of order
0.07 cm and the curvature of the miniscus is small.

To find the meniscus, add the radial components of
Eqs. (1) and (2) to obtain an expression for r)P/dr and in-
tegrate from r

&
to r. The change in height M is related

to hI' by p and the gravitational constant g,

after making use of the conservation equations for p,
and p„, and of the counterflow condition, Eq. (14).

According to Eq. (37) the torque r& (per unit length)
on the inner cylinder is

2mrf p——„V„„.( V, ~
—V„~)+g

BV„p

Br
V„p

(38)

r) ——JVQ/m „S,TO=0,

In the absence of rotation, V„&
——0, and Eq. (38) reduces

to the result of Ref. 13,

AP 1bz(r)=
PR

1 Pn
nr

Ps

1

1
I

I

I

V
dr' p 2 Pn+, Vp+ V~ (36)

where A' is the number of circulation quanta trapped
around r&, Q is the counterflow heat flux per unit length
(Q =2nrpSTV„„), m is the He mass, and S„=pS/p„.

In the presence of rotation, the torque ~ changes qual-
itatively. For example, the SBR solution has V„&——Qr

In Figs. 8 and 9 are shown different menisci corre-
sponding to no counterflow, and to positive and negative
counterflow using the SBR, CV (a= 1), and unrestricted
vortex nucleation (UVN) solutions given earlier. Clear-
ly, the meniscus can distinguish different vortex nu-
cleation boundary conditions.

Ol

CV

Cs

U)

0.2—

C. Heat torque and angular momentum

The torque induced by radial counterflow on a station-
ary boundary with trapped circulation was considered by
Penney and Overhauser. ' The more general results for
a rotating container are quite different. The torque ~ on
the liquid is the time derivative of the total angular
momentum, so multiplying Eqs. (15) and (16) by r, add-
ing, and integrating over the volume gives

N
j -0.2

1CV ~ w= —0 1———— UVN

—0.4
0.5

I

0.6 0.7 0.8 0.9 1.0

FIG. 9. Meniscus profiles corresponding to the solutions in
Figs. 2, 5, and 7.
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the transient heat torques on the container at r& and r2
are certainly unequal. Explicitly, the angular momen-
tum (per unit length) is

P2

L =2~ r dr (p„V„~+p, V,&),
Tl

(40)

which becomes

Lo npA——(r 2
—r t )/2 (41)

for no counterflow. The SBR solution has angular
momentum

0
-0.5 -0.3 -0.1 0.1 0.3 0.5 L sBR —L o +mph YW ( l'

q r~ —) /f (42)

FICx. 10. Torque per unit length on inner cylinder as a func-

tion of counterflow for the SBR and CV solutions.

and

YW 1
V, =Br+

r '

The CV angular momentum is always less than that for
SBR (because the vorticity is less). The expression for

is not particularly illuminating and will not be
shown, but L cv and I-sBR are compared in Fig. 11 for
the same example used in Fig. 10. Even though the
steady-state shear stress on the container is essentially
the same for the two solutions over a wide range of
counterflow velocity, the angular momentum is not, so
counterflow applied to a freely rotating container would
distinguish between CV and SBR solutions by the
steady-state rotation rate.

r, =2+p„(Y/f)W =YQ /(2mp„fS„T ), (39) IV. SUMMARY

2.5

L
I 1.5

CV

E 0.50
E
U)
C:
CO

-0 5
-0 5 -0.3 -0.1

W

0.1

1

0.3 0.5

FIG. 11. Angular momentum per unit length of the liquid
as a function of counterflow for the SBR and CV solutions.

i.e., the torque is quadratic in Q. The torque on the
outer boundary is equal and opposite, so the container
experiences shear stress of the same sign, independent of
the direction of heat flow. Figure 10 shows the torque
on the inner boundary as a function of counterflow for
both the SBR and CV (a= 1) solutions. The change in
behavior of the CV solution occurs at the point where
vorticity in the fluid disappears,

~

W
~

=(Qf/Y)(r2
—r 2), for a = 1. The overlap of the curves in the quad-
ratic region is not exact.

The steady-state angular momentum of the fluid can
differ substantially from the equilibrium angular momen-
tum (i.e., for the same rotation but not counterflow), so

The phenomenological two-fluid superfluid equations
of Landau have the deficiency that they cannot be used
to calculate common superfluid phenomena, namely
those involving superfluid vorticity. The conventional
generalization of these equations to include the net vorti-
city V & V, is suScient for phenomena involving either
parallel vortices of the same sign or regions so small that
the motion of only single vortices is of concern (in which
case the equations become quasimicroscopic and require
spatial averaging to regain their direct predictive power
for large-scale flow). The necessity to go beyond net
vorticity and add total vorticity to the two-fluid equa-
tions is illustrated here in a simple two-dimensional ex-
ample of driven, dissipative, steady-state flow. This ex-
ample also demonstrates the importance of vortex flux
boundary conditions (nucleation rates) in nonequilibrium
flows. These boundary conditions are not calculable
within the two-fluid model, and remain to be determined
from a more microscopic theory or from experiments,
which could be guided by these results.

The system here has the same geometry as Couette
flow but, instead of imposing a difference in angular ve-
locity by different rotation rates of the two boundaries at
constant temperature, a radial counterflow velocity is
imposed by a temperature difference across the boun-
daries at constant rotation. Starting from rotational
equilibrium and applying the counterflow causes, vari-
ously, a gap or no change or a sharp maximum to ap-
pear in the positive vortex density at the cold boundary
depending, respectively, on whether no vortices or only
positive vortices or both positive and negative vortices
are nucleated there. The simultaneous presence of both
positive and negative vortices is possible, in principle,
because the fiuid dynamic forces favor the entrance of
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both types into the liquid, where they mutually annihi-
late over some distance. Consequently, the steady-state
vortex fluxes are nonzero if nucleation is unrestricted.

The results here assume angular symmetry. Based on

the generic behavior of driven, dissipative systems this
symmetry should break at some sufficiently high
counterflow velocity which remains to be predicted, even
in the linear approximation.
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