
PHYSICAL REVIEW B VOLUME 36, NUMBER 13 1 NOVEMBER 1987

Depression of the superconducting transition temperature by magnetic impurities:
Effect of Kondo resonance in the f density of states
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A new formulation is presented for the calculation of superconducting T, depression by dilute

Ce impurities. The treatment is based on the finite-temperature large-degeneracy expansion for
the degenerate-orbital Anderson model. The results may be simply interpreted in terms of reso-
nant structure in the one- and two-body scattering amplitudes; the resonance scale, To, may, in

principle, be measured directly by inverse-photoemission studies of the f density of states. The in-

itial slope of the depression curve ( —dT, /dC) p p depends solely on the ratio Tp/T o, with T o

the pure-metal transition temperature. The maximum initial slope is anomalously large in com-

parison with typical values for nonresonant magnetic impurity scattering. For an orbital degen-

eracy N =6, maximal depression occurs for To -5T,o.

I. INTRODUCTION

The presence of magnetic impurities in a supercon-
ducting host strongly reduces the transition temperature
T, . This suppression of superconductivity results from
the breaking of Cooper pairs by conduction-electron
scattering. Central to the understanding of T, depres-
sion is, therefore, a general theory for the interaction of
conduction electrons with a magnetic impurity. In the
normal state, this interaction leads to characteristic
low-temperature anomalies in many physical properties
(the so-called "Kondo effect").

In the last five years, a simply unifying picture has
been developed for understanding normal-state experi-
ments in dilute magnetic alloys. The central concept is
the existence of a narrow many-body resonance just
above the Fermi level in the one-electron excitation spec-
trum. The position of this "Kondo resonance" relative
to the Fermi level, kgTO sets the energy with which all
low-temperature properties scale. Several satisfactory
mathematical formalisms have been developed which
permit the quantitative calculation of normal-state prop-
erties over the entire range of reduced temperature
T/To. ' These techniques have provided a complete
description of normal-state properties in the alloy
(La,Ce)B6. ' In contrast, a quantitative treatment of the
Kondo resonance has not been incorporated in previous
theories for T, depression.

The successful description of normal-state properties
leads us to reexamine the inAuence of magnetic impuri-
ties on the superconducting transition temperature T, .
The depression of T, is determined by normal-state
properties in the vicinity of the pure-host transition tem-
perature T,o. The present treatment is an extension of
the "noncrossing approximation, " a thermodynamically
consistent diagrammatic approximation, to the super-
conducting state in the vicinity of the transition. This
approximation quantitatively describes normal-state be-
havior over essentially the entire range of T/To. For
simplicity, we restrict attention to a Ce impurity in a su-

perconducting host. The physical assumption is that
Cooper pairs are formed from the conduction electrons
of the host, and that the impurity f electrons do not par-
ticipate in superconductivity. In addition, we consider
only conventional s-wave superconductivity. The formal
expansion parameter is I /N, with N the f-orbital degen-
eracy of the impurity. To leading order in 1/N, pair
breaking is due to magnetic scattering of conduction
electrons from the impurity. This contribution vanishes
for low temperature, since the magnetic moment of the
impurity is quenched by the Kondo effect. The compen-
sation of the magnetic moment, which is rejected in the
disappearance of magnetic scattering, is accompanied by
significant changes in the electronic system. In particu-
lar, a strong local repulsion develops between conduc-
tion electrons with antiparallel spins. This repulsion
counteracts the phonon-mediated attraction and leads to
a weakening of Cooper pairing. For T,o&& To, the tran-
sition temperature is reduced by this pair-weakening
effect, rather than by pair breaking.

The organization of this paper is as follows. In Sec. II
we briefly review the qualitative features of dilute mag-
netic alloys in the normal and superconducting states
and summarize the results of previous calculations of T,
depression. We present an overview of our own results
in Sec. III; this section may be of greatest interest to the
casual reader. A general expression for the initial slope
of T, depression, ( dT, /dC)

~ c o,—is derived within
the quasiclassical approach to superconductivity in Sec.
IV. In Sec. V we introduce our model for impurity
scattering in detail and summarize the relevant notation.
The scattering amplitudes for this model are computed
formally in Sec. VI ~ Numerical results for the one- and
two-particle scattering amplitudes and the depression
rate of T, are discussed at length in Sec. VII. In Sec.
VIII we offer a summary of our results and comment on
the prospects for future work in this area.

We add a final cautionary remark: Although we cal-
culate a measurable effect —the depression of T, by
magnetic impurities —the present paper does not contain
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a comparison of our theoretical prediction with experi-
mental results. We are not aware of any complete set of
data which would allow such a quantitative test of our
theory. There is, of course, a large accumulation of data
on T, depression in various alloys; however, in no case
has the Kondo temperature been determined indepen-
dently by normal-state measurements. The Kondo tem-
perature has conventionally been determined by fitting
measurements of T, directly to the highly successful
theory of Miiller-Hartmann and Zittartz (MHZ). ' We
hope that discrepancies between our results and those of
MHZ will stimulate experimentalists working in this
area to perform additional measurements on the normal
and superconducting states.

II. REVIEW

+ V g (ck f +H. c. )+ Un, n, .
k, o.

(2.1)

Here, cf is the energy of a localized orbital, U is the
Coulomb energy resulting from double orbital occupan-
cy, and V is the hybridization integral between localized
states and conduction states with dispersion ck. The lo-
cal level broadening due to hybridization is just

I =nN(0) V (2.2)

with N (0) the single-spin density of conduction states at
the Fermi level. Possible configurations of the impurity
orbital are f, f ', and f .

The simple Hamiltonian in Eq. (2.1) may be general-
ized to describe more complex impurity configurations.
Such a generalization is necessary to describe the local
angular momentum structure of the lanthanides, in
which spin-orbit coupling is strong. In this case, impuri-
ty orbitals must be labeled by total angular momentum,
rather than spin. The simplest 1anthanides to treat are
Ce (configurations f, f ', and f ) and its particle-hole
analog Yb (f ', f ', and f ' ). In the following discus-
sion, we specialize to Ce for simplicity.

A. Three regimes for normal metals
containing magnetic impurities

In the lanthanides, the Coulomb repulsion U is of the
order of 5 —10 eV. Although the f configuration in Ce
systems may be detected in inverse photoemission exper-
iments, it is largely irrelevant to the physics of low-
energy processes. Hence, it is a reasonable approxima-
tion to set U = ao, eliminating all configurations but f
and f '. Assuming a relatively structureless band, the
properties of the system are then determined solely by
the position and width of the f ' configuration. Three
qualitatively distinct regimes are possible.

(1) sf/I »1; this may be called the "empty impurity
regime. " The f configuration dominates on energetic

Current understanding of magnetic impurities in met-
als is based largely on the Anderson model. The sim-
plest Anderson Hamiltonian takes the form

H„= g Ekni, +sf g n

grounds. The properties of the system are dull, i.e., the
scattering is nonmagnetic in character.

(2) —sf /I »1; this may be called the "Kondo re-
gime. " The system is dominated by the f ' configuration
and may be alternatively described by an antiferromag-
netic spin, or spin-orbital, exchange Hamiltonian with
localized impurity —conduction-band coupling. The ex-
change constant for U = op is just

I=V /cf &0. (2.3)

In this regime, the scattering is magnetic in character.
At high temperatures, the impurity susceptibility is
Curie-like, indicating free-spin behavior. As the temper-
ature is lowered, the Kondo effect begins to manifest it-
self. The Kondo effect is the screening of a local mag-
netic moment by antiferromagnetic interaction with con-
duction electrons. Below a characteristic Kondo scale
To (to be defined precisely in Sec. III), the susceptibility
becomes Pauli-like, and the specific heat becomes linear
in temperature; such behavior characterizes a Fermi
liquid. The formation of a spin-compensated ground
state is accompanied by strong resonant scattering near
the Fermi surface. This resonant scattering leads to
transport anomalies in the impurity resistivity, thermo-
power and thermal conductivity.

(3)
~
ef /I

~

( 1; this is the "mixed-valent" or
"valence-fluctuation" regime. In this case, the config-
urations f and f ' are approximately degenerate. The
properties of the system cross over smoothly from the
behavior of regime (2) to that of regime (1) as the f ' lev-
el is raised through the f level. In the mixed-valent re-
gime, the impurity may no longer be described as a
long-lived spin (mathematically, the Schrieffer-Wolff
transformation becomes invalid). Alternatively, the
spin must be viewed as a transient object with a charac-
teristic spin-fluctuation lifetime.

B. Eft'ect of magnetic impurities on T,

The effect of impurities on superconductivity is ex-
pected to differ in the three regimes discussed in Sec.
III A. In the empty impurity regime, the ground state is
nonmagnetic. Cooper pairs may be formed from elec-
trons in degenerate time-reversed states; however, hy-
bridization with highly correlated impurity levels in-
duces an effective repulsion between conduction elec-
trons with opposite spin. This repulsion grows with in-
creasing impurity concentration, reducing the attractive
pairing interaction responsible for superconductivity.
"Pair weakening" by resonant impurity scattering has
been treated within Hartree-Fock approximations by
Kaiser, Shiba, and Schlottmann. According to
Kaiser's theory, T, is a modified exponential function of
impurity concentration. Such a form is expected since
the decrease in the effective pairing interaction is nearly
linear in concentration. Properties such as the normal-
ized specific heat discontinuity, b, C/C

~
r, obey the

C

Bardeen-Cooper-Schrieffer (BCS) law of corresponding
states. The Hartree-Fock treatment is limited in validity
to systems with small Coulomb repulsion, i.e.,
U/I « 1; this condition is not fulfilled in lanthanide al-
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loys. Nevertheless, Kaiser's theory has yielded a con-
sistent description of lanthanide alloys with large Kon-
do, or spin-fiuctuation, scales (e.g. , Th Ce). A more-
refined theory should yield similar results in this limit,

The mixed-Valent regime has been the subject of rela-
tively few investigations to date. Since the configura-
tions f and f ' are nearly degenerate, virtual charge and
spin Auctuations are of comparable importance. The
transition temperature, specific heat discontinuity, and
upper critical field have been computed perturbatively'
to 0 ( V ). In addition, the zero-temperature large-
degeneracy expansion of Gunnarsson and Schon-
hammer" has been recently extended to the supercon-
ducting state. '

The Kondo regime, in which long-lived impurity spins
exist (before quenching sets in), has been the object of
especially intense study, which dates from the work of
Anderson' and Abrikosov and Gor'kov. ' Anderson
demonstrated that stable spins lead to strong T, depres-
sion by breaking the time-reversal invariance of a pure
metal. This is a qualitatively different mechanism from
the nonmagnetic pair weakening effect described above.
In a nonmagnetic system, stable Cooper pairs may be
formed from exact time-reversed eigenstates; T, depres-
sion results from a weakened pairing interaction. If the
nonmagnetic scattering is also nonresonant, the transi-
tion temperature is insensitive to small concentrations of
impurities. ' In perturbation theory, this null result
emerges as a cancellation of lifetime effects: while
single-electron free-particle states acquire a finite life-
time, dressed Cooper pairs scatter "in tandem, " and the
overall pair-breaking effect vanishes. In contrast, as
shown by Abrikosov and Gor'kov (AG), no such cancel-
lation of one- and two-body effects occurs when impurity
scattering is magnetic. The AG treatment is a second-
order Born approximation in the exchange constant J;
the Kondo effect generates logarithmic divergences in
perturbation theory beginning with terms of 0 (J ). The
AG result is nevertheless expected to remain valid in the
limit JX(0)~0, when the Kondo scale Tp is exponen-
tially smaller than the pure-metal transition temperature
T,p. AG theory has been extended to compute the
specific heat discontinuity b, C/C

~ r . ' The predicted

dependence on T, violates the BCS law of corresponding
states. This dependence has been observed in lanthanide
systems such as (La,Gd)Alz, in which the effective ex-
change integral J is positive and no Kondo effect
occurs. '

The presence of the Kondo effect greatly complicates
the treatment of T, depression. From a purely technical
viewpoint, an approach which avoids the unphysical
divergences of low-order perturbation theory in the ex-
change constant is required. A minimal constraint on
the theory is that it reproduce the second-order Born ap-
proximation of AG in the limit of a vanishingly small
Kondo scale, Tp/T, p~0. On the other hand, it must
incorporate the opposing tendencies which exist when
the Kondo scale and pure-metal transition temperature
are comparable. In the first place, formation of the
Kondo ground state is accompanied by resonant one-
electron scattering near the Fermi surface; in a system

with stiff impurity moments, such scattering would lead
to high normal-state resistivity just above T, and anoma-
lously large T, depression (due to lack of time-reversal
invariance). On the other hand, the effective moments in
a Kondo system are not stiff; rather they decrease as the
many-body ground state develops, tending to zero at
temperatures below Tp. This second effect makes impur-
ity scattering increasingly nonmagnetic at low tempera-
tures and tends to diminish pair breaking when Tp and
T,p are comparable.

Thus, as the ratio Tp/T, p increases from zero, it is
plausible that the initial slope of T, depression,
( —dT /dC)

~ c p initially increases, reaches a max-
imum when the ratio is of order unity, and finally de-
creases toward zero as the Kondo scale becomes large.
The existence of a singlet Kondo ground state implies
that only pair weakening should be present for
Tp/T p)) 1.

C. Previous theories for the Kondo regime:
MHZ and MIN

A theory which nonperturbatively incorporates the
Kondo effect in the study of T, depression was
developed in the early 1970s by Muller-Hartmann and
Zittartz (MHZ). ' Their calculation assumes the ex-
istence of a stable local spin and is an extension to the
superconducting state of the Green's function decou-
pling scheme of Nagaoka and Hamann. ' Within this
approximation, exact expressions may be derived for
( dT, /dC)

~

—c p and bC/C
~ r . Both properties are

functions only of the ratio Tz/T, p, with Tx the "Kondo
temperature" of Nagaoka-Hamann theory. Maximum
initial depression occurs for T~ 12T p and takes the
value

( dT, /dC)
i

6'—"p=0. 125N(0) (2.4)

The location and size of the maximum are almost in-
dependent of the impurity spin magnitude. The initial
depression curve is roughly Lorentzian in 1n(Tx /T p)
with half-width m(S + —,

' ). In the limit Tx /T, p~0, the
result of AG theory is recovered. Surprisingly, this re-
sult emerges as well in the opposite limit Tz/T, p~ ao,
where the impurity spin is completely quenched.

The Nagaoka-Hamann approximation scheme col-
lapses at temperatures below Tz, yielding nonanalytic
features in all physical properties. For example, the cal-
culated normal-state resistivity exhibits a logarithmic
saturation, ' rather than the quadratic behavior of a gen-
eral Fermi liquid. This shortcoming is expected to in-
validate the results of MHZ theory in the Fermi-liquid
regime T,p « Tz.

MHZ theory has been applied with notable success to
the alloy (La,Th)Ce. The characteristic temperature of
this system may be raised by increasing the concentra-
tion of Th. The consistency of predictions for the initial
depression in T, and the specific heat discontinuity pro-
vides a partial test of the theory. The agreement is good
when the theoretical Kondo scale is small, but fails, as
expected, for large values of Tx /T, p (high Th concentra-
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tion). Analogous results have been obtained for the sys-
tems (La,Y)Ce and (La,Ce)Sn3 Pb„. '

A Fermi-liquid theory for T, depression has been
developed by Matsuura, Ichinose, and Nagaoka (MIN),
and independently by Sakurai. Pair weakening occurs
through virtual polarization of the Kondo singlet ground
state; properties such as the specific heat discontinuity
obey the BCS law of corresponding states. This theory
is strictly valid only when Tz/T, o))1. MIN have at-
tempted to incorporate results of Fermi-liquid theory
and high-temperature perturbation theory in an interpo-
lation scheme for T 0 Tg. This approach is highly
problematic, however; the low- and high-temperature
scales differ by a factor of order unity, and the interpola-
tion itself is largely arbitrary. For this reason, MIN
theory must be viewed as qualitative in nature outside
the Fermi-liquid regime.
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III. DESCRIPTION AND RESULTS

In this section we present a broad overview of our re-
sults. A more complete description of the calculational
approach is presented in Secs. IV —VII. We restrict at-
tention to Ce systems; the impurity angular momentum
structure is particularly simple in this case, and the
relevant configurations are f and f '. A central concept
to be emphasized throughout is the universality of low-
temperature properties, including T, depression, in the
Kondo regime. This universality results from the scaling
form of the resonant amplitudes for one- and two-
electron scattering from impurities.

In the extremely dilute limit, impurity-impurity in-
teractions may be ignored. The energy-dependent ampli-
tude for one-electron scattering takes the simple form
CT, (co), with C the dimensionless impurity concentra-
tion and T& the one-electron t matrix for scattering from
a single impurity. The t matrix is indicated schematical-
ly in Fig. 1. The total scattering rate r (co) is the dissi-
pative part of this amplitude, i.e.,

FICx. 2. growth of the one-electron scattering amplitude
with decreasing temperature. The results shown above corre-
spond to the first parameter set in Table I. The impurity de-
generacy N is 6. A "Kondo resonance" in the scattering am-
plitude appears just above the Fermi surface as the tempera-
ture is decreased. The position of this resonance at zero tem-
perature Tp sets the scale for all low-temperature properties.

typical choice of parameters (see Table I).
The description of low-temperature properties is

simplified by the universal characteristics of the scatter-
ing amplitude. Specifically, the dimensionless quantity
N(0)T, (co) is a nearly universal function of the scaled
frequency co/To and the scaled temperature T/To. The
extent to which this scaling is valid is indicated in Fig. 3
for values of To varying by more than 2 orders of magni-
tude.

The amplitude for opposite-spin two-electron scatter-
ing from an impurity, Tz(co&, ro2, v), has eq'ually strong

'(co) = —2C ImTi(co+i0+ ) . (3.1)

A distinguishing feature of magnetic impurity scattering
is the strong frequency dependence of the scattering am-
plitude; in the limit of large on-site correlation ( U~ 00 ),
the low-temperature scattering rate exhibits a sharp res-
onance just above the Fermi surface. The position To of
this "Kondo resonance" sets the scale for all low-
temperature properties. The growth of the Kondo reso-
nance at low temperatures is indicated in Fig. 2 for a

TABLE I. Parameters for calculation of T, depression. The
parameter sets used in calculations of —dT, /dC are listed
below. The magnetic ion has an f' ground state with degen-
eracy N=6 and an f excited state: E(f') E(f )=sf (0. —
Energies are measured from the Fermi level for the system
with an f configuration. The conduction band is centered on
the Fermi level and has a Lorentzian profile with half-width D.
(A half-width of 3 eV is reasonable for most dilute Ce alloys. )

In each case, s//D= —0.67 (an f -f ' separation of 2 eV for
D=3 eV.) The hybridization width for impurity-conduction
electron mixing is I . The Kondo scale Tp is the position of
the Fermi surface resonance in the f density of states for
T~O. Tp may be estimated within a factor of order unity by
the expression To —Dg ' e 'i e, where g = I /n

i 8/
~

. Note
that all three parameter sets have been used in studies of
normal-state properties as well (Ref. 1).

FIG. 1. Schematic representation of the amplitude for one-
electron scattering from a single impurity. An electron of en-

ergy co (indicated by the solid line) scatters elastically from the
impurity site with energy-dependent amplitude T&(cu); the am-
plitude has both real and imaginary parts.

Parameter set I /D

0.05
0.075
0.20

Tp /D

4.8X 10
5.3X 10
1.1X 10

half

0.97
0.92
0.71
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FIG. 3. Single-variable scaling of the one-electron scattering
amplitude for T~O. Parameters are summarized in Table I.
For Kondo scales varying by a factor of more than 200, the
amplitude exhibits approximate scaling at energies

~

to
~

& 2TO.

energy dependence. This amplitude is indicated
schematically in Fig. 4.

Both elastic (v=0) and inelastic (v&0) processes are
possible since the impurity —conduction-electron ground
state has internal structure and may be polarized; both
processes contribute to T, depression in general. The
present calculation retains only elastic (indexed as clast)
and "elastic spin-Qip" (SF) processes. The second
category requires energy transfer v=co2 —co, . Since the
same processes enter AG theory, ' the present calcula-
tion may be called an "energy-dependent AG approxi-
mation. "

The processes relevant to T, depression involve
scattering of electrons with energies distributed symme-
trically about the Fermi surface, i.e., with ~, = —co2 ——co.

In this case, the dimensionless quantities
[N(0)] T2'"'(co) and [N(0)] T2" (co) with

T2""(co)= T2(co, —co;0),
(3.2)

T2"(co)=T2(to, —co; —2co)

—0. 1 I

—4
I

—2
I

to/Tp

0.05

+
C)

+
3

0.042
0.17
0.83
4.2
20

CO

I

FIG. 5. Temperature dependence of the amplitude for elas-
tic scattering of two electrons, T2"". The imaginary part of
both the elastic and elastic spin-flip amplitudes is odd in fre-
quency. At low temperature, strong resonances appear near
co=+Tp,' these resonances indicate that electron pairs with en-

ergy of order the Kondo scale are strongly scattered by the im-

purity I'just as single electrons are scattered). The shoulders in
the lowest-temperature curve for co~0—+ are an artifact of the
approximate solution scheme.

CUI+ V, 7

CU~
—P, I —0.05 l

—4
I

—2 0
~/To

FIG. 4. Schematic representation of the amplitude for
opposite-spin two-electron scattering from a single impurity
T2. A spin-up and spin-down electron with energies col and coq

scatter from the impurity, exchanging energy v. In an elastic
event, the electrons in the initial and final states have the same
energy and spin {v=0); in an elastic spin flip event, the elec--
trons in the initial and final states have the same energies, but
opposite spins (v=co& —co&).

FIG. 6. Temperature dependence of the amplitude for elas-
tic spin-flip scattering of two electrons, T2". For T & Tp reso-
nances appear near co =+Tp. These resonances are opposite in

sign to those in the elastic amplitude; their weight rapidly di-
minishes at T~O. In addition, the lowest-temperature curves
exhibit spurious features at zero frequency. As in the case of
the elastic amplitude, these features are an artifact of the ap-
proximation scheme.
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exhibit universal behavior as functions of rp/Tp and
T/Tp, in analogy with the one-body amplitude. The
low-temperature growth of the elastic and elastic spin-
flip amplitudes is indicated in Figs. 5 and 6; their scaling
behavior is illustrated in Figs. 7 and 8. (For the values
of parameters, see Table I.) Since the one- and two-body
scattering amplitudes scale with characteristic energy
Tp the initial depression of T, is a nearly universal func-
tion of Tp/T, p in the Kondo regime. The contributions
to ( —dT /dC)

~

c' p from the one- and two-body ampli-
tudes are plotted in Fig. 9. The impurity degeneracy
N =2j +1 is chosen to be 6, the spin-orbit ground-state
degeneracy of Ce. The approximate scaling of the
depression rate is illustrated in Fig. IO.

The behavior of the calculated X =6 depression curve
is as follows: maximum depression occurs for Tp=ST,p.
This is of the same order as the Kondo model results of
MHZ (Ref. 20) and MIN (Ref. 22). The peak depression
rate is

(dT, /dC) —
i
c'"p=0. 13K(0) (3.3)

for the parameter set with maximum impurity valence
nf(T =0)=0.97. The peak decreases slightly in height
as mixed-valent character increases.

The calculation reported here is least accurate for
large values of Tp/T p. There are two primary sources
of error. (1) The calculation is based on the self-
consistent large-degeneracy expansion, or noncrossing
approximation (NCA), which breaks down at tempera-
tures T,p((Tp. The characteristic scale for anoma-
lous behavior is, however, quite small in the Kondo re-
gime. This scale may be estimated as

0.05

n,

C)
~ W
+
3

l

0.97
0.92
0.71

l

—2
—0.05 0 2 4

FIG. 8. Single-variable scaling of the elastic spin-flip ampli-
tude for T/Tp 0.04.

—4

0..2 1 I 1 T 1 1) 1 1 I 1 I IT( I I I I 1 fll I I I

Results reported here are limited to the range
T,p) TNC&. (2) The approximation of retaining only
elastic and elastic spin-flip processes is expected to be-
come invalid as T,p~0. In this limit, both one- and
two-body contributions to ( dT, /dC)

~ c —
p are large

and of opposite sign; the inclusion of inelastic two-body

Te ( T /I )(N+1)I(N —))Tp
NcA ~+) ~ p

0.1

(3.4)

0.1
4.8
5.3
1.1

SF'

2

n,

+
C)

+
3

02

p

0.97
092
0.71

—0.1—
clast

2

P 01 0.1 1 10 100
'4/r. o

C)

I

—0.1
l

—2
I

0
v/To

FIG. 7. Single-variable scaling of the elastic amplitude for
T/Tp-0. 04. The amplitude shows similar scaling at other
temperatures. Deviations from scaling are evident in the curve
for nf ——0.71 (the weakly-mixed-valent regime).

FIG. 9. Contributions to the initial slope of T, depression
from the one- and two-electron scattering amplitudes. The pa-
rameters of this plot are summarized in Table I. The strong
scattering of single electrons with energy of order Tp leads to a
large initial slope for T, depression. This effect is opposed by
the elastic two-electron contribution, which reflects the in-
creasingly nonmagnetic character of impurity scattering for
large Tp/T, p. The elastic spin-flip contribution is small at all
temperatures; as in the original AG calculation, the spin-flip
amplitude increases the slope of T, depression. The curves for
f valence 0.97 and 0.92 are nearly coincident. This reflects the
scaling behavior of the one- and two-electron amplitudes (Figs.
3, 7, and 8). The curves for the weakly-mixed-valent system
(nf ——0.71) show the expected deviation from scaling.
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IV. GENERAL EXPRESSION FOR T,
DEPRESSION IN THE DILUTE LIMIT

4.8x 10

5.3x 10
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0.01 0. 1 1 10
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processes may then be important. For these reasons, the
present calculation is insufficient to determine the quan-
titative form of ( dT, /dC)

~ c 0 f—or the Fermi-liquid
regime T,p « Tp. Nevertheless, we expect that the
determination of the peak position and height will not be
significantly affected by inclusion of inelastic processes.

FICx. 10. Total initial slope of T, depression. The slope is
maximized for Tp/T p 5. The peak value for nf ——0.97 is
-0.13, close to the peak value of 0.125 deduced for the Kondo
model in the studies of MHZ (Ref. 18) and MIN (Ref. 22). For
Tp &&T,p, the initial slope is small since resonant one- (and
two-) electron scattering near the Fermi surface is weak: The
Kondo resonance has not yet developed. For Tp »T,p, the in-
itial slope is small even though one-electron scattering is quite
strong: Cooper pairs maintain their coherence by scattering in
tandem from nonmagnetic centers. The small arrow at the
lower left indicates the magnitude of initial T, depression
which follows from a second-order Born approximation
neglecting the Kondo effect. Applying Eq. (B18) of Appendix
B to the erst parameter set in Table I gives
N(0)( dT, /dC)

~ c o
———0.0049.

In the present section we briefiy introduce our method
for treating superconductivity and write down the equa-
tions relating the initial slope of T, depression,
( dT /dC)

~ c o to scattering by rare-earth impurities.
We use the quasiclassical theory of superconductivity.
We apply the framework of the theory for small defects
in a superconductor and extend it by including the
internal dynamics of the scattering center.

The characteristic length and time scales in supercon-
ducting phenomena are set by the coherence length
go=fiuF/mT, and . the inverse gap frequency b '. Both
are very large on the atomic scale determined by the
Fermi wave vector k~ ' and the inverse Fermi frequency
cz'. The anomalies introduced by resonant scattering
from rare-earth impurities also occur at energies
Tp «cz. The quasiclassical theory of superconductivity
is valid only for variations on these coarse-grained
scales. At the outset, properties determined by the Fer-
mi wavelength kF ' and the Fermi energy cz are explicit-
ly eliminated from the theory. The advantage gained is
a considerable simplification, elegance, and calculational
ease. We would like to emphasize that, since the tradi-
tional BCS theory is restricted in accuracy to terms of
order T, /cF, an advantage of the quasiclassical method
is that it acknowledges this fact and eliminates as many
intermediate steps as possible.

The quasiclassical theory is based on formal many-
body perturbation theory, expressed in terms of the ther-
modynamic (imaginary time) Green's function C(x, x';
ice„); in this case, 0 is a 4X4 matrix which contains the
"anomalous" Green's functions in the off-diagonal qua-
drants. In what follows, only the static limit will be im-
portant, and consequently only one frequency, the ener-

gy variable, appears as an argument. The central quanti-
ty of this theory is the "quasiclassical" or "g-integrated"
Green's function g. It is derived from the quasiparticle
part of the full propagator

p
. ((c ( )c (0))) ((c ( )c (0)))

((ct (r)ct (0) )) ((c (r)c „(0)))
(4.1)

by averaging over the magnitude of the momentum p:

E
g(p;iru„)=a 'r3 f dg G(p;iso„),

C

(4.2)

where g~ =u~(p —pF). Here a, uF, and pF denote the
quasiparticle renormalization factor, the Fermi velocity,
and the Fermi wave vector, respectively. The unit vec-
tor p defines a direction on the Fermi surface. The for-
mal intermediate cutoff E„which satisfies cF &~E,
&&T„can always be eliminated from observables. Fi-
nally, r3 is a 4&4 Pauli matrix with particle-hole in-
dices, i.e.,

l 0
0 —l

(4.3)

[ice„r",—cr Ig I, g(p;ice„)]=0 I

g 2(P;ice„)= —m. )t .
(4.4)

with each entry a 2&&2 matrix.
The Eilenberger equations, which determine g, are de-

rived from the Dyson equation for the full Green's func-
tion. They take the form of a transportlike equation
plus a normalization condition. For homogeneous sys-
tems in the static limit, the Eilenberger equations are
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Here o Ig I is the quasiclassical self-energy defined as a
functional of g. This self-energy equation provides the
order parameter through

( d—T, /dC)
i c o

—— m—.T o g
sgn co„

Im tl (iso„)
COn

t2(l&n )
+

b(ioz)=A, T g' g
' (p;iso„),

4m
(4.5)

(4.10)

where 5 is the order parameter, o.
2 is a 2X2 Pauli spin

matrix, and A, is the BCS coupling constant. A singlet
order parameter is assumed for simplicity.

An impurity whose perturbation potential is localized
to a scale kF can be incorporated into the quasiclassical
theory as a "boundary condition. " Conduction-electron
scattering from an impurity at site R; can be accounted
for by a transition matrix element

k' R
e 'f'(k, k', iso„) . (4.6)

The quasiclassical theory exploits the fact that 1 de-
pends on

~

k
~

and
~

k'
~

only near kF (refiecting the
short-range nature of the impurity). To leading order in
the ratio (gokF) ',

~

k
~

and
~

k'
~

may be restricted to
kF, leaving only the angular dependence on k and k'.
This leads to the definition of the quasiclassical t matrix
for the impurity at site R;,

V. MODEL AND NOTATION

As shown in the preceding section, the calculation of
T, depression in the dilute impurity limit reduces to
finding the single-impurity t matrix. In this section a de-
tailed model for impurity scattering is introduced, along
with the relevant notation.

The system of conduction electrons interacting with a
magnetic impurity is modeled by the infinite-U Anderson
Hamiltonian. For a single rare-earth impurity, the
complete Harniltonian takes the form

~band +~f +~mix +0pair

where

Hband g Ek n k
k, o.

t(k, k';ico„) =of'(kFk, kFk';ico„)r~ . (4.7) H;„= g V (k)(ckM
~

M ) (0
~
+H. c. ),

(5.1)

An average with respect to the impurity positions leaves
only the forward-scattering amplitude t(k;iso„). The
final inhomogeneous equation for the quasiclassical
propagator g is

~'cone's oMFIg j g(P leo, )]'
=C [t(p;i co„),go(p;i to„)], (4.8)

with go determined by Eq. (4.4) and o MF the mean-field
self-energy due to the pairing interaction. C is the di-
mensionless impurity concentration. This equation
holds only to lowest order in C. More generally, go
must be replaced by a dressed g, with t determined self-
consistently as a functional of g.

The superconducting transition temperature of the im-
pure system T, is obtained from the self-consistency
equation (4.5) linearized with respect to the anomalous
amplitudes. For a system with an isotropic singlet order
parameter and isotropic impurity scattering, one may
write quite generally

t(k;ico„)= t(iso„)—
= Re t i (i lo„)1+i Im t i (i co„)~3

+ tp(l COn )(l Op)7 i (4.9)

where t& and t2 denote the particle-hole diagonal and
o6'-diagonal scattering amplitudes, respectively. It is
straightforward to show (see Appendix A) that the initial
slope of T, depression is related to (4.9) by

and

H „,= —,
' g U(k, k')c l, ck ci, c

k, k, 'o, o'

The zero of energy is chosen to be the energy of the
noninteracting Fermi sea and an empty impurity orbital.
The notation is as follows.

(1) ni, ——cz ci, , with cq the creation operator for a
plane-wave conduction state of wave vector k, spin o. .
An isotropic conduction-band dispersion ck ——c~ is as-
sumed throughout. All energies are measured relative to
the Fermi level. The plane-wave normalization is chosen
such that

&rcr
~

ct„~o&=e'"',

[ck,cq~ ) =(2~) 5(k k )—5'
In forrnal sums over plane-wave states,

g~g f
5„„~(2m)'5(k —k') .

(5.2)

(5.3)

(2) The impurity atom is located at the origin. The
operator c~~ creates a spherical-wave conduction state
with wave vector k =

~

k
~

and total angular momentum
M. Additional quantum numbers l and j (3 and —', in the
case of Ce) are implicit. The spherical-wave normaliza-
tion is chosen to eliminate factors of 4m in final results:

( ro
~ c„M ~

0 ) = &4lri j', ( km ) ( o
~

m ) I;~ ( r ),
(5.4)

Ickllt, cl, .~ ) =(2lr) 5(k —k')5MM l4wk
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g~ f dk 4rrk /(2m)
k 0

5kk ~(2n. ) 5(k —k')/47rk
(5.5)

The spherical-wave and plane-wave operators are related
by

where

(o IM)=(l —,'M cr—o
I
jM) .

(The convention for Clebsch-Gordon coefficients and
spherical harmonics is that of Messiah. ) In formal
sums over spherical-wave states,

P &/rYYYXFEPP//fr

f (~~n (+m~ & ' l(~n mjPiiuiiiaii Y3q 2.
K

FIG. 11. Representation of the anomalous impurity Green's
function F~(ice„). Since only terms linear in the order parame-
ter are retained, exactly one anomalous conduction propagator
(denoted by the dash-dotted line) appears. The two large dots
denote interaction vertices. The shaded rectangle I ~ is a two-
electron scattering vertex with factors of V removed.

A. Reduction of the t matrix

c„M = g a (M;k)c„dk
kM 4 (7

a (M;k)=&4m. ( rcIM) Y, M (k) .
(5.6)

For convenience, we introduce the fully dressed nor-
mal and anomalous impurity Careen's functions

G/(MM', im„)= f dre "
[ —(T,FM(r)FM (0))],

0

(6.1)

(3) The impurity Hilbert space contains only the emp-
ty state

I
0) and singly occupied states

I

M ) . The
eigenstate phases are chosen to make V(k), the hybridi-
zation matrix element with band states, real valued.

and

FI(MM', ice„)= f dre "
[ —(T,FM(r)FM (0))],

0

VI. THE SINGLE-IMPURITY t MATRIX

with

FM= Io)(M
I

. (6.2)

The single-impurity t matrix is computed in two steps.
First, t is expressed in terms of local operator averages;
second, the local averages themselves are evaluated.

A perturbative expansion, or equation-of-motion ap-
proach, yields the following exact expression for the
forward-scattering t matrix:

t(k;i~„)= V
a( M; k)G I( MM';icy„)a (M';k) —a(M;k)F/(MM';ice„)a (M', —k)

a*(M; —k)FJ*(MM', i cu„)a (M', k) —a*(M;k)G/ (MM', i cu„)a (M', —k)
(6.3)

Here a(M;k) denotes a two-element column vector with entries a [see Eq. (5.6)]; each element in (6.3) is a 2X2 spin
matrix. Sums over M and M are implied. The hybridization V is evaluated at the Fermi surface. Use has been made
of the identity

f dye " (T, A (r)B (0})= —f dye " (T, A (r)B(0))* . (6.4)
0 0

The next step in the simplification of t involves performing the sums over the magnetic quantum numbers M and
M in (6.3). For the terms involving G&, this is relatively simply since

GI ( MM'; i ~„}=GI ( i co„)5M~ (6.5)

by rotational invariance. In the case of the anomalous propagator, three points should be noted. First, only terms
linear in the gap function [b.(k)] ~ need be retained to deduce T, . Second, since s-wave pairing with an isotropic gap
is assumed for simplicity,

[h(k)]
0

I )
I/2 —o'5 (6.6)

Third, to linear order in b, , FI may be represented by Fig. 11; the vertex I I(ice„,iv ) is evaluated in the next section.
Computing Fig. 11 gives (see Appendix C)

FI(MM', ice„)=—g K(MM';i(co„+v ) )I f (I co„,iv )

with

K{MM';i(co„+v ))=X(0)V f at(M;k)go (k;i (co„+v )}a*(M';—k)
4m

(6.7)
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and

n.[h(k ) ]

[See Eq. (A2).] Substituting (6.6) for [b,(k)] and (5.6) for cc (M;k) yields

K(MM', i(co„+v ))=(I / ) g f Y* (k)Y* ~ ~ ( —k)( —1)'" 5 &o
~

M) &o. '
~

M'&
~n+vm

I

4lr

To summarize,

1 )j+M
+

i

M, —M' (6.8)

Ff(MM', ice„)=6M M ( —1)'+ Ff(ice„),
(6.9)

Expressions (6.5) and (6.9) for Gf and Ff lead to the following sums when inserted in (6.3):

g a (M;k)a (M;k) = —,'(2j+ 1)6

and

—g a (M;k)a ( —M; —k)( —1)l+ = —,'(2j +1)(—1)' 6
M

(6.10)

Additional terms in (6.3) can be deduced from (6.10) by complex conjugating and letting k~ —k. [The evaluation of
(6.10) proceeds by writing out a explicitly as in (6.8).]

Equation (6.3) may now be simplified to

Gf (l con ) & Ff (l cttn )(I cT2)
t(k;i co„)= V

2 Ff(ice„)(—lo&) —Gf*(ice„)I
(6.11a)I f(iso„,i v )

Ff (i co„)= I b.—g ~n+vm

The scattering amplitudes displayed in our initial discussion of results (cf. Figs. 2 and 3 and 5 —8) may now be defined
more precisely:

T, (cu)= V Gf(co),
2

Telast( )
J V4TI (

.0)
2 +1

2
(6.11b)

T2"(co)= V TI f(co, —co; —2') .
2

Finally, using Eq. (4.10) for ( dT, /dC)
~ c D—, we write

( dT /dC)
~ o o=— irV To

Im Gf(ice„) Ff(ice„)
(6.12)

with co„=(2n +1)AT,o. The next section is devoted to evaluating Gf(ice„) and Ff(i~„).

B. Evaluation of propagators Gf and Ff

Consider the impurity Green's function Gf of Eq.
(6.1). To linear order in 6, only normal-state contribu-
tions to Gf are allowed. Gf may be represented by the
general technique for treating systems with strong local

correlations; this method is considerably more concise
and elegant than the alternate pseudo-Hamiltonian ap-
proach. We summarize in Table II the rules for
evaluating general contributions to Gf, a step-by-step ex-
ample is illustrated in Fig. 12. These rules are derived in
detail in Appendix C. It is possible to reformulate per-
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V(k)= V(k)/&N (6.13)

This 1/N expansion formally improves in accuracy with
increasing degeneracy. Neglecting crystal-Geld eA'ects,
the spin-orbit ground state of Ce is sixfold degenerate;
one expects the 1/N expansion to yield a useful approxi-
mation scheme in such a case.

It has been demonstrated that all contributions to Gf
of O(l) and O(1/N), as well as an extensive set of

turbation theory in the hybridization V(k) as an expan-
sion in 1/N, where N =2j + 1 is the degeneracy of the f
impurity. Diagrams may be classified in powers of 1/N,
provided the quantity NV (k) is treated as 0 (1). Alter-
natively, the expansion may be generated by the replace-
ment

1
Go(z) =

1
GM(z) =

z —ef —XM(z) (6.15)

higher-order contributions, may be summed by comput-
ing the diagram in Fig. 13:

Gf (MM'; i'„)=5MM . e 'Go(z)G~(z +i co„),
1 dz p,

2&l
(6.14)

Zf ——f e '[Go(z)+NGM(z)] .
I 27Tl

The double lines denote Go and G~, dressed propagators
for the empty and occupied states computed using the
self-energies shown in Fig. 14:

&o(z)=NV g fkGM(z+Ek},
k

XM(z) = V g (1 fk )Go(—z —ei ) .
k

(c)

k'M

The reduction of the summation to solution of a closed
set of coupled equations is possible since vertex correc-
tions to Gf, Go, and GM enter only at O(l/N ). The
preceding scheme has been called the "noncrossing ap-
proximation, " or NCA, since it sums all contributions to
Go and GM arising from diagrams with noncrossing con-
duction electron lines.

It is convenient to introduce spectral densities associ-
ated with the propagators in Eqs. (6.14) and (6.15):

po(e) = ——Im Go(e+i 0+ ),1

M+
b

~~n$
+M

1
pM(e) = ——Im GM(e+iO+ },

pf (e)= ——Im Gf (e+i 0+ ) .1

(6.16)

FIG. 12. Illustration of rules for constructing the normal

impurity Green's function Gf . (a) Vertices. Solid circles
denote interaction vertices, and open circles the operators FM

and FM. An even number of interaction vertices is interposed
between the creation and destruction operator. (b) Addition of
f configuration lines. Wavy lines represent the empty state,
and dashed lines the occupied states. (c) Addition of conduc-
tion electrons (solid lines) and assignment of quantum numbers.

(d) Addition of an "external line. " The external line carries
Fermi frequency i co„betwe nef destruction and creation opera-
tor. The complete contribution of this diagram to Gf is

( —1) (NV') f "' . & 'g( 1 f, )f. -— —
N Zf r 2~i z «.

1 1 1
X

2 + Ek~ —Ef 2 —Ek + Ek 2 + l CO„—E& + Ek —&f

1 1

2 +lCOq —Ek 2 +1CO~ —Ef

where I encircles all singularities of the integrand in a coun-
terclockwise fashion. The minus sign arises from the single
conduction line crossing.

From Eq. (6.15), it follows that

1 P Qo

pf(co)= (1+e ~ ) dec ~'po(e)pM(e+co),
Zf oo

(6.17)
with

Zf —— due '
po e +Np~ e

Consider now the two-particle vertex I f introduced in
Eq. (6.7). It is demonstrated in Appendix C that this
vertex may be calculated using the rules in Table III; an
example is shown in Fig. 15.

The simplest contribution to I f has the diagrammatic
form shown in Fig. 16(a):

1 dz p, 1I'f(tco„,tv )= . e
Zf r 2miz —c,f .z+i(co„+v }

1 1
X

z +i (2'„+v~ ) —Ef z +ice„

(6.18)
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FIG. 13. Expression for Gf in the self-consistent large-
degeneracy expansion, or "noncrossing approximation. " The
double wavy and double dashed lines represent dressed propa-
gators for the empty and occupied states, computed using the
self-energies of Fig. 14.

k

+ ~ ~ ~

where the contour I encircles all singularities of the in-
tegrand in a counterclockwise fashion. The empty and
occupied state lines may be dressed with self-energy in-
sertions, as discussed previously, and vertex corrections
are also a possibility [see Figs. 16(b)—16(d)]. As in the
case of Gf, the leading and next-leading contributions to
rf in a formal I/N expansion (as well as the extensive
class of higher-order noncrossing contributions) may be
summed by dressing Go and GM with the self-energies
computed in Eq. (6.15). The resultirig diagram is indi-
cated in Fig. 16(e); the expression for I f is the same as
Eq. (6.18) with

+ ~ ~ ~

Due to the presence of the additional factor

r=~N(O) V =—(Nr),1 (6.20)

FIG. 14. Self-consistent approximation for the empty- and
occupied-state self-energies.

1 1—~Go(z), ~GM(z) .
z Z —E,f

(6.19)
Ff [Eq. (6.2)] is formally smaller than Gf [Eq. (6.1)] by a

TABLE II. Diagrammatic rules for evaluating Gf(iso„). We list below rules for evaluating the normal-state f Green s function

Gf (i co„).

To compute a general contribution to Gf(ice„) of O(V "), n )0.

(a) Set down 2n+2 vertices (solid circles) in a vertical line. Beginning at the bottom with a dashed line, connect the ver-
tices with alternating dashed and wavy lines (all ascending), finally leaving the top vertex on a wavy line. (A total of 2n+2
lines now appear. )

(b) Counting from the bottom, convert the first vertex to an open circle (to represent the operator FM); convert an even-
numbered vertex to an open circle (to represent the operator F~).

(c) Always working to the right of the vertical line, connect the remaining 2n vertices with solid lines in all possible ways
which maintain the direction of the dashed line at each vertex.

(d) Working on the left-hand side of the diagram, connect the open circles with a dashed-dotted "external line, " carrying en-

ergy ice„ from top to bottom.

(e) Assign quantum numbers kM(M) to solid lines (dashed lines), conserving angular momentum at each vertex.

(f) Assign to ascending band lines a factor 1 fq~ and to descending b—and lines a factor fkM, with f the Fermi function.

(g) Draw a perpendicular to each local configuration line, and assign to it an energy denominator {z—E ), where E is
found by adding the energies of ascending lines intersected by the perpendicular and subtracting the energies of descending
lines intersected.

(h) Multiply the product of energy denominators and Fermi factors by V "(—1)'. Here c is the number of line crossings on
the right-hand side of the diagram. Sum on conduction momenta and internal angular momenta.

(i) Compute the contour integral (1/Zf) J „(dz/2ni)e R (z), where R is the result of the preceding operations, Zf is the

system partition function, and I encircles all singularities of R in a counterclockwise fashion.
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(a) (b) (e)

kM' kM'

factor of 1/N. Hence, to compute the shift in T, with
formal errors of O(1/N) in the impurity Green's func-
tions Gf and Ff, Go and G~ need only be dressed to
terms of O(l) in Ff. This requires only the calculation
of the empty-state self-energy shown in Fig. 16(f). (Cor-
responding simplifications may be made in the evalua-
tion of Gf.) Note, however, that the computational
effort required for the evaluation of Ff in this approach
is not significantly reduced over that in the NCA. As
shown in Appendix D, the limiting step in the evaluation
of Ff within the NCA is the computation of a set of tri-
ple spectral integrals. Such integrals cannot be com-
pletely eliminated by leaving the occupied-state lines
bare.

Expressions have now been derived for Gf and I f. It
remains to reduce the frequency sums over dressed prop-
agators in Eq. (6.12) to spectral integrals for numerical
evaluation. The full summations are performed in Ap-
pendix D. The resulting expression for the two-particle
contribution involves highly singular triple spectral in-

tegrals, which have not been evaluated numerically. In-
stead, a simple approximation for this contribution has
been introduced. In this approximation, only elastic and
elastic spin-fiip processes are retained (see Fig. 17).
Since these are exactly the processes which enter the
original AG calculation, ' this may be termed an

( (((Ul, +pm)

', l(QJ„+P )

/Ii

i(cu„+v )

(e)
I

j
tjl{GJn+V-)

~

FICr. 16. Diagrammatic contributions to I f. (a) Simplest
diagrammatic contribution to I f. (b) A contribution to I f
with empty- and occupied-state self-energy insertions. (c) and
(d) Vertex corrections to I f. (e) Representation of I f within
the self-consistent approach. The double wavy and double
dashed lines incorporate the self-energies of Fig. 14. (f)
Lowest-order empty-state self-energy.

I(m„+p )
"energy-dependent AG approximation. " The equations
for the two-particle contribution below assume this ap-
proximation. One Ands

( dT, /dC)
~ c —o

——( dT, /dC)~+( —dT, /dC)2, —
FIG. 15. Illustration of the rule" for computing the two-

particle scattering vertex I f. (a) Vertices. Solid circles denote
interaction vertices; open circles denote the operators I'~ and
FM and the points of attachment for the anomalous conduction
line K (cf. Fig. 11). Counting from the bottom, two open cir-
cles must appear in even positions and two in odd positions.
(b) Addition of f configuration lines. (c) Addition of conduc-
tion lines and quantum numbers. Interaction vertices are con-
nected by normal (solid) lines, and the open circles in even po-
sitions by an anomalous (dash-dotted) line. (d) Addition of an
"external line. " The external line carries frequency ice„be-
tween the remaining open circles. The total contribution of
this diagram to I f is

(6.21a)

where

N(0)( dT, /dC), = ,'N—I' I dc@pf—(co)R,(co) (6.21b)

( I

'"nr

( 1)2 (~V2) —Pz

Zf r 2~i z —cf
'

i
—(QJ

(
n

tU('lyl

~
{1 fa)—1

X
2 —EQ 2+lcopg Ek ef z+s{2co„+tv-) ek—

1 1
X z+i(2'„+v~) —cf z+Lcopg

The sign is ( —1)'+, with c =g =1.

FICi. 17. Diagrammatic representation of the elastic and
elastic spin-flip parts of the vertex I f. (a) Elastic. (b) Elastic
spin flip.
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with

R, (co)= —
2 f( —,

'
) —Re P

T ) 1 leo

%CO 2 2' T
N(0)( dT—, /dC) = ,'N—I f dco[cr f(co)

—(M~O)]R 2(co)

(6.21c)

pf(co= (1+e ) f dee 'pp(e)p~(e+co),
Zf QO

Zf ——f dee [pp(e)+XpM(e)], with

(6.21(1)

T 2T Q)
R2(co) = 1 — tanh4' co 2T

crf(co) = f de V(e;co),
f —oo

V(e;co)=4cosh(co/2T)e ~'Re Gp(e)pp(e)[e~ / pM(e co)—Re GM(e+co) —e P pl(e+co) Re GM(e co)]—

+2sinh(co/T)e '[ Re Gp(e) happ(e)—]pM(e+co)pM(e co) . —

(6.21e)

TABLE III. Diagrammatic rules for evaluating I f(im„,i v ). We list below rules for evaluating the two-electron scattering ver-
tex f'f(ico„,iv ), which appears in the expression for T, depression [Eq. (6.11)]. These rules follow simply from those derived from
the anomalous f Green's function in Appendix C.

To compute a general contribution to I f(ice„,iv ) of O(V "), n )0.

(a) Set down 2n+4 vertices (solid circles) in a vertical line. Beginning at the bottom with a wavy line, connect the vertices
with alternating wavy and dashed lines (all ascending), finally leaving the highest vertex on a dashed line. (A total of 2n+4
lines now appear. )

(b) Convert four vertices to open circles, representing the points at which incoming and outgoing external conduction lines
may be attached: counting from the bottom, convert the first vertex and one other odd-numbered vertex (possible points of
attachment for outgoing external lines), and two even-numbered vertices (possible points of attachment for incoming external
lines).

(c) Always working to the right of the vertical line, connect the remaining 2n vertices with solid lines in all possible ways
which maintain the direction of the dashed line at each vertex.

(d) Working on the left-hand side of the diagram, connect the open circles at odd-numbered points with a dashed-dotted
"external line. " This line carries angular momentum M into the top circle, M' into the bottom circle, and "energy" ice„
from top to bottom.

(e) Working on the right-hand side of the diagram, connect the remaining open circles (at even-numbered vertices) with a
dashed-dotted "external line, " carrying "energy" i(co„+v ) from top to bottom. (This line carries the angular momenta M
and M' out of the diagram. )

(f) Assign quantum numbers kM (M) to solid lines (dashed lines), conserving angular momentum at each vertex.

(g) Assign to ascending band lines a factor 1 fkM and to descending —band lines a factor fk~, with f the Fermi function.

(h) Draw a perpendicular to each local configuration line, and assign to it an energy denominator (z —E ), where E is
found by adding the energies of ascending lines intersected by the perpendicular and subtracting the energies of descending
lines intersected.

(i) Multiply the product of energy denominators and Fermi factors by V "(—1)'+ . Here, c is the number of line crossings
on the right-hand side of the diagram (including the external line); g is zero if a continuous path of dashed and solid lines
can be traced between the lower end point of the dashed-dotted line on the right and the upper end point of the dash-dotted
line on the left; and 1 otherwise. Sum on conduction momenta and internal angular momenta.

(j) Compute the contour integral (1/Zf) j (dz/2rri)e s'R (z), where R is the result of the preceding operations, Z& is the
system partition function, and I encircles all singularities of R in a counterclockwise fashion.
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All functions are evaluated at T =T,p. The notation
(M~O) indicates the interchange of subscripts M and 0
in the expression defining of(co), i.e., in V(e;co). Note
that crf(co) and R2(co) are both manifestly odd in co; of
arises from elastic scattering, and crf

~ M p from elastic
spin-flip scattering.

VII. NUMERICAL RESULTS

Numerical studies of T, depression in the extremely
dilute limit have been carried out using the energy-
dependent AG approximation summarized in Eqs. (6.21).
This approximation avoids evaluation of the triple spec-
tral integrals which necessarily emerge when inelastic
processes are included. The approximation is poorest
for large values of To/T p' a simple continuity argument
suggests that I f (ice„,i v ) = I f (ice„,O) for small
v =2mmT, p. In this hmit, inelastic processes with en-
ergy transfer up to —Tp are expected to be important
for correctly reproducing the crossover from pair-
breaking to pair-weakening behavior. On the other
hand, we expect the approximation to be adequate for
smaller values of To/T 0' in particular, the location and
magnitude of the peak depression rate should be little
affected by the omission of inelastic processes.

Results for initial T, depression are plotted in Fig. 10
as a function of Tp/T p where Tp is the peak position
of pf(co; T~O), the f density of states at zero tempera-
ture. The curves were generated using three choices of
conduction —f-electron hybridization I . In each case, a
Lorentzian conduction density of states with half-width
D was assumed. For each choice of hybridization (and
hence of To), the value of T,o was varied over a range of
approximately three decades. Parameter choices are
summarized in Table I. The value of Tp may be de-
duced within a factor of order unity by simple scaling
arguments (see Ref. 1); the detailed band shape is expect-
ed to provide a nonuniversal prefactor in such calcula-
tions.

The initial depression of T, assumes a scaling form
(Fig. 10) in the parameter range studied, i.e., it is deter-
mined solely by the ratio of the Kondo scale Tp and the
transition temperature of the pure system T,p. Such
scaling behavior has been derived previously by Muller-
Hartmann and Zittartz. Within the present treatment,
scaling follows from the nearly universal form of the
low-temperature one- and two-electron t matrices T,
and T2 for co, T «

~ Ef ~, I, and D (see Figs. 3, 7, and
8). The scaling behavior of T& and the f-electron densi-
ty of states pf imply low-temperature scaling for
normal-state properties as well. The transport and ther-
modynamic properties of Ce systems' have been calcu-
lated for the parameter sets of Table I.

The pair-breaking effect shown in Fig. 10 is anoma-
lously large for Tp/T, p=1; maximal depression occurs
for Tp 5T p. A similar result emerged in the Kondo
Hamiltonian studies of MHZ (Ref. 18) and MIN (Ref.
22). The source of strong pair breaking and T, depres-
sion in all three calculations is the decreased lifetime of
superconducting pairs due to resonant scattering near
the Fermi surface. For comparison, a representative

depression rate for magnetic impurities in the absence of
the Kondo effect (i.e., for To +0—) is indicated by the
small arrow in Fig. 10. This rate was computed for the
first parameter set in Table I using the AG expression of
Eq. (B19).

The giant depression in the presence of the Kondo
effect is due to the Kondo-Abrikosov-Suhl resonance in
the f-electron density of states. The single-electron
scattering rate for the conduction band is proportional
to this local density of states. Since each impurity site
has magnetic character (before Kondo quenching is com-
plete), singlet-paired electrons do not scatter from im-
purities "in tandem" (as they would in a time-reversal
symmetric system. ) Thus, for To/T, 0= 1, the Kondo res-
onance manifests itself in strong Cooper pair breaking as
well as in strong single-electron scattering.

The prediction of ( dT, /dC—)
~ c o for a specific sys-

tem requires three parameters: T,o, N (0), and To. To
may be measured in the normal state, e.g. , by fitting to
the resistivity curve of Ref. 1. The density of states may
also be deduced from normal-state measurements, or
from band-structure calculations. A possible system for
comparison of theory and experiment is the series of al-
loys (La,Th)Ce; in this system, the conduction —f-
electron hybridization may be tuned continuously by
varying the La and Th concentrations. Previous theories
(MHZ and MIN) have produced predictions for the
functional form of the specific heat discontinuity AC/C,
which may be measured along with T, . The correlation
of values for these two quantities provides a theoretical
consistency test. We have not attempted to evaluate
hC/C: such a calculation requires the evaluation of the
free energy below T, to terms of 0 (6 ). For this
reason, comparison of our theory with experiment re-
quires correlation with some normal-state property, such
as resistivity or susceptibility. Sufficiently precise mea-
surements of ( dT, /dC)

~ c 0 a—nd normal-state proper-
ties in a single system do not presently exist, to our
knowledge.

VIII. CONCLUSIONS

The formalism developed in the preceding sections al-
lows the treatment of superconducting T, depression by
magnetic impurities within the same framework used to
investigate normal-state properties. ' The good agree-
ment between thermodynamic results in the self-
consistent large-degeneracy expansion and in Bethe-
ansatz studies provides a measure of the expected accu-
racy of dynamic results such as the resistivity, dynamic
susceptibility, and shift in T, . A key approximation in
the numerical evaluation of ( dT, /dC)

~ c o reporte—d
here is the neglect of inelastic contributions to the two-
particle scattering vertex; we do not expect this omission
to significantly alter the position and magnitude of the
peak depression or the form of ( dT, /dC)

~ c 0 for-
values of Tp /T, p ( 1.

In the integral valent limit, the initial depression is
largest when T,p is smaller than Tp by a factor of =5
(see Fig. 10). This result is in qualitative agreement with
the treatment of Kondo impurities by MHZ (Ref. 18)
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and MIN (Ref. 22). The maximum depression is anoma-
lously large in comparison with that of AG theory' and
is in good agreement with the prediction of MHZ
theory.

Future work may concentrate on the form of T, for
finite impurity concentrations. A detailed numerical
study is required in order to discuss the possible oc-
currence of reentrant superconductivity.
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APPENDIX A: SOLUTION OF THE DILUTE
IMPURITY EII.ENBERGER EQUATION

T, Q' —A, '= ln(T, O/T, )

T p T
Tcp

(A8)

one finds

5=0

Here A, is the dimensionless BCS coupling constant, and
the prime implies a high-frequency cutoff on the order of
the Debye temperature.

Noting that

In this appendix the dilute impurity Eilenberger equa-
tion (4.6) is solved and the general form for
( dT, /dC—)

i c 0 cited in Eq. (4.8) is derived. We as-
sume an isotropic singlet order parameter, and without
lass set the quasiparticle renormalization constant a =1.
We assume in addition the forward-scattering t matrix is
isotropic (as it is for the Hamiltonian of Sec. V). Then
the form for t in Eq. (4.7) follows, i.e., t may be ex-
pressed in terms of the particle-hole diagonal and off-
diagonal scattering amplitudes, t, (i co„) and t2(i co„). Let

( dT /dC)
~ c 0= nT,()'sgn co„

Im t, (ico„)
n

't2(i co„)

APPENDIX B: RELATION TO
ABRIKOSOV-GOR'KOV THEORY

(A9)

g(~~t~n ) gl(l~n )+3 +2g( +t)n(l+2)rl

and recall that

(A 1)

go(ico„)= in sgn c—o„v.3+ (icr2)rl .
con

The commutator equation (4.6) may be rewritten

i~ng2(l~n )+ ~g 1(l~n )

(A2)

m' t2 ( l & )n=CD, i Imt, (ico„) +(insgnco„).
con ~band +Hf + mix (B1)

While the approach discussed in the text is well suited
for studies of T, depression in the Kondo regime, it may
also be used to derive the generalization of conventional
AG theory' for the orbitally degenerate Anderson or
Coqblin-Schrieffer models. This provides an expression
for ( dT, /dC)

i c —0 to second order in I /ef valid in
the limit To/T, O~O.

The Anderson model for magnetic impurities was in-
troduced in Eq. (5.1):

The normalization condition is simply

g1(i~ )gn2(i~n ) g 1(t~n )+0(~
giving to linear order in 6,

gl (ico„)= in sgnco„—.

(A3)

(A4)

For an impurity level far below the Fermi surface
( Ef ((0 ), this Hamiltonian may be reduced by a canoni-
cal transformation to the Coqblin-Schrieffer form

HCS ~band g ~kk'Ck'M'CkM
I
M ) (M

k, k', M, M'

where

Solving Eq. (A3),
V(k) V(k') U

ef(cf + U)
(B2)

C Im t, (i co„)(sgn co„)
g2(l co„)= 1+

Ct2(i co„)+ (A6)

and all other symbols are as previously defined. Hcs
acts within the space of states for which the impurity oc-
cupancy is unity.

The Coqblin-Schrieffer (CS) Hamiltonian describes
combined spin and orbital exchange scattering and
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I

reduces to the spin- —,
' Kondo Hamiltonian when j =—,',

l =0. In the limit U~ao,
(b) (c)

Jkk ——V(k ) V(k') /EI & 0 .

For simplicity, the approximation

V(k) = V= const,

Jkk ——J= const

(B3)

(B4)

is employed below.
The results of Abrikosov and Gor'kov for the spin- —,

'

Kondo model may be readily generalized to the
Coqblin-Schrieffer model; a possible calculational ap-
proach utilizes a variation of Abrikosov's projection
scheme. ' The second Born approximation for T,
depression is instead derived below within the infinite-U
Anderson model in the limit

EI~—oO

V—+ao,

N(0)V /EI ——N(0)J = const «1 .

(B5)

dz p, 1 N—'+
27Tl Z Z —Ey

+0(V')

=1+Ne ~+0(V ) . (B6)

The analysis need not be restricted to low impurity con-
centrations in this case.

As in Sec. IV, the calculation consists of computing
the quasiclassical Green's function g(k;ice„) of the su-
perconductor in the presence of magnetic impurities,
then applying the self-consistency condition (4.3) to
determine the gap function. As previously, g need only
be computed to terms of 0(h) for determining T, . Fur-
ther simplifications arise from the form of the single-
impurity diagrams GI and FI in the CS limit [Eq. (B5)].

One requires only contributions to V GI and V I I of
0( V ) and lower To this. order, three diagrams appear
in G~ and a single diagram in I ~, these are collected in
Fig. 18. The partition function Z~ is just

(d)

' ''(urn+&rn)
)r

~~nt

FIG. 18. Contributions to the normal Green's function G&
and impurity scattering vertex I & for calculation for T,
depression to 0 ( V ). (a) Lowest-order contribution to G&. (b)
and (c) 0 ( V ) contributions to G&. (d) Lowest-order contribu-
tion to I &.

Figure 18(a) is evaluated as

V2
V G"'(iso )= e

1 1

Z +lCOn —Ey Z

—peg

+0( V')
1+Ne

Thus, in the CS limit,

l COn —Ey
(B7a)

V G/"(ice„)= ——+0(J ) . (B7b)

The second contribution arises from the partition func-
tion. This entire term is real valued and does not con-
tribute to ( dT, /dC)

~ c 0. —Hence, the 0(J ) term
need not be calculated.

Since Figs. 18(b)—18(d) are 0( V ), only the 0(1) con-
tribution to the partition function need be retained in
their evaluation. Figure 18(b) yields

4
V2G(z)(; )

NV dz p,
Z~ 2m

' 1 1

Z +iCOn E/ Z k Z +Ep —EI

NV4 -p
e g . 2+ z +0((e ))

1+Ne k ~n Ek (EI —Ek ) (i~n —EI )
(B8a)

which reduces in the CS limit to

V G/( )(iso„)=J
k l&n —Ek

iJ N(0)n(sgncu—)+A,

(Bgb)

where A is a real constant. By a parallel calculation,
one finds for Fig. 18(c)

(Z +lan —E/)

xg
k Z + l Ct)n EkZ Z

J2
X(1—fk)=& .

NT

4
V2G(3)(i ) f z —Pz

Zy 2&l

(B9)
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Consider finally Fig. 18(d). Substituting for go from Eq.
(6.7) gives

I f(ico„,iv )
V Fg"(ico„)=1rN(0)V b, —g l~. +v.

I

with

1 dz p, 1
I (i co„,i v )—:"™Zf r 21ri z —Ef z+i (co„+v )

e -t'—

i.e. ,

r)„=m„+-,'~, 'sgn r)„,

l~. I

= i~. I+-,'rl '
(815}

1 1
X

z +leo„z +l (2co„+vm ) —Ef

(8 IOa}

One finds upon passage to the CS limit

0, v +—2co„

I ~.
I
+-,'r2 '

The self-consistency condition is now

b(io2)=AT, gg ' (ico„),

1.e.,
4V I f(i~n ivm)= J2/NT m n

Hence,

61rN (0)J

(8 lob)

(810c)
with

1=AT, g

—1 i —1 I —1
s 2+1 + 2+2

(816)

The quasiclassical propagator g may now be computed
to terms of 0 (b. ). In this case, one must solve the Eilen-
berger equation

=C(j+1)1rN(0)J

Performing the sum in (816) gives finally

[l con 1 3
—6(l 0'2)1 l, g (i co„)]=C [t (i co„},g (i co„)]

g (ico„)=—1r I, (Bl la)
ln(T, D/T, ) =1rT, g 1

f~. I+-,'r, '

where t(i co„) is to be determined self-consistently, i.e.,

t(ico„)=t Ig(ico„) j
—= Re t l (ico„)I+i Im t &(i co„)r&

+t2(i co„)(lc72)r, .

This may be accomplished by making the replacement

=f( —,
' +P ) —1)'r( —,

' ),

where the pair-breaking parameter

p=(1rr, T, )

(817a)

(817b)

i co„~i co„(co„)=i [co„—C Im t l (i co„,6 )],
b, ~A(co„)=b,+Ct2(ico„,b ),

and solving the equation

[ico„r3—b(io 2)r„g (i co„)]=0 .

This equation has the linearized solution

(812a)

(812b)

and
hatt

is the digamma function. For C~0, Eq. (817)
reduces to

2

( dT, /dC)
I c 0= —(j+1)J~N(0) . (818)

This expression disagrees with the result obtained by
Coqblin and Schrieffer in their original paper, where
the corresponding expression has

g(i co„)=— [l CO„1 3
—l 5(l CT2)1 l] (813)

The quantities co„and 5 may now be determined from
the self-consistent equation for t. One finds from Eqs.
(6.11) and (86)—(810) that

Note that

j j8'( '+1)
(2j+1)' (819a)

C t(ico„)=( i sgnco„)( 2—r, ')r3 — (io2)( —,'r2 ')r, ,
' j+1= Sj(j+1) 3

(2j+1)' 2
(819b)

where

2 +1-'r = J+ C~N(0)J',
2

—,'rz '= ,'C1rN(0)J—
Thus,

(814)

for j = —,
' (the spin- ,' Kondo —model) The original C. S re-

sult follows from an incorrect a priori assumption on the
relation between rl ' and r2 '. (Note that the values of
~1

' and ~2
' deduced directly from the CS Hamiltonian

[Eq. (82)] depend on whether a direct scattering term is
included; the sum ~1 '+~2 ' ——~, ' is independent of such
a term. )
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APPENDIX C: EVALUATION OF THE NORMAL
AND ANOMALOUS IMPURITY GREEN'S FUNCTIONS

In this appendix, we establish a set of diagrammatic
rules for evaluating the impurity Green's functions

G, (MM', ;~„)= f 'd. .'""[ &z-—.F~(r)FM {0)}~
0

Ff(MM', &)= — Tr e ~ F~(r)FM (0)
ZlZo Zo

(C2)

complex, then

briefly

state the analogous rules for
evaluating Gf. We follow the general method for treat-
ing systems with strong local correlations.

First note that for ~ & 0,

and (Cl)

Ff(MM'iar)= f dre " [—(TF {r)F (0)}],
0

with

where

F = [0}(M [

We discuss F& in some detail, since its treatment is more

Zo =Zb d( l +Ne )

The quantity in large parentheses may be written out in
the interaction representation as a sum of iterated in-
tegrals in imaginary time:

—PH
oo

Tre ~ FM(r)F~(0)= g g ( —l) f f (H;„{r,) . H;„(rl )F~(r)
0 N=1L(N

XH~;„(1L +~) H»„(r~)FM (0) }o

with

(O}o—=Zo 'Tre '0,
OO 0

(C3)
= f dr& f diaz. f drl

—Pcf
(M'

~

F (r))F(r2) . F (rl )F~(r)F (rL, +)) . F (r~)FM (0)
~

M'}
1+1Ve

f 1''''' L

Here, L &X is the number of time points ~; greater than ~. Only even values of N contribute to the sum.
We may restrict attention to a single choice of N and L. The thermal average in {C3) may then be split into f

electron and conduction-electron components. The f component may be treated first: Since FM annihilates all states
but

~

M' },this component is, schematically,

e
e"p[~Ef(ri —r2+ ' ' +&I, —&+&L. +&

—' ' +&v)l .
1+Pe

(The labels on the intermediate projection operators are omitted for clarity. )

The conduction-electron component may be evaluated by Wick s theorem. The only nonvanishing contributions
linear in the order parameter 5 have exactly —,'X —1 creation operators and —,'%+1 destruction operators. The extra
destruction operators must be paired to give an anomalous expectation value of the form

(, )} {.,
dk;dk=f, a (Mg', kj)0 "(kj,r, —r, )5~ „a*(M„.k, )

=—ge1 ' 5 at(M;k)C ' (k;iso„)a (M,. ; —k),
i j 4~
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with C as in Eq. (4.1) and a as in (5.6) Summing over all
values of k, and k, and attaching the associated factors
of Vgives

v' y ( „ (, ) „ (,})
k, , k.

1 —isa„(T.—T,. )= —gK(M M;;ice„)e

where

K(M M;;ice„)=N(0)V I a (M;k)go (k;ice„)
4m

)& a'(M„—k), (C6)

and go is the quasiclassical propagator of Eq. (A2).
It is easy to see that the sets IM;, MJ J and IM, M'I

must be the same. Exactly N+2 impurity projection
operators appear in each term of Eq. (C3}. Four of these
operators, with quantum numbers M, M', M, , and M
correspond to the times ~, 0, ~;, and ~ . The other N —2
operators may be grouped into —,'N —1 pairs, connected

by the contraction of conduction operators with equal
angular momentum. Since angular momentum is "con-
served" in the thermal average, the sets IM, M I and

IM, M'J are identical. It may be checked using the
definitions of Sec. V that

FICx. 19. Example for contraction of conduction operators
by Wick's theorem. In this case, IV=4 (since four factors of
the interaction Hamiltonian appear), and L = 1 (since only one
time point is larger than ~). Conduction-electron destruction
operators at ~; =~~ and Tj:'T2 are contracted to give an anom-
alous propagator, denoted by a dash-dotted line. A creation
operator at ~3 is contracted vrith a destruction operator at ~4 to
give a Fermi function (ckck ) =fk.

K (M'M;ice„) = —K (MM', i'„); (C7a)

hence,

V' y (.„
k. , k.

f 7 J

= ( —1)s—g K (MM';i cu„)e " ' ', (C7b)

where

0 if M=MJ,
1 if M'=MJ . (C7c)

The remaining operators in the conduction average may
then be contracted to give products of Fermi functions.
The time dependence from Eq. (C7b) is the same as that
arising from a destruction operator with "energy" iso„at

It is simplest to separate out the time dependence of
all other conduction operators in (C3) by noting that

Jc
ckM(&) =e

(C8)

vj. and a creation operator with the same energy at z;,
where ~; ~ ri.

A contraction for a specified choice of N and L may
be represented diagramatically. An example for N =4
I =1, is shown in Fig. 19. Open circles represent the
operators FM(r) and FM (0) and the end points of the
anomalous line', solid dots represent the interaction ver-
tices. Time increases as the diagram is traversed verti-
cally. Normal conduction lines carry energy ck, the
anomalous conduction line (dash-dotted) carries "ener-
gy" ice„. A Fermi factor fk may be associated with
each descending conduction line and a factor 1 fk with—
each ascending conduction line. The overall sign of a
contraction follows from the anticommutation relations
of the conduction-electron operators. Diagrammatically,
the sign is just ( —1)', with c the total number of con-
duction line crossings. It is also easy to find the con-
stant g in Eq. (C7c}. If a continuous path of dashed and
solid lines can be traced between the lower anomalous
vertex and the upper open circle, g =0; otherwise, g =1.
Thus, a single contribution to (C2) takes the form

e f( —1)' eV '+(1 fk )f„—gK(M—M';ico„)( —1) e
' '

J I F([r, I ),Zf TL + ~

(C9)

where lines with momentum k, (kz) are ascending (descending), and I' is a product of imaginary time exponentials
dependent on f and conduction--electron energies and i o„c(the energy of the anomalous line).

The iterated integral
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f L+1' ''' N

may be simply evaluated by (a) introducing the difference variables

i =L +1, . . . , 1V —1

+N

and (b) noting that for a &0,

(C10)

(Cl 1)

Thus,

z(1L 1
7)

n —i~ dz e
a+too 2&1 Z

0) 7L+]) 7

1y 7L +] (7 (C12)

—zv N

F(Ir; I )= f . f dul +, f duiv exp z g u„F(Iu, I ) .
a+i oo 27TI Z 0 0 n =L+1

(C13)

N
F ( t r; I ) = g exp(r; b.E;),

i =L+1
(C14)

(The upper limits of integration for the u; may always be
extended to oo if a is chosen suKciently negative to in-
sure convergence. ) The function F may be written out
explicitly as

N

exp w;AE;
~L+1' ''' N i

=( —1)
dz e
2+i z ~ L+) z

In similar fashion, it is easy to show that

(C17)

where bzE; is the total energy of f and conduc-tion-
electron excitations created at time ~;; for example, if an

f electron is created and a conduction electron of energy
cI, is destroyed, then AEi =of —ck. Since

N

L

exp ~, AE;
1 Li=

I

b —i dz e ~(z' —6L ) 1

b +i oa 2rrl z i
z' —6,

n=j

it follows that

(C15) with

K;= —g b.E„, i=1, . . . , L . (C18)
N

F(Iu;J)= g exp( —u;e;),
i =L+1

(C16)
The negative real numbers a and b may be chosen such
that

with b)a+(6'I+sf) . (C19)

Thus,

bE;, i =L+1, . . . , N .
n =L+1

The reason for this choice appears shortly.
The Fourier transform of a single contribution to (C2)

may now be written out as

I

e f( —1)'+gV 2 g (1 f„)f„—gE(MM';i—~„)f . f
a, d n'

P
L

1
N

Xf d p[(' „—+ ' —f —Ã ) ]g g . (C20)
0 z' —g, j L+, Z —8,

The integral over z gives simply

e
(

p P zf+@L —pz')
pz'

l Q)n —Z +Z —Cf —DL
(C21)

Thus, two terms, proportional to e ~' and e ~', appear in the double contour integral. The term proportional to
e ~' may be integrated over z' by closing the contour to the left. There are no singularities in this region [since
b &a+(6L+Ef)], and the integral vanishes. The term containing e ' may be integrated over z by closing the con-
tour to the left. In this case, there is a single pole at

Z = iCOn +Z —(Ef +61 ) (C22)
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Thus, the contribution to F from Eq. (C20) becomes

b —i 1
e f( —1)'+sV g (1 f„—)f„—g K(MM';ice„) fb+i~ 2' z, ) z —8 z +ice„—(ef+gg)

N
1

2+Leo~ —(6 +sf+61 )

(C23)

The path of integration may now be distorted into a contour I which encircles all singularities of the integrand in a
counterclockwise fashion. In addition, it is convenient to shift the variable of integration by z —+z —ef. The energy
denominators in the resulting expression may be given a simple diagrammatic interpretation. The steps are the fol-
lowing: (a) Add to the diagrams generated from the contraction of conduction operators (e.g. , Fig. 19) an external
line, which carries "energy" ice„, connecting the remaining open circles (it is convenient to draw this line to the left of
the diagram to prevent confusion with conduction electron lines); (b) assign a factor (z E) —to the interval be-
tween each pair of vertices. E is found by adding the energies of all lines ascending between the vertices and sub-
tracting the energies of all lines descending. A general contribution to F may then be written down following the
rules summarized in Table IV. For example, the diagram of 0 ( V") in Fig. 20 gives

1—gK(MM', i(co„+v )) V g(1 fk) f—r 2+i

1 1 1 1 1

z —Ek z +ico„—Ef —Ek z+l(2'„+v~ ) —Ek z+1 (2'„+v ) —Ef 2+hei)„
(C24)

Note that in this case c =g =1.
The normal Green's function Gf may be evaluated in

a completely analogous way. The treatment is somewhat
simpler, since only normal-state contributions need be
considered; the leading anomalous contributions are
O(b, ). We simply summarize the rules for evaluating
Gf in Table II.

APPENDIX D: REDUCTION
OF MATSUBARA SUMS

sgn co~
S~( T)= T g Im Gf(ice„}

n n
(D 1)

which arises in Eq. (6.12), may be evaluated by employ-
ing a spectral representation for the dressed propagator:

Eq. (6.12). These sums are reduced to spectral integrals
below.

The sum

The initial slope of T, depression ( dT, /dC)
~

c-
has been expressed in terms of two Matsubara sums in

pf (e)
Gf (i co„)= f d E .

1 CO„—E

with pf(e} as in Eq. (6.17). Thus,

(D2)

S)(T)=—f depf(e)R, (e), (D3)

where

ICLI„ t i(QJ„+P~) IAl 7 = (PQJ~+ P' )

7 = -(Ca)„+P )

FIG. 20. Example for evaluating Ff . (This example is
worked out in step-by-step detail in Fig. 15.) The single con-
duction line crossing contributes a factor of —1; since a con-
tinuous path of dashed and solid lines cannot be traced be-
tween the lower anomalous vertex and the upper factor of F~,
the diagram receives an additional factor of —1.

= Im 7=0

FIG. 21. Contour of integration I ~ encircling all singulari-
ties of the integrand in (D6) in a counterclockwise fashion.
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sgn co„
R, (e)= —T Imp

n nLco —E
n

where

I f(ice„,iv )= 1 dz p,
. e 'Gsr(z)Go(z+i (co„+v ))

Zf ~ 2'

1'( —,
'

) —Re 1t
776 2 27TT

(D4)

X GM (z +i (2'„+v ) )

Consider now the more complex sum [Eqs. (6.9) and
(6.12)]

X Go(z +i~„), (D6)

(D5)
with I

&
as in Fig. 21. Introducing the densities po and

pM of Eq. (6.16) gives

TABI.E Ig. Diagrammatic rules for evaluating F&(ice„). We list below rules for evaluating the anomalous f Green s function
F&(ice„) to lowest order in the pairing amplitude h.

To compute a general contribution to Ff(MM';ice„) of O(V ",6), n ) 1.

(a) Set down 2n+2 vertices (solid circles) in a vertical line. Beginning at the bottom with a wavy line, connect the vertices
with alternating wavy and dashed lines (all ascending), finally leaving the highest vertex on a dashed line. (A total of 2n +2
lines now appear. )

(b) Convert four vertices to open circles, representing the operators FM and FM and the two points at which an anomalous
conduction line is to be attached: counting from the bottom, convert the first vertex (to represent FM), one other odd-
numbered vertex (to represent FM), and two even-numbered vertices (the points of attachment for the anomalous line).

(c) Always working to the right of the vertical line, connect the remaining 2n —2 vertices with solid lines in all possible
ways which maintain the direction of the dashed line at each vertex.

(d) Working on the left-hand side of the diagram, connect the open circles at odd-numbered points with a dash-dotted
"external line. " This line carries angular momentum M into the top circle, M' into the bottom circle, and "energy' iso„
from top to bottom.

(e) Working on the right-hand side of the diagram, connect the remaining open circles (at even-numbered vertices) with a
dash-dotted line, representing the anomalous conduction propagator

E(MM';i(co„+v )=N(0)V j a (M;k)go (k;i(co„+v ))a*(M', —k)= 5M M( —1) +
4~ ~n+vm

The "energy" i(co„+v ) Aows from top to bottom.

(f) Assign quantum numbers kM (M) to solid lines (dashed lines), conserving angular momentum at each vertex.

(g) Assign to ascending band lines a factor 1 f„M and to descending —band lines a factor fI,~, with f the Fermi function.

(h) Draw a perpendicular to each local configuration line, and assign to it an energy denominator (z —E ), where E is
found by adding the energies of ascending lines intersected by the perpendicular and subtracting the energies of descending
lines intersected.

(i) Multiply the product of energy denominators and Fermi factors by

V "
( —1)'+ X(MM', 1 (co„+v )) .

Here, c is the number of line crossings on the right-hand side of the diagram (including the anomalous conduction line); g is
0 if a continuous path of dashed and solid lines can be traced between the lower endpoint of the dashed-dotted line on the
right and the upper end point of the dashed-dotted line of the left; and 1 otherwise. Sum on conduction momenta, internal
angular momenta, and the Matsubara index m (with an associated factor of 1/P).

(j) Compute the contour integral (1/Z&) J„(dz/2mi)e R(z), where R is the result of the preceding operations, Z& is the
system partition function, and I encircles all singularities of R in a counterclockwise fashion.
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rf(l~„,iv )= f dee i"[p~(e)GM(e i—(2co„+v ))Gp(e i(—co„+v ))Gp(e —ico„)
Zf —oo

+ PM(e)GM(e+' (2con + "m ) )Gp(e+ icon )Gp(e+' (con +vm ) )

pp—(e)G~(e+i (co„+v~))G~(e ic—o„)G0(e+iv )

P (0 e)G~(e+ l COn )GM(e l (CO& +Vm ) )Gp(e l Vm ) ]~ Vm +0~ —2CO+

This expression for I f is not valid for v =0 or —2co„(note that these cases are mutually exclusive); in such cases,
two of the contours in Fig. 21 become degenerate. The resulting expressions are

rf(i co„,O) = f de e '[p~(e)[GM(e 2i—co„)G0(e i co„—)+G~(e+2i co„)G0(e+ico„)]
Zf oo

—2 Re Gp(e)pp(e)GM(e+ico„)GM(e i co—„)I (D8a)

rf (ico„, 2ico„—)= f dec '[2 Re GM(e)pM(e)G0(e+Eco„)60(e —lco„)
Zf —oo

Pp(e)[—G~(e i co„)G—p(e 2l'con )+G~(e+i con )Gp( +e2l co)n] j (D8b)

The terms in Eqs. (D8) correspond to elastic and elastic spin-fiip scattering. These are the only terms which have
been included in numerical calculations to date. They are explicitly reduced to spectral representations at the end of
this appendix.

Note now that the first and second (third and fourth) terms in Eq. (D7) are related by the interchange

~n ~n~ ~m~ ~m .

Further, the first and third (second and fourth) terms are related by a change of sign and the interchange

co„~—(co„+v ), v ~2co„+v, M~O .

The last notation indicates the interchange of subscripts 0 and M. Finally, note that

I f (l —2lco„)= —rf (i „0)
It follows that the series in Eq. (D5) may be resummed to combine terms in the form

Y(l co„) I f (i co„)
Sq(T)= T g " +T g " —(M~O)

(D9a)

(D9b)

(D9c)

(D10a)

where

r, (i co„)= f de e pM(e)G 0(e i co„)[GM—(e 2i co„)6—0(e —i co„)+ Re G~(e)G 0(e+i co„)],
f oo

Y(ico„)= f dee 'p~(e)G0(e ico„)Y,(ico—„;e),
f —oo

with

(D lob)

(D10c)

Y&(i co„;e)= T
rn ~0, —(2n + 1)

G~( le(2co„+v ))Gp(e —i (co„+v ))

! co„+v
(D10d)

To aid in the evaluation of Y&, we write

1F(iv;ico„)=
!~n +Vm

i l(i v +i co„), v ) —co„

i l(i v +i co„),—v ( —co„
(D 1 la)

This function of i v may be analytically continued in the complex plane, cut along the line Imz = —co„, as
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i l(z +i co„), Im z ) —co„
F(z;ice„)= ' —il(z+ico„), Imz & —co„.

(D 1 lb)

The sum in Y,(ice„;e) may now be written as an integral over the contour I z in Fig. 22:

dz ZY&(ice„;e)= . coth GM(e 2—ice„—z) Go(e i—co„z)F—(z;ice„) .I, 4~~ 2T (D12)

Note that the values 0, —m„, and —2'„are always distinct, so the contours never become degenerate. The integral
over the arcs at infinity vanishes; noting that

F(0;ice„)=F( 2i—cu„;ice„)= (D13)

one finds

G~(E —2ico„)Go(e i co„) — Re GM(e)GO(a+i co„)
Y&(ice„;e)=—T —T +Y (2ico„;e), (D14a)

with

oo E)
Y2(leo„;e)= 2 de& coth pM(E E()—Go( e—e)+lcd„)

( i sgn —co„)

6) —l CO„

1+ tanh G~(e —e, i~„)—Re Go(e —e, )—2T (D14b)

A principal value is implied in the vicinity of e&
——0. Note there is no contribution to Y& from the small circle about

z =—i'„; this is because

coth
2T

=0. (D15)

S2(T)=

Substituting the result of Eq. (D14) in Eq. (D10) and noting that the term outside the integral in Y& cancels the con-
tribution from I f(iso„), one finds

Y(iso„)
T g —(M~O) (D16a)

with

Y(ice„)=~ 2 Qo p«e pM(~)GO(~ '~n )Y2('~n ~e)
Zf —oo

(D16b)

where Y2 is as above.

Im z = 2QJn

Im z=QJn
Im z=O

FIG. 22. Contour of integration I 2 for performing the Bose
frequency sum in Eq. (D10d).

FICx. 23. Contour of integration I 3 for the spectral repre-
sentation of f(ice„).
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Consider now the analytic continuation of Y(ico„) to the complex plane, cut along the real axis. The unique con-
tinuation with power-law decay at infinity is obtained by the substitutions

l CO~ ~Z

i, Imz ~0
l sgnco~~

y o

(D17)

Applying Cauchy's theorem to the contour in Fig. 23 gives

—(. ) f dz Y(z) f d
cr(co)

27TE Z —l CO„—oo l CO„—6)

where

1
cr(co) = ——Im Y(co+i 0+ ),

(D18a)

(D18b)

I, is an integral over the small circle, and a principal value is implied in the vicinity of co=0. The integral over the
small circle is proportion to (i co„) ' and does not contribute to the sum in Eq. (D16a). Hence,

Sz(T)= f dco cr(co) T 1

COn 1CO~ —CO

—(M~O) = —f dco[0.(co)—(M~O)]co& i(co), (D19)

with R
&

as in Eq. (D4).
From Eq. (D16),

cr(co) = coth f de e 'pM(e)p~(e co)[pp(—E') Re Gp( e co) —pp(& —co) Re Gp(&)]
Zf 2T —oo

with

—Pe oo

dee p~(e) de, cr, (e, e,;co),
ZJ- QO oo

(D20a)

el pM(e —ei)
cr i ( e, e i &

co ) =co'th [pp(e —co)pp(e —e&+co)+ Re Gp(e co) Re Gp(e e, +co)]—
2T co —E'i

+ tanh
Re Gp(e —ei)

[pp(e co) Re —GM(e e, —co)+ Re Gp(e——co)p~(e —e, —co)] .
E)

(D20b)

All integrals above are to be interpreted as principal values in the vicinity of singularities.
The preceding result for the two-particle frequency sums is unwieldy and has not been employed in numerical work.

Instead, an "energy-dependent AC& approximation" (discussed previously in Sec. VI) has been made, reducing the
original sum to

I f(ico„,iv )
S2(T)= T

p (2„+i) I ~n I I ~n+vm

I f(ico„,O}
T3 g

n CO~

—(M+-A) (D21}

with 1 f(ico„,O) as in Eq. (D8). Since this expression is analytic in the ico„~z complex plane cut along the real axis, it
may be written in a spectral representation, Thus,

crf (co )
I f (Eco„,O) = f dco—oo l CO„—CO

where

N f ( co ) = ——Im f 1e e '
[p~ ( e )[GM ( e 2co &0 + }G—p ( e —co i 0+ ) G~—( e +—2co+i 0—+ )G 2p ( e+co +i 0+ ) ]Zf

—2 Re Gp(e)pp(e)[G~(e+ co+i 0+ )G~(e —co i 0+ )]I,— (D22a)
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i.e.,

trf (Ci) ) = de V(e;co),
Zf —00

V(e;co)=4cosh(co/2T)e ~'Re Go(e)po(e)[e~ p~(e —co) Re G~(a+co) —e ~ ~ p~(@+co)Re GM(e —co)]

+2 sinh(co/T)e ~'[ Re G o (e) tr—po(e) ]pst (e+ co )pM (e co—) . (D22b)

1 1

l CO„—Cc)

3 1 1

CO~ Ct)n +CO

T 2T
tanh4' co 2T

The remaining frequency sum in Eq. (D20) is just

(D23)

Thus,

$2(T) = —f dco[of(to) —(M~O)]Rq(co),

with

R z(co) = 1 — tanh
T 2T Q7

4' co 2T

(D24)
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