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Electron correlations in semiconductor heterostructures
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The theory of a two-dimensional electron gas is reexamined in the case of GaAs-Al Ga& As
heterojunctions and quantum wells. A new and accurate method was employed to calculate the
static structure factor within the mean-field approximation. The inhuence of the finite width of
the electron layer was investigated by calculation of the plasmon dispersion, the local-field func-
tion, and exchange and correlation energies in the random-phase approximation |,'RPA), the Hub-
bard approximation, and the self-consistent Singwi-Tosi-Land-Sjolander approximation.

Since the seminal paper of Stern, ' a lot of theoretical
work has been devoted to describe the many-body prop-
erties of the two-dimensional (2D) interacting electron
system in a uniform positive background. This study
has been motivated by the abundance of experimental re-
sults on metal-oxide-semiconductor inversion layers,
electrons at the surface of liquid helium, and recently
heterojunctions and quantum wells in artificially fabri-
cated semiconductor heterostructures. Although
these systems are really three dimensional, there is ample
evidence that the electrons are dynamically confined in a
plane. A major part of the research is concerned with
the electron gas interacting via the Coulomb e /r in-
terelectron potential. However, for a realistic descrip-
tion of the system one has to include the effect of the
third dimension, i.e., the actual width of the electronic
layer. This effect can be incorporated by making an ap-
proximation in which the dynamics of electrons is still
two dimensional, but a suitable average over the electron
wave function in the third dimension is introduced. On
the other hand, most of the theoretical calculations of
many-body properties have been performed using the
random-phase approximation (RPA) which gives the ex-
act results in the high-electron-density limit. However,
previous studies have proved that the inclusion of
short-range correlations is much more important in the
2D case than the three-dimensional (3D) case. So, in or-
der to obtain a good description of the electron gas in
quasi-2D systems, it is necessary to include short-range
correlations and the effect of the finite extension of the
wave function in the third dimension.

This report presents a straightforward calculation of
the effects of correlation and finite thickness of the layer
in the static and dynamical properties of the electron
system in semiconductor heterostructures. The novelty
in the approach discussed here is a direct calculation of
the static structure factor by an analytical continuation
of the density-density response function in the
fluctuation-dissipation theorem and a suitable and simple
form to write the 2D noninteracting response function.

We consider an Al Ga& As-CzaAs single heterojunc-

tion and multiple quantum wells (MQW's) composed of
alternating layers of these two materials. In the former
system, the electrons move into the GaAs side and form
2D subbands. The lowest one is well described by the
Fang-Howard variational function

' 1/2

eo(z) = b

2
(I)z exp( bz/2), —

where the variational parameter b is related to the aver-
age electron extension from the interface and is deter-
mined by minimizing the total energy. In MQW's the
electrons are confined in 1D quantum wells with width d
and potential barrier Vo. If the Al Ga& As barriers
are thick and the potential barriers are high (large Al
concentration), the penetration of the wave functions in
the barriers can be neglected and the quantum wells are
decoupled. In this case the system can be modeled by a
single quantum well with an infinitely deep potential bar-
rier. The lowest-subband envelope function is taken in
this approximation as
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~V(r, —r2) = f dz I dz'

[r2+ (z zt )2]1/2
(3)

The Fourier transform of the effective potential is given
by

V(q)= +(q), (4)

where the form factor to the Coulomb interaction due to
layer thickness can be easily evaluated. ' A strictly 2D

The bare interparticle potential V(r~, r2, z, ,z2) results
from the direct Coulomb interaction between the elec-
trons, since the dielectric constants of the two materials
are close enough that the image forces are negligible. In
quasi-2D systems, the electron-electron interaction can
be written as
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electron gas with 6-function density distribution is ob-
tained by setting F(q) = 1 in Eq. (4).

In order to describe the static and dynamical proper-

ielectric formulation of the many-b d blny- o y pro em in the
mean-field approximation. In th'n is approach, the
density-density response function is written as

X(q, ~)= X,(q, ~)
1+ V(q )[1—G (q ) ]Xo(q, co )

where Xo(q, co) is the noninteracting response function.

G(q) is the so-called local-field correction, which is re-

sponsible by the short-range effects among electrons
caused by the exchange-correlation hole. The simplest
approximation consists in taking G (q) to be zero, which
corresponds to RPA. So, RPA neglects all short-range
exchange-correlation effects. Despite this failure, the
RPA has been widely used in evaluating many-body
properties in semiconductor heterostructures I t
self-se -consistent theories, G(q) is expressed as a functional
of the structure factor S(q), the Fourier transform of the

pair correlation function. For instance, in the theory of
Singwi et al. , (hereafter referred to as STLS) which has
been found to give good results in several quantum sys-

tems, G (q) is given as

two-particle %'igner distribution function. The scheme
is made self'-consistent through the fluctuation-
dissipation theorem, which relates the structure factor to
the density-density response function in Eq. (7) as'

S(q) = — f X(q, ia))der .
2vrn

(7)

Equations (5)—(7) must be solved self-consistently. As it
is well known , X(q, co) possesses singularities in cu plane

~ ~ ~ ~

associated with the continuum of the electron-hole pair
excitation and the plasmon pole. This fact requires an
awkward self-consistent calculation of the integral in Eq.
(7). As discussed in Ref. 7, this problem can be elegantly

andled by writing the 2D free density-density response
unction, which appears in Eq. (5), in terms of a new

coordinate system defined by

2kF =cosh/ sin8,

2m Q)

Aq
z

——sinhg cos8 (8b)

where 0(8(m. /2, 0&/& oo, and k~=(2irn)' is the
Fermi wave vector. Using this transformation, Xo(q, ico)
assumes a very simple form

G(q)= ——f [S(q—k) —1] . (6)1 dk V(k) k.q
2vr' Vq q'

m
Xo(8)= — (1 —cos8) .

~A
(9)

This expression is obtained by truncating the hierarchy
of the equation of motion for higher-order Wigner distri-
bution function with the use of a simple ansatz for the

I

Using Eqs. (5) and (9) in Eq. (7) one gets the following
expression for the structure factor

S(q)= 2 2 2 1 2
4kFcot 0

(4kF —q sin 8)' + (1—cos8)d8
(4k+ —q sin 8)'~ 1+ V(q)[1 —G (q)](1—cos8)m /vrA

(10)

where

'~//2, q (2kF
~(q)=-

~sin '(2k+/q), q )2k'

Then, S(q) is written in terms of a single integral over a

b r
finite omain, which can be performed very accu t lracy

y precise numerical methods. The structure factor in

the Hartree-Fock approximation (HFA) and RPA are
easily obtained by setting G(q)=1 and G(q)=0, respec-
tively, in Eq. (10). A step forward to include correla-
tions in the system can be taken by evaluating the local
field G(q) with S(q) calculated in HFA. This approxi-
mation is equivalent to the Hubbard approximation
(HA)), which is usually obtained through the calculation
o a certain class of particle-hole ladder diagrams. It
neglects electron correlation but takes the exchange
effects into account. For a more complete treatment of
short-range correlations, we proceed to solve Eqs. (6)
and (10) in a self-consistent way. The calculation was
performed using standard iterative procedure. We cal-
culated the functions G (q), S (q), and other physical
quantities derived from them for a single heterojunction

l.o

I

5.0
q(units of k&)

l0

FIG. 1. Local-field correction G(q) for a quasi-2DEG in a
single heterojunction. Full curve, HA; broken curves STLS

C

SH, a quantum well (QW), and a purely 2D electron

r, = mnaii) ', a~ .being the eff'ective Bohr radius. Re-
sults for G(q) are plotted in Fig. l. It is noted that
G( )inHAfq or a SH does not show appreciable varia-
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tion as one changes the electron density and may be
fitted by the well-known function which is obtained in
the 2DEG

f dr' f [g(q;r,') —g (q;r, )]F(qd)dq .
r 2

Q
S

(16)

Ga(q) =—1 q

( 2+ I 2 )1/2 (12)

lim G (q) =y q

q Q kF
(13)

where

y= —— F q S q —1dq.
2 0

(14)

on the other hand, G(q) in the STLS approximation
[Eq. (6)] shows a distinct behavior at different densities.
In the long-wavelength limit one has

The results of E, in different approximations are listed
in Table I along with the exchange energy for QW and
SH systems. We must point out that the STLS approxi-
mation reduces drastically the RPA correlation energy
values with decreasing density. For instance, E, is re-
duced by 50% at r, =14, while for r, =1 the reduction is
about 22%. The qualitative behavior of E, does not
differ very much from that obtained by Jonson in the
Si02-Si inversion-layer problem. For fixed r„E,de-
creases as the QW becomes narrow.

Finally, we obtained the plasmon-dispersion relation
cuz(q) from the poles of the density-density response
function:

It is an important quantity which appears often in the
calculations of the STLS scheme. In RPA, @=0and in
HA, y = —,', if determined from G(q) given in Eq. (12).
For a QW system the effect of the spreading of the elec-
tron wave function is only observed at high densities.
The STLS self-consistent results of S(q) along with HA
and RPA results are shown for a SH in Fig. 2. For com-
parison we plot S(q) in RPA for the 2DEG. It is
worthwhile to point out that greater values of S(q) for
all q are obtained as one improves the treatment of
correlations in the system. So, the STLS value of S(q)
lies above that from HA, which in turn lies above that
from RPA. The qualitative behavior of S(q) for a SH is
quite similar to that of QW. For small q, the following
asymptotic limit is obtained

lim S(q)=y zq-Q kF'

1 —&(q) [ I —6 (q) ]70(q, co ) =O . (17)

The solution of this equation is obtained with the use of
the explicit expression of Xo(q, co ), evaluated first by
Stern. ' The result is"

q [1+qB(q)] [4+Zq B(q)+8 (q)q ]
28 (q) [1+qB(q)]/2

where

8(q) = [&2r,F(q)[1—G(q)l]

TABLE I ~ Exchange and correlation energy for the quasi-
2DEG in heterojunctions and quantum wells. The energies are
in units of R *=5.25 meV, and the well widths are in units of
A.

The correlation energy is defined as the difference be-
tween the true interaction energy and the interaction en-

ergy in the HFA, which is called the exchange energy.
The expression for E, is given, in units of
g —pyge /2g g

l.O

1

2
3

4
5

6
8

10
14

0.710
0.396
0.282
0.221
0.183
0.155
0.122
0.100
0.174

0.079
0.089
0.090
0.090
0.089
0.088
0.087
0.086
0.081

0.062
0.074
0.074
0.073
0.072
0.070
0.068
0.066
0.064

Heteroj unction
ERPA EHA

C C ESTLS
C

0.061
0.071
0.069
0.065
0.061
0.056
0.051
0.046
0.040

Quantum well
ERPA ~HA

C C ESTLS
C

q(units of kF)

FIG. 2. Static structure factor S(q) in STLS, HA, and RPA
(full lines) for a quasi-2DEG in a single heterojunction. The
dashed curve corresponds to S(q) in RPA for a 2DEG.
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0.825
0.672
0.475
0.413
0.336
0.301
0.261
0.234
0.197

0.159
0.086
0.171
0.116
0.168
0.123
0.161
0.124
0.123

0.126
0.064
0.132
0.094
0.128
0.096
0.124
0.096
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0.085
0.124
0.099
0.106
0.091
0.093
0.082
0.075
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FIG. 3. Plasmon dispersion relation for a quasi-2DEG in a

single heterojunction in SLTS, HA, and RPA (solid lines). The
broken curve corresponds to the onset of the electron-hole con-
tinuum.

FIG. 4. Plasmon dispersion relation for a quasi-2DEG in a
quantum well in STLS. The well widths are d =20 A
( ———) and d =400 A ( ). The curve ( —~ —~ —.) corre-
sponds to the onset of the electron-hole continuum.

Here q is in units of kF and co is in units of EF/A. Our
results are shown in Figs. 3 and 4. The lower curve cor-
responds to the upper edge of the particle-hole excitation
continuum which is left out. It is clearly noted that
correlation effects reduce the plasmon frequency. With
a decrease in density, the STLS approximation differs
considerably from HA and RPA. In a very recent pa-
per, Batke et a/. ' made an extensive experimental study
of plasmon excitations in the electron space-charge lay-
ers on GaAs. They showed the importance of the
corrections to the classical dispersion relation
co, =2m.ne q/me with increasing q. These corrections
are due to electron correlations, nonlocal effects and the
finite thickness of the system. In order to make clear
how the corrections appear in our calculation, we ex-
pand Eq. (18) for small q to get the dispersion relation in
the long-wavelength limit

cop(q)=co, 1+— ——P ——y +0(q )
3 q 1 q 1 q
4 q, 2 kF 2 kF

(19)

where P= ", b for SH a—nd P=( —,
' —,'vr )d for —QW. q, is

the Thomas-Fermi wave number. The second term of

Eq. (19) corresponds to nonlocal effects due to the
higher-order terms in a series expansion of 1'o(q, ~ ). '

This correction is positive, independent of the electron
density and leads to an increase in the plasmon frequen-
cy. The third term is a first correction coming from the
finite thickness of the electron layer and it reduces the
plasmon frequency. The last term is the contribution of
correlation and finite thickness effects which again
lowers the plasmon-dispersion relation. If y= —,', we re-
cover the correction in HA. ' Since the sample
configuration in Ref. 12 is different from the model used
here, the comparison with experiment is not straightfor-
ward. However, the correlation and finite thickness
effects are shown to be very important in describing
plasmon excitations in realizable 20 systems.
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