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We report studies using a simulation technique based on the Monte Carlo method to detect
mechanical instabilities of atomic lattices when subjected to various strain histories. As an exam-
ple of the technique, the zero-temperature mechanical behavior of an initially perfect two-
dimensional Lennard-Jones lattice, while subjected to a varying axial strain, is investigated. Re-
quiring only that the interatomic potential be specified, this technique has the advantage over pre-
vious schemes in that it does not rely on assumptions concerning the type of deformation imposed

upon the lattice.

I. INTRODUCTION

The detection of mechanical instabilities of an atomic
lattice offers the ability to predict the ultimate strength
of a perfect crystal and to study dislocation and crack
nucleation resulting from various strain histories. To
date, this approach has been used primarily for the
determination of ideal or ultimate strength of various
types of crystal-lattice models when subjected to
mechanical strain.!™3 Comprehensive reviews of this
work have been given by both Kelly* and Macmillan.’
These investigations depend upon a stability criterion to
identify the state of ideal strength of the model. This
approach was first proposed by Zwicky® using a criterion
that was later modified and improved upon by Born and
Fiirth.”® It states that the ideal strength is reached
whenever the lattice, while subjected to an axial strain,
becomes unstable against an additional small arbitrary
deformation. However, in practice, this criterion to
detect lattice instability is approximated by imposing
only small homogeneous deformations. Kelly* has shown
that this restriction to homogeneous deformations does
not ensure stability against perturbations in strain of a
more general nature. In addition to the detection of ulti-
mate strength, a similar criterion can be applied as well
to the detection of the onsets of dislocation and crack
nucleation, as will be discussed further in the present
work.

It is the intent of this paper to describe a simulation
technique and to demonstrate its usefulness in detecting
the instabilities of a simple model consisting of a two-
dimensional Lennard-Jones lattice, subjected to varying
axial strain. In Sec. II the methodology of the simula-
tion technique is outlined in detail. Section III contains
a description of the example model used in this study
with its behavior in response to a specific strain history
reported in Sec. IV. The paper concludes with Sec. V,
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which contains a discussion of the simulation technique
and its application to more realistic models.

II. METHODOLOGY OF SIMULATION TECHNIQUE

Here, our objective is to detect structural instabilities
of a model system subjected to various loading histories.
The simulation technique is based on the Monte Carlo
method, which consists of generating a representative
group of states from the canonical ensemble of a system
at a given temperature. This is accomplished by gen-
erating a new atomic configuration from the current one
by randomly moving one particle. If the potential ener-
gy of the system is reduced by the move, the new
configuration is accepted. If the potential energy in-
creases, the configuration is accepted according to the
Boltzmann factor exp(—AE /kT), where AE is the
difference in potential energy associated with the move.
This procedure is iterated until an acceptable approach
to equilibrium is achieved. This method has been ex-
tended by the present authors’ to model systems which
experience time varying external constraints at a rate of
change which is either slow or fast with respect to the
rate associated with a lattice equilibration time. In the
present study the technique is used to simulate lattice
response to the application of axial strain at a rate small
enough, such that the lattice remains in a state of local
equilibrium. The dynamical loading of the lattice is
represented by a finite concatenation of states, each of
which is subjected to a set of static external constraints
which are differentially varied from one state to the next.

For the case of axial strain, at each state the lattice is
initially subjected to a homogeneous deformation that
rescales the vertical coordinates of the atomic positions
(either compressively or expansively) by one part in 10°
while holding the horizontal coordinates fixed. The new
lattice configuration is then relaxed towards local equi-
librium using the Monte Carlo method outlined above.
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This relaxation of the atomic positions results in a mi-
croscopic deformation field that is no longer necessarily
homogeneous. To ensure local equilibrium, the rescaling
of atomic positions proceeds for 50 Monte Carlo steps
per particle (MCS/particle) after which the lattice is
then relaxed for 100 MCS/particle so that the structure
remains near a state of local equilibrium. This prescrip-
tion is repeated as long as the lattice strain energy varies
smoothly. Abrupt transitions in the energy, reflecting
the lattice instabilities, are treated separately by first lo-
cating the strain at which they occur and then applying
the Monte Carlo method to equilibrate the lattice at that
strain. The complete procedure outlined above has been
implemented on a CRAY-1S computer.

As previously mentioned, the interest here is to detect
mechanical instabilities while subjecting the lattice mod-
el to mechanical strain of a specific nature. The result-
ing lattice states, however, may be metastable and ap-
pear stable only when the thermal energy of any state is
far less than the depth of the metastable energy well. In
view of this, the investigation of mechanical behavior of
the model described in Sec. III is simplified by assuming
the condition of zero temperature.

III. MODEL

The simple model, used here for illustrative purposes,
is based upon a two-dimensional atomic lattice com-
posed of 360 argon particles, which interact by means of
a pairwise Lgnnard-Jones (LJ) potential, truncated at a
radius of 10 A. The form of the interatomic potential is
12 6
g g
”
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where for argon, € and o assume the values of
1.877x 10~ ergs and 3.368 A, respectively.® As deter-
mined in an earlier work,’ the initial configuration of the
lattice is that of a triangular or two-dimensional hexago-
nal close-packed (hcp) system [see Fig. 1(a)]'® which is in
equilibrium at zero temperature and pressure with a
nearest-neighbor separation of 3.747 A.

The model system used in the present work consists of
the hcp lattice as described above configured into 18
rows by 20 columns of atoms. The lattice is constrained
to obey periodic boundary conditions on its top and bot-
tom boundaries and free-surface conditions on its lateral
boundaries. Thus the lattice is topologically mapped
onto a cylinder where the application of axial strain is
equivalent to changing the radius of the cylinder while
allowing its length to vary in response to that change.

IV. RESULTS

As an illustrative example, we have simulated the dy-
namic response of the lattice model described in Sec. III
to a strain history consisting of monotonically increasing
axial compressive strain from 0 to 20 % (see Fig. 2), and
the release of strain from various initial points along the
loading curve (see Fig. 3). As shown in Fig. 2, the lat-
tice energy increases monotonically with the application
of axial compression prior to 14.3% strain. In this re-
gion the lattice structure is simply the initial hcp struc-
ture homogeneously compressed in the direction of ap-
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FIG. 1. Schematic lattice configurations of an internal sec-

tion of the lattice at various axial strains (Ref. 10). (a) A sec-
tion of the initial unstrained two-dimensional hcp lattice,
wherein the atoms are located at the vertices of a nested collec-
tion of equilateral triangles. (b) Lattice configuration for
compressive strains less than 5%. The lattice is homogeneous-
ly compressed in the direction of applied strain and extended
in the transverse direction thereby exhibiting a Poisson effect.
(c) Lattice structure at strains between 5% and 14.3% in ab-
sence of any strain energy release. Here, the lattice displays
small zigzag perturbations in the atomic positions. (d) Lattice
structure at strains greater than 14.3%. The lattice exhibits a
mildly distorted hcp structure along with the inclusion of dislo-
cations.

plied strain and extended homogeneously in the trans-
verse direction as graphically depicted in Fig. 1(b). The
model system thus exhibits a Poisson effect. However,
above roughly 5% strain, the perfect structure of the lat-
tice is modified with the appearance of small perturba-
tions in the atomic positions. These perturbations, illus-
trated in exaggeration in Fig. 1(c), represent the depar-
ture of the atoms from a homogeneously deformed lat-
tice structure, where lines of atoms diagonal to the
direction of applied strain transform into very slight
zigzag patterns about the diagonal. Typical displace-
ments of these perturbations with respect to the homo-
geneously deformed perfect structure are on the order of
1072 A, and become more pronounced as the compres-
sive strain is increased. At 14.3% axial compression, a
lattice instability is encountered, possibly induced by un-
controlled growth of these perturbations in the deforma-
tion field. As seen in Fig. 2, the scaled strain energy
[E(0)—E(e)]/E(0) decreases abruptly from 51 to 4 %
with the ensuing state, depicted in Fig. 1(d), displaying a
mildly distorted hcp lattice with the inclusion of a few
dislocations. Thus this transition is associated with the
lattice displaying its ultimate strength and the energy
necessary to nucleate lattice defects from an initially per-
fect structure. Subsequent to this transition, the lattice
is then compressed to a maximum axial strain of 20%.
At approximately 16% compression, the dislocations
coalesce to form a slip line through the lattice oriented
at roughly 45° to the direction of applied strain. Beyond
this point, the lattice responds to the additional axial
compression with a display of slippage of lattice sections
at their common boundary defined by the slip line. This
response results in a translation of the lattice sections in
the direction perpendicular to that of applied strain,
thereby increasing the total transverse lattice dimension.

Lattice response has also been calculated for the
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FIG. 2. Scaled energy [E(0)—E(e)]/E(0) vs axial

compressive strain € for the loading curve out to 20% strain.
E(0) is the initial lattice energy at 0% strain with FE(€)
representing the lattice energy corresponding to the strain €.

release of compressive axial strain to zero starting at
various points along the loading curve in Fig. 2 prior to
the transition at 14.3% strain. Only those release paths
starting from the maximum compressive states at 5%,
9%, and 12% axial strain are displayed in Fig. 3. The
nature of all the release paths calculated suggest the ex-
istence of three regimes of mechanical response for this
particular model prior to the transition from perfect to
defective structure. The first regime, labeled I, extends
from 0% to approximately 5% maximum compressive
strain and reflects a purely elastic mechanical response.
A release path initiated from any state within this re-
gime will overlay the loading curve. In addition, all of
the compressive strain energy is recovered upon release,
with no residual lattice damage suffered.

The second regime (II) is defined by the set of max-
imum compressive strains lying approximately between
5% and 10%. At the compressive states in this regime,
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FIG. 3. Scaled energy [E(0)—E(e)]/E(0) vs axial
compressive strain € showing the release curves from 5%, 9%,
and 12% maximum compressive strain.
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the lattice exhibits a locally elastic response where the
unloading curve initially follows the loading path for
roughly 0.3% release of strain (e.g., points 4 to B in
Fig. 3). Upon further release, the lattice structure be-
comes unstable and experiences a transition, which, as il-
lustrated in Fig. 3 by the release curve from 9% axial
compression, relieves about 15% of the strain energy.
The physical change in the lattice associated with the
transition is nothing more than an intensification of the
zigzag perturbations in the atomic positions from their
otherwise homogeneously strained hcp locations. This
results in roughly a 1% increase in the overall lattice di-
mension perpendicular to the direction of applied strain,
thereby causing a decrease in the lattice strain energy.
As the unloading process continues, the zero-stress state
is found to occur at 0% compression where full recovery
of the lattice strain energy has occurred.!’ Thus the
compression-release cycles possessing maximum strains
within this regime illustrate an anelastic behavior of the
lattice. That is, the release path is not coincident with
the load curve (indicative of inelastic behavior), whereas
the lattice strain energy is fully recovered with no per-
manent lattice damage.

The third regime (III) of lattice model behavior lies
between the second regime and the 14.3% transition,
and thus involves those values of maximum compressive
strain between 10% and 14.3%. Here, as in regime II,
the lattice exhibits a locally elastic response when sub-
jected to a maximum compressive strain lying within
this regime. However, the instability and subsequent
transition which occur as unloading proceeds, results in
a lattice state that is qualitatively similar to that result-
ing from the 14.3% transition, i.e., a hcp lattice exhibit-
ing dislocations. In the case of release from a maximum
axial compression of 12% (see Fig. 3), the onset of insta-
bility occurs at 11.5% strain, resulting in a substantial
reduction of the lattice strain energy. As unloading con-
tinues beyond the transition, the lattice quickly experi-
ences a zero-stress state (located at the energy minimum
in the release path) at a nonzero value of compressive
strain, thereby indicating the presence of permanent de-
formation. In particular, for the 12% unloading case,
the zero-stress state occurs at a compressive strain of
10.7% relative to the original uncompressed lattice. The
appearance of the permanent deformation implies that
the lattice structure has sustained damage, where the
difference in lattice energies corresponding to the initial
and zero-stress states represents a quantitative measure
of this damage. As the lattice is placed in tension
beyond the zero-stress state, it experiences an axial ten-
sile strain which eventually leads to crack nucleation and
growth initiated at the sites of existing lattice defects.
For the release path displayed in Fig. 3 starting from
12% maximum compression, the strength of the lattice
is undermined by crack nucleation and growth, as indi-
cated on the release path at the somewhat noisy transi-
tion at roughly 2.3% compressive strain relative to the
original uncompressed lattice or 8.4% tensile strain rela-
tive to the zero-stress state. It is emphasized here that
these results have proved to be independent of the aspect
ratio of the lattice and the number of particles compris-
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ing it. In addition, the results have displayed no sensi-
tivity to a large increase in the number of Monte Carlo
steps used in the simulation technique, which would oth-
erwise suggest metastability.

V. DISCUSSION

Despite the simplistic nature of the model considered
here, it exhibited an unexpected and unusual mechanical
response. Whether similar behavior is displayed by
more realistic models remains to be seen; however, the
point we wish to emphasize here is the ability of the
simulation technique to detect the various instabilities
displayed by the model. As stated earlier, previous in-
vestigations into the response of atomistic models of
solids have concentrated primarily on the determination
of ultimate strength. These approaches were loosely
based on the criterion that the ultimate strength is
reached whenever the lattice, while subjected to an axial
strain, becomes unstable against an additional small,
homogeneous deformation. As mentioned previously,
the restriction to homogeneous deformations does not, in
general, rule out lattice instability against arbitrary de-
formations. In addition, there exist only a few at-
tempts"’ to study the stability of the deformed crystal
lattice, whereas most investigations have tacitly assumed
that the lattice remains stable at all strains. However,
the simulation technique reported here is not subject to
these limitations. By incorporating the Monte Carlo
method into the technique, we avoid the restriction to
homogeneous deformations by introducing small arbi-
trary deformations in a manner which naturally leads to
a state of local lattice equilibrium. In addition, as shown
by the results reported in Sec. IV, this technique cannot
only detect the instability associated with the ultimate
strength of the lattice model, but also those associated
with the onset dislocation and crack nucleation during
the imposition of complex strain histories.

The inadequacies of the stability criterion, as based on
homogeneous deformations alone, is illustrated through
its inability to detect several features of lattice behavior
displayed by the present model. First, as displayed in re-
gimes II and III of Fig. 3, the existence of locally elastic
behavior in the neighborhood of a maximum compres-
sive state implies that the instability encountered during
release of axial strain cannot be detected by a perturba-
tion stability analysis. Second, the zigzag perturbations
in the deformation field, which lead to the instability of
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the lattice, do not constitute a homogeneous deforma-
tion. Thus the physical consequences of such perturba-
tions would remain undetected by previous investiga-
tions. Third, the nature of the dynamical simulation in-
troduced by the present authors provides for the detec-
tion of instability of the deformed lattice in any state
along a complex strain history, by allowing initially
small perturbations to evolve in response to the variation
in the external constraints imposed upon the lattice.
Indeed, the fundamental mechanism leading to the
unusual mechanical response displayed by the model in
regimes II and III is the growth of initially small, inho-
mogeneous perturbations in the deformation field. The
reason that the lattice behaves anelastically in regime II
as opposed to the inelastic behavior displayed in regime
IIT is simply that the lattice possesses an insufficient
amount of strain energy to nucleate dislocations.

Whether this unusual behavior persists at nonzero
temperatures remains to be determined. However, the
finite neighborhoods associated with the locally elastic
behavior exhibited by the lattice suggests that this be-
havior will persist at nonzero, although possibly small,
temperatures. At higher temperatures, it is possible that
the thermal energy-induced perturbations to the lattice
strain energy will cause the locally elastic behavior,
displayed in regimes II and III, to disappear. If so, it
seems reasonable to expect the mechanical behavior at
such temperatures to be partitioned into the more con-
ventional regimes of elastic and inelastic response.

In summary, we have introduced a new technique in-
volving the Monte Carlo method to simulate the
mechanical response of atomic lattices to an imposed
complex strain history. This technique is particularly
sensitive to detection of the onset of structural instabili-
ties. It is aptly suited to implement the criterion of Born
and Fiirth in detecting the instabilities associated with
the ultimate strength and nucleation of lattice damage.
This technique is applicable to more general lattice mod-
els than that considered here, and requires only the
specification of an interatomic potential function to
model interactions between the various atoms or mole-
cules of the system.
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