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We illustrate the advantages of an equation of motion technique for calculation of the electronic
structure of oxides. The technique is described in some detail and applied to a simplified version
of a tight-binding model of TiO, due to Vos. We can determine the density of states of systems
with arbitrary numbers of oxygen vacancies in this model with very modest expenditures of com-
puter time. We discuss some physical implications of the results.

INTRODUCTION

Defects play an essential role in many models for the
passivation layer. As an example we recall the model of
Chao, Lin, and MacDonald! in which oxygen vacancies,
metal vacancies, electrons, and holes all play a role in
the processes leading to film growth. In the case of
TiO,, for example, the literature suggests’ that oxygen
vacancies and Ti’* interstitials may be among the im-
portant defects in the system. To make meaningful mi-
croscopic theories of the passivation film formation pro-
cess, it is essential to know the nature of the defects in
more detail. Unfortunately, it has not been practical to
obtain theoretical information about more than one de-
fect in an oxide using conventional techniques which
make use of the periodicity of the defect-free lattice. (In
fact, using conventional Koster-Slater techniques,® even
the calculation of the electronic structure of one defect is
a formidable task.*) In the present paper we describe the
use of the equation of motion technique for studying
multiple defects in oxides.” We show that the electronic
structure of essentially arbitrary configurations of defects
can be obtained quite easily in this way. To illustrate,
we present results on single vacancies and random col-
lections of vacancies.

In the next section we review the equation of motion
method and describe how we have improved it for use in
these problems. The third section describes the model of
TiO,, and gives results. The last section contains a dis-
cussion and conclusions.

EQUATION OF MOTION METHOD
FOR A TIGHT-BINDING
ELECTRONIC STRUCTURE

The basic approach of the equation of motion method
is® to solve the time-dependent Schrodinger equation

ifioV /ot =HVY ,
and then to Fourier transform the result in time to ob-

tain the quantities such as the density of states which are
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of interest at the end of the calculation. We work with a
tight-binding Hamiltonian

H=T efci*ci + 3 (t,-jc,-ch+H.c.) .
i (i, /)

Here the i’s are site indices and the sum on (i,j) is over
neighbors on the lattice. We define a Green’s function

Gy(1)=—i®) {¢,(1),¢](0)} )
and an amplitude
Fl(t): EaJG,](t) .
J
The amplitudes a; can be chosen in various ways de-

pending on what quantity is of particular interest. The
equation of motion for F; is

i#idF, /3t = 3 HF;
J

with initial condition
F(0)=—ia; .

For example, we get a global approximation to the den-
sity of states N(w) defined as

N(w)= 3 8lw—¢,)

by setting

where ¢; is a number chosen for each site at random
from the interval 0 <¢; <27. The density of states is
then

1 —id. .
Nl@)=——1 Se “iF (et
() —Im f 1' e 'Fi(t)e ''dt

To get the local density of states, defined as
Nelw)=3 |{k|n)|*8w—e¢,),

n
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we set
ai = ——i5,»_k N

where k is the site of interest. In these expressions, n
denotes an eigenstate of the Hamiltonian and i,j, and k
refer to states in the tight-binding basis. {(k |n) is the
coefficient multiplying the wave function of tight-binding
orbital k in an expansion of the exact eigenstates n in
terms of these tight-binding orbitals. Thus the local den-
sity of states N, (w) provides information about the spa-
tial extent of the wave function associated with a given
energy.

The equation of motion method is closely related to
another well-known sparse matrix method, the recursion
method.® A critical discussion of the two methods ap-
pears in Ref. 7. The methods are of roughly equal
efficiency but the equation of motion method has the ad-
vantage that it can be manipulated to limit the calcula-
tional effort only to those quantities of particular experi-
mental interest.

Our successful numerical implementation of the equa-
tion of motion method depends on our algorithm for the
integration of the equation of motion forward in time.
The equation of motion method must be integrated to
produce a time sequence F;(¢;) at a discrete set of time
t;. F; is a vector with a number of components equal to
the size of the system. At each time step /, we produce
and save a single number F(¢;) according to the
prescription

Fit)=3e ""F 1)

v

if we are calculating the total density of states, or
F(t1)=Fk(t1)

if we are calculating the local density of states at site k.
We obtain the spectral density from F(z;) using the fast
Fourier transform; thus we require F at discrete times
t;,=(—-1)6t, I=1,...,N,, where we use N,=256.
The time interval &8¢ is determined by the bandwidth o,
of the output spectrum. The diagonal elements of the
Hamiltonian are shifted by a constant value in order to
center the spectrum around w=0. The spectrum then
extends from —w,/2<w<w,/2; thus 6t =27/w,. It is
important that o, be chosen large enough to encompass
the entire spectrum of H;; to prevent aliasing. The se-
quence F(¢;) is multiplied by a Gaussian window

-1 |
N,

exp | —«a

We use a=8. The point at / =1 is multiplied by 0.5 to
account for the step function in time.
In solving the equation

i#idF,; /dt = 3 H,F; ,
J

we have the unusual situation that we need the solution
at discrete times #;. This differs from the usual case
where we try to make the time step as large as possible.
We can then exploit the exact formal solution
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F(z;,\)=exp(H5t)F(z))

by using a polynomial approximation P(H5¢) to the ex-
ponential. Because the spectrum of H contains energies
|@| <wy/2 and wydt =2, the P(x) must be a good ap-
proximation to exp(ix) over the interval —7w<x <.
We use a tenth-order Taylor expansion, resulting in ten
multiplications by H per time step. Since the range of x
is limited, the Taylor expansion is far from optimal; for
example, a considerable reduction in the number of mul-
tiplications could be obtained using, for example, an ex-
pansion in Chebyshev polynomials.

RESULTS ON A SIMPLE MODEL OF TiO,

To illustrate the power of the method for this type of
problem, we have formulated a simplified tight binding-
model of a layer of TiO, which is designed to take the
essential features of its structure into account. As dis-
cussed below, we find that most of the qualitative
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FIG. 1. (a) Density of states of the full Vos model for bulk
TiO, (from Ref. 9). (b) Density of states for the simplified
model using the equation of motion method and the model for
a two-layer film shown in Fig. 2.
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features of the band structure are reproduced by a model
in which there is only one orbital per site. We use the
following values of the parameters, suggested by a more
complete tight-binding model of Vos? for the band struc-
ture of defect-free rutile: (the quantities #;, ,, and ¢;
are off-diagonal matrix element defined in Fig. 2)

eri=—6.4 eV,
go=—10.5eV ,
t;=—2.3¢€V,

t,=—0.2eV,

t;=0.4 eV .

We find that this simplified model gives a fairly good
representation of the TiO, density of states as indicated
in Fig. 1, where for reference we also indicate the full
density of states as calculated by Munnix and Schmeits’
from the Vos model. (The agreement is somewhat better
than might be suggested by Fig. 1 because the authors of
Ref. 9 have broadened their calculated results by convo-
luting them with a Lorentzian of width 0.3 eV.) In the
calculations leading to the density of states shown in
Fig. 1, we performed the equation of motion calculation
on a model of TiO, consisting of two layers of TiO, with
faces in the 100 direction as indicated in Fig. 2. The
model contained 576 formula units of TiO, or 2304 Ti
sites and 4608 O sites. The calculations giving the re-
sults of Fig. 1 as well as those reported on defects below
took about 30 sec of CPU time on the Cray-2. One sees

QO =Tilayer 1
[0 = Oxy layer 1
Q =Ti layer 2

0 = Oxy layer 2

(b)

4 04 ﬁDK

3 0 O—0O0—=0O
j ’Ti2 02 Ti1 [oR

2 D 03 DDd

}
1| —O0—0O O O

Tit o1 ‘Tvz 02

1 2 3 4

FIG. 2. (a) Rutile structure of TiO, showing the off-diagonal
matrix elements ¢, ¢,, and ¢; used in our model. (b) Two lay-
ers of TiO, as used in the calculations reported here with
definitions of site indices (i, j).
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from Fig. 1 that the main qualitative and semiquantita-
tive features of the density of states are reproduced in
the simpler model. The most important feature is the
existence of a gap separating valence and conduction
bands. The semiconductor is highly ionic, with the
valence states residing primarily on O*~ sites and (unoc-
cupied) conduction-band states primarily on Ti*t sites.
This partitioning of the density of states is also displayed
in Fig. 1 by a decomposition of the total density of states
into two components associated with the local density of
states on the titanium and oxygen sites. A peak associ-
ated with the density of ¢,, symmetry d states in the
conduction band is not reproduced. The states left out
are highly localized on the Ti ion; thus we believe that
these states are unlikely to play a significant role in de-
fect electronic structure. The gap which we calculate in
our simplified model is larger (4.1 eV) than the band gap
of the full model (3.04 eV).

A completely microscopic model of the electronic
structure of defects in TiO, requires a fully self-
consistent Hartree-Fock or local-density-approximation
type of calculation, which we will not undertake here.!°
One model, used by Munnix and Schmeits* for oxygen
vacancies on the surface of TiO,, suggests that the essen-
tial features of the electronic structure of the defect are
sufficiently described by a model in which there is a very
large repulsive barrier for the electron to be on the va-
cancy site (corresponding in our tight-binding model to a
very large positive value of the diagonal matrix element
there). We have explored such a model numerically us-
ing the equation of motion methods and find that it re-
sults in no donor state in the band gap, in agreement
with a calculation of Munnix and Schmeits.* These au-
thors attribute an observed!! donor state to a surface va-
cancy. On the other hand, there is much experimental
evidence'? from the temperature-dependence of conduc-
tivity and infrared absorption of reduced TiO, (Ref. 10)
that oxygen vacancies do result in donor levels in the
bulk. Furthermore, we expect on physical grounds that
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FIG. 3. Local density of states at the (3,1) position (next Ti
neighbor of the vacancy) for our model of the oxygen vacancy
at position (2,1).



36 EQUATION-OF-MOTION METHOD FOR THE STUDY OF. .. 6643
3 A 5 ,
= / g
3 SR | 2 o-
[Op]
Ug o | 8 o]
- 1 s
S | / S !
e -15.0 -10.0 5.0 0.0 5.0 -20.0 -15.0 -10.0 5.0 0.0 5.0
Energy ( eV ) Energy ( eV )

FIG. 4. Same as Fig. 3 but at the (5,1) Ti position, farther
from the defect.

electrons will be attracted to a neutral oxygen vacancy
by a screened Coulomb potential because the two elec-
trons which must be added to the system to assure
charge neutrality when an 0%~ is removed from the sys-
tem must be found in somewhat extended orbits in the
vicinity of the vacancy.!* For these reasons we choose a
model in which the oxygen vacancy is described in
the tight-binding model by a modification of the
tight-binding diagonal elements by an amount
Q exp(—pBr) /e r where r is the distance from the site in
question to the vacancy site and 8 and Q are parameters.
In addition we assume that the off-diagonal matrix ele-
ments ¥ which couple states on the vacancy site to
neighboring sites are all zero and that the diagonal ma-
trix element on the site is zero (which is far above the
conduction band). In the calculations reported below,
we take Q =2 and B=0.504 ~!. These assumptions are
qualitatively reasonable. We will see below that they
lead to densities of states for the single defect which are
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FIG. 5. Same as Figs. 3 and 4 but at oxygen position (2,3),
showing that the defect wave function has small amplitude at
the oxygen site.

FIG. 6. Density of states for an oxygen vacancy in the mod-
el of Munnix and Schmeits (Ref. 4). The vacancy is at (2,1)
and the density of states is evaluated at (3,1). This is to be
compared with Fig. 3, showing our model of the defect. Here
we took the diagonal matrix element at the oxygen vacancy site
to be 2.0 eV and set all off-diagonal elements to the vacancy
equal to zero.

in semiquantitative accord with experiment.

In Fig. 3 we show the density of states for a single ox-
ygen vacancy using the model just described. This is the
local density of states at the first-neighbor titanium site
next to the oxygen vacancy. One sees that a clearly pro-
nounced donor level has appeared a few tenths of an eV
below the conduction band as observed in the conduc-
tivity and absorption experiment.!® In Figs. 4 and 5 we
show the density of states in the same model at positions
progressively farther away from the vacancy as defined
in those figures with reference to the site labeling scheme
defined in Fig. 2. It is clear that the donor level of the
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FIG. 7. Density of states for an oxygen vacancy in a model
in which the defect is ionized. The diagonal elements at all the
sites are modified by an amount 2 | e | /re, where r is the dis-
tance to the defect. The defect and the point at which the lo-
cal density of states is evaluated are the same as in Figs. 3 and
6.
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FIG. 8. Total density of states for 1% oxygen vacancies.
The arrows show the position of the band edges (e,,€.) and the
single-vacancy donor level gp.

single vacancy is bound to the vacancy. We have estab-
lished that the donor state shown in these figures is dou-
bly degenerate by showing that it can can be split by in-
troducing finite values of the matrix elements coupling
the vacant oxygen site to its neighbors.

To contrast this model of the oxygen vacancy with
that of Ref. 4 on the one hand, and with an ionized de-
fect on the other, we have also computed the density of
states for these two models of the defect. In Fig. 6 we
show the density of states for a model in which the oxy-
gen defect is modeled by making the diagonal matrix ele-
ment at the oxygen site very large and making the off-
diagonal elements to this site zero. The corresponds to
the model of Ref. 4. In agreement with that reference,
there is no donor state in the gap. Instead, there is a res-
onance in the conduction band arising from the vacancy.
We note that, if such a resonance exists in the conduc-
tion band, then when the states are filled to the Fermi
level the donor will be ionized. This means that in the
next iteration of an electrostatically self-consistent calcu-
lation, the donor would appear as an unscreened charge
of +2|e | with potential +2|e | /re,. In Fig. 7 we
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FIG. 9. Same as Fig. 8 for 5% vacancies.

FIG. 10. Same as Figs. 8 and 9 for 10% vacancies.

show the results of computing the density of states for
such a model of the defect. One sees that several bound
states appear in the gap as a consequence of the large
Coulomb attraction. Our model (Figs. 3, 4, and 5) lies
between these two extremes.

In Figs. 8, 9, and 10 we show the result of adding in-
creasing numbers of oxygen vacancies to the model.
Here the vacancies were added to the model at random
with probability p=0.01, 0.05, and 0.1, respectively.
One sees clearly that a band of donor levels develops and
gradually tails into the gap as the number of vacancies
increases. In these pictures, we note that far above the
conduction band the impurity has resulted in another
band of levels, corresponding to a localized electron in
the vacancy itself, as in an F center in alkali halides.
While our model cannot be expected to correctly predict
the position of such states, it seems clear they ought to
exist.

DISCUSSION AND CONCLUSIONS

These results indicate that the new methods employed
can yield new information on the electronic structure of
a system such as TiO, which can be described by a

-tight-binding Hamiltonian but which has large numbers

of defects. Though our model is too simple to be fully
realistic, we emphasize that no calculations with such
large numbers of defects could even be attempted using
earlier methods.

It is obviously important to extend the work reported
here to a model of TiO, which includes a more complete
basis of tight-binding states and to thicker films. Such
calculations are completely feasible using the present
methods, and are under way.

ACKNOWLEDGMENTS

This work was supported in part by the Corrosion
Center at the University of Minnesota, U. S. Department
of Energy Grant No. DOE/DE-FG02-84ER45173, and
by a grant from the Supercomputer Institute of the Uni-
versity of Minnesota.



36 EQUATION-OF-MOTION METHOD FOR THE STUDY OF . .. 6645

IC. Y. Chao, L. Lin, and D. D. MacDonald, J. Electrochem.
Soc. 128, 1187 (1981); 128, 1194 (1981); 128, 1874 (1982).

2P. F. Chester, J. Appl. Phys. 32, 2233 (1961).

3G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1956).

4S. Munnix and M. Schmeits, Solid State Commun. 12, 1087
(1984).

SR. Alben, M. Blume, H. Krakauer, and L. Schwartz, Phys.
Rev. B 12, 4090 (1975).

6R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845
(1972).

’D. Weaire and E. P. O’Reilly, J. Phys. C 18, 1401 (1985), and
references therein.

8K. Vos, J. Phys. C 10, 3917 (1977).

9S. Munnix and M. Schmeits, Phys. Rev. B 30, 2202 (1984).

10Density-functional calculations for single silicon vacancies

using the Slater-Koster approach have been carried out by
G. A. Barolff and M. Schluter, Phys. Rev. Lett. 41 892
(1978) and J. Bernholc, N. O. Lipari, and S. T. Pantelides,
ibid. 41, 895 (1978).

1V, E. Heinrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev.
Lett. 36, 1335 (1976).

12ZW. Gopel, G. Rockes, and R. Feierabend, Phys. Rev. B 28,
3427 (1983); D. C. Cronemeyer, Phys. Rev. 87, 876 (1952);
ibid. 113, 1222 (1959).

3Similar arguments have been used by M. O. Selme and P.
Pecheur, J. Phys. C 16, 2559 (1983) in order to justify a simi-
lar model for an oxygen vacancy in SrTiO;. These authors
used the recursion method to investigate the single oxygen
vacancy.



