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Equation-of-motion method for the study of defects in insulators:
Application to a simple model of Tio&
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We illustrate the advantages of an equation of motion technique for calculation of the electronic
structure of oxides. The technique is described in some detail and applied to a simplified version
of a tight-binding model of Ti02 due to Vos. We can determine the density of states of systems
with arbitrary numbers of oxygen vacancies in this model with very modest expenditures of com-
puter time. We discuss some physical implications of the results.

INTRODUCTION

Defects play an essential role in many models for the
passivation layer. As an example we recall the model of
Chao, Lin, and MacDonald' in which oxygen vacancies,
metal vacancies, electrons, and holes all play a role in
the processes leading to film growth. In the case of
Ti02, for example, the literature suggests that oxygen
vacancies and Ti + interstitials may be among the im-
portant defects in the system. To make meaningful mi-
croscopic theories of the passivation film formation pro-
cess, it is essential to know the nature of the defects in
more detail. Unfortunately, it has not been practical to
obtain theoretical information about more than one de-
fect in an oxide using conventional techniques which
make use of the periodicity of the defect-free lattice. (In
fact, using conventional Koster-Slater techniques, even
the calculation of the electronic structure of one defect is
a formidable task. ) In the present paper we describe the
use of the equation of motion technique for studying
multiple defects in oxides. We show that the electronic
structure of essentially arbitrary configurations of defects
can be obtained quite easily in this way. To illustrate,
we present results on single vacancies and random col-
lections of vacancies.

In the next section we review the equation of motion
method and describe how we have improved it for use in
these problems. The third section describes the model of
Ti02, and gives results. The last section contains a dis-
cussion and conclusions.

EQUATION OF MOTION METHOD
FOR A TIGHT-BINDING

ELECTRONIC STRUCTURE

of interest at the end of the calculation. We work with a
tight-binding Hamiltonian

H= g e;c; c;+ g (t;, c; c, +H. c. ) .
I (i,j)

Here the i s are site indices and the sum on (i,j) is over
neighbors on the lattice. We define a Green's function

G,, (t) = —i8(t)( Ic, (t), c t(0) I )

and an amplitude

F, (t)= ga, G,, (t) .
J

The amplitudes aJ can be chosen in various ways de-
pending on what quantity is of particular interest. The
equation of motion for F; is

i A'c)F; /Bt = g H;, FJ,
J

with initial condition

F;(0)=—ia; .

For example, we get a global approximation to the den-
sity of states X(co) defined as

X(co)= g 5(co —e„)

by setting

i$,a;=e
where P; is a number chosen for each site at random
from the interval 0&/; &2n The density . of states is
then

The basic approach of the equation of motion method
is to solve the time-dependent Schrodinger equation

ih'B% /Bt =II%,
and then to Fourier transform the result in time to ob-
tain the quantities such as the density of states which are

N(co)= ——Im f g e 'F;(t)e ' 'dt
l

To get the local density of states, defined as
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F(t ))=exp(II&t)F(rl )
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features of the band structure are reproduced by a model
in which there is only one orbital per site. We use the
following values of the parameters, suggested by a more
complete tight-binding model of Vos for the band struc-
ture of defect-free rutile: (the quantities t;, t&, and t3
are off-diagonal matrix element defined in Fig. 2)

E.T;
———6.4 eV,

~o= —10.5 ev,
t) ———2. 3 eV,

tz ———0.2 eV,

t3 ——0.4 eV .

We find that this simplified model gives a fairly good
representation of the TiOz density of states as indicated
in Fig. 1, where for reference we also indicate the full
density of states as calculated by Munnix and Schmeits
from the Vos model. (The agreement is somewhat better
than might be suggested by Fig. 1 because the authors of
Ref. 9 have broadened their calculated results by convo-
luting them with a Lorentzian of width 0.3 eV. ) In the
calculations leading to the density of states shown in
Fig. 1, we performed the equation of motion calculation
on a model of TiOz consisting of two layers of TiOz with
faces in the 100 direction as indicated in Fig. 2. The
model contained 576 formula units of TiOz or 2304 Ti
sites and 4608 0 sites. The calculations giving the re-
sults of Fig. 1 as we11 as those reported on defects below
took about 30 sec of CPU time on the Cray-2. One sees

Q = Ti lager 1

= Oxg lager 1

Q = Ti lager 2

G = Oxg lager 2

from Fig. 1 that the main qualitative and semiquantita-
tive features of the density of states are reproduced in
the simpler model. The most important feature is the
existence of a gap separating valence and conduction
bands. The semiconductor is highly ionic, with the
valence states residing primarily on 0 sites and (unoc-
cupied) conduction-band states primarily on Ti + sites.
This partitioning of the density of states is also displayed
in Fig. 1 by a decomposition of the total density of states
into two components associated with the local density of
states on the titanium and oxygen sites. A peak associ-
ated with the density of tz~ symmetry d states in the
conduction band is not reproduced. The states left out
are highly localized on the Ti ion; thus we believe that
these states are unlikely to play a significant role in de-
fect electronic structure. The gap which we calculate in
our simplified model is larger (4.1 eV) than the band gap
of the full model (3.04 eV).

A completely microscopic mode1 of the electronic
structure of defects in TiOz requires a fully self-
consistent Hartree-Fock or local-density-approximation
type of calculation, which we will not undertake here. '

One model, used by Munnix and Schmeits for oxygen
vacancies on the surface of TiOz, suggests that the essen-
tial features of the electronic structure of the defect are
su%ciently described by a mode1 in which there is a very
large repulsive barrier for the electron to be on the va-
cancy site (corresponding in our tight-binding model to a
very large positive value of the diagonal matrix element
there). We have explored such a model numerically us-
ing the equation of motion methods and find that it re-
sults in no donor state in the band gap, in agreement
with a calculation of Munnix and Schmeits. These au-
thors attribute an observed" donor state to a surface va-
cancy. On the other hand, there is much experimental
evidence' from the temperature-dependence of conduc-
tivity and infrared absorption of reduced Ti02 (Ref. 10)
that oxygen vacancies do result in donor levels in the
bulk. Furthermore, we expect on physical grounds that
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FICs. 2. (a) Rutile structure of TiO~ showing the oA-diagonal
matrix elements tl, t2, and t3 used in our model. (b) Two lay-
ers of TiO~ as used in the calculations reported here with
definitions of site indices (i,j).

FIG. 3. Local density of states at the (3,1) position (next Ti
neighbor of the vacancy) for our model of the o'xygen vacancy
at position {2 1)
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FIG. 4. Same as Fig. 3 but at the (5,1) Ti position, farther
from the defect.

electrons will be attracted to a neutral oxygen vacancy
by a screened Coulomb potential because the two elec-
trons which must be added to the system to assure
charge neutrality when an 0 is removed from the sys-
tem must be found in somewhat extended orbits in the
vicinity of the vacancy. ' For these reasons we choose a
model in which the oxygen vacancy is described in
the tight-binding model by a modification of the
tight-binding diagonal elements by an amount
Q exp( Pr)le r—where r is the distance from the site in
question to the vacancy site and p and Q are parameters.
In addition we assume that the off-diagonal matrix ele-
ments V which couple states on the vacancy site to
neighboring sites are all zero and that the diagonal ma-
trix element on the site is zero (which is far above the
conduction band). In the calculations reported below,
we take Q =2 and p=0. 502 '. These assumptions are
qualitatively reasonable. We will see below that they
lead to densities of states for the single defect which are

FIG. 6. Density of states for an oxygen vacancy in the mod-
el of Munnix and Schmeits (Ref. 4). The vacancy is at (2, 1)
and the density of states is evaluated at (3,1). This is to be
compared with Fig. 3, showing our model of the defect. Here
we took the diagonal matrix element at the oxygen vacancy site
to be 2.0 eV and set all off-diagonal elements to the vacancy
equal to zero.

in semiquantitative accord with experiment.
In Fig. 3 we show the density of states for a single ox-

ygen vacancy using the model just described. This is the
local density of states at the first-neighbor titanium site
next to the oxygen vacancy. One sees that a clearly pro-
nounced donor level has appeared a few tenths of an eV
below the conduction band as observed in the conduc-
tivity and absorption experiment. ' In Figs. 4 and 5 we
show the density of states in the same model at positions
progressively farther away from the vacancy as defined
in those figures with reference to the site labeling scheme
defined in Fig. 2. It is clear that the donor level of the
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FIG. 5. Same as Figs. 3 and 4 but at oxygen position (2,3),
showing that the defect wave function has small amplitude at
the oxygen site.

FIG. 7. Density of states for an oxygen vacancy in a model
in which the defect is ionized. The diagonal elements at all the
sites are modified by an amount 2

~

e
~
/re where r is the dis-

tance to the defect. The defect and the point at which the lo-
cal density of states is evaluated are the same as in Figs. 3 and
6.
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