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A completely ab initio theoretical investigation of the rocksalt-rhombohedral structural phase tran-
sition of GeTe is described. Starting from an anharmonic lattice Hamiltonian, a model Hamiltonian
that includes coupling of the order parameter to long-wavelength strain is constructed. The parame-
ters appearing in the model are calculated using the self-consistent ab initio pseudopotential total-

energy method. The phase transition in the model system is studied through a momentum-space
renormalization-group-theory approach, leading to the prediction of a fluctuation driven first-order
transition at 657+100 K. The strain coupling is found to be crucial in determining the first-order
character of the transition. A discussion of approximations made in this approach and considerations
relevant to its application to structural transitions in other systems is included.

I. INTRODUCTION

In the application of modern concepts of critical phe-
nomena to the study of finite-temperature phase transi-
tions in real materials, the calculation of the transition
temperature and other nonuniversal critical properties is
essential. This requires the combination of detailed mi-
croscopic quantitative knowledge of the properties of the
material under consideration with an appropriate statisti-
cal mechanical treatment.

One way to obtain these properties is through first-
principles total-energy calculations. Previous attempts to
calculate transition temperatures' have used total energy
methods which rely on approximations limiting their ac-
curacy and range of app1icability. In contrast, the
ab initio pseudopotential method has been seen to be
highly accurate in describing the zero-temperature
structural properties of a wide variety of systems, includ-
ing group-IV tellurides. " In the present study of the
structural phase transition of bulk GeTe, we combine this
self-consistent method with a renormalization-group-
theory (RG) approach to calculate T, and predict other
critical phenomena associated with the transition, in ex-
cellent agreement with available experimental data.

At high temperatures the IV-VI narrow-gap semicon-
ductor GeTe has the rocksalt structure. At low temper-
atures the system exists in a rhombohedral structure.
This structure, shown in Fig. 1, can be described as a
rocksalt structure slightly distorted by freezing in a k=o
optic phonon along the [111]direction, corresponding to
the order parameter of the transition, with a subsequent
shear relaxation along [111],corresponding to the secon-
dary order parameter. Experimental studies of the tran-
sition and their interpretation are somewhat difficult be-
cause of the high transition temperature and intrinsic
limitations on the quality of the sample. The latter
arises because the compound GeTe is not in the range of
homogeneity of the alloy, which for a nominal
stoichiometric composition results in the coexistence of
free Ge with a 50.3 at. %%uoTephase . Thi sphas eex-
hibits the rhombohedral-rocksalt transition and contains

free holes arising mainly from Ge vacancies. The tem-
perature dependence of the or'der parameter near the
transition has not been observed, as it has in the analo-
gous compound SnTe using elastic neutron scattering.
However, transition temperatures in the range 625 —700
K have been extracted from measurements of the tem-
perature dependence of the volume and rhombohedral
angle a using x-ray diffraction, ' " calorimetric deter-
minations of the heat evolution associated with the tran-
sition, ' and studies of anomalies in the thermal expan-
sion ' ' ' and electrical resistivity. ' ' In some mea-
surements" small discontinuities in volume and a have
been detected at the transition, suggesting that it may be
weakly first order.

Our theoretical investigation of this transition proceeds
in three steps. In Sec. II we show how to manipulate the
full anharmonic 1attice Hamiltonian into a form with a
tractable number of coupling constants. In Sec. III we
determine the coupling constants for GeTe using pseudo-
potential total-energy calculations for various structural
configurations. Finally, in Sec. IV we describe a
renormalization-group calculation implemented in
momentum space which yields T, and the critical proper-
ties associated with the transition. Section V contains a
discussion of the approximations in this approach and the
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FIG. 1. The low-temperature rhombohedral structure of
GeTe is obtained by two independent distortions of the rocksalt
structure: (a) relative displacement of the Ge and Te sublattices
by rao(111) and (b) shear along [111]which reduces the rhom-
bohedral angle a from its fcc value of 60'.
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considerations relevant to its application to finite-
temperature structural transitions in other systems, and
concluding remarks.

II. CONSTRUCTION OF MODEL HAMILTONIAN

As the starting point of a first-principles study, we
seek a microscopic Hamiltonian for the system which in-
corporates a correct description of the features leading
to the structural transition. ' For GeTe, it is appropriate
to use an anharmonic lattice Hamiltonian' ' in which
only the ionic degrees of freedom appear explicitly, and
the electronic effects are included in the Born-
Oppenheimer approximation. However, even if this
Hamiltonian is simplified by expanding to fourth order
about the prototype configuration (the rocksalt struc-
ture), it is still too complicated for calculating numerical
values of the coefficients or for evaluating the partition
function and obtaining thermal properties. The local-
mode approximation ' provides an intuitively appealing
way of obtaining an equivalent model Hamiltonian with
a simpler form and a greatly reduced number of parame-
ters. For each unit cell, the local-mode variable is
defined as the projection of local ionic displacements
onto the polarization vectors of the k=0 optic modes,
referred to the mean positions in the high-temperature
structure. The Hamiltonian is expanded in symmetry al-
lowed powers of the local mode variables, with on-site
terms kept up to some arbitrary order and intersite in-
teractions to quadratic order only.

To a large extent, the requirement that the local mode
have the lattice symmetry restricts the possible
definitions. The approximation of purely local anhar-
monicity, essential for obtaining a Hamiltonian with a
small number of parameters, necessitates that the precise
choice of local mode incorporate a physical understand-
ing of the lattice instability. The charge flow and energy
gain resulting from the symmetry breaking by the distor-
tion of the six equivalent nearest-neighbor bonds of the
rocksalt structure involves primarily Te p-like states, '

while the main anharmonic contribution to the energy
originates in the nonlinear Te polarizability. Thus, for
GeTe, the best choice of local mode emphasizes the dis-
tortion of the Te ion environment:

g;=ao ' hrT, —g b,ro, /6
NNj

where ao is the length of the side of the fcc conventional
unit cell, NN denotes nearest neighbor, and the displace-
ments Ar are measured relative to the rocksalt structure
(see Fig. 2).

Before giving the explicit approximate expression for
the model Hamiltonian H, d which will be used in the
calculation, we study its properties using the exact form,
obtained from the relation:

exp[ i3H, d( [g', I)]-
d cT exp Hlat i & cubi

where

oi =&0 ArTe+ g Ar~o, /6
NNj

= Te

FIG. 2. The local-mode variable is defined as

g; =ao (ri —gNN, r~o, /6). The sum runs over the six
nearest-neighbor Cre atoms, which in the rocksalt structure
form an octahedron with the Te atom at the center.

and H~„([g;I, [o;[) is the full anharmonic lattice Hamil-
tonian. We note that at fixed [g;), H, d, in principle, de-
pends on the energies of a 3N/2-dimensional space of
ionic configurations and the temperature.

However, to a good approximation the situation is
much simpler. We decompose IIl„asfollows:

Hi't([4 I [~ I) =Hi([k I)+Hz([o I )

+H3([k I. [o I)

Because the physically important anharmonicity is associ-
ated with the [g; I, it should be sufficient to include the
[o, I in the expansion of H~„up to quadratic order only.
The Gaussian integration over the [o; ] replaces [o; I by
the values which minimize Hi„at fixed [ g; I, and there-
fore the coefficients of H, d are independent of tempera-
ture in this approximation.

The relation of H „d([g;I ) to the energies of ionic
configurations H~„([g;I, [o; I ) can be further simplified
by keeping only the lowest-order term in H3,

d'k V ~ko. k ~ —k

Then, with j(k) nonzero, only the minimization with
respect to the component of o ( —k) which transforms ac-
cording to the same representation of the group of k is
nontrivial. For small k, however, V(k) vanishes like k,
so there we keep instead the term proportional to

d k d O'V~~k cr k ~k' ~k —k'

which describes the lowest-order coupling of g to long-
wavelength strain. Rather than integrate this term out
immediately, we will, for the time being, keep the long-
wavelength strains explicitly in order to study the physics
arising from this coupling.

The construction of H, d for the CxeTe transition
proceeds as follows. The local-mode variables sit on the
sites of an fcc lattice and only cubic-symmetry invariants
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appear in the expansion of the Hamiltonian. We trun-
cate the on-site potential at fourth order in the local-
mode variable but keep isotropic terms to eighth order.
Intersite interactions up to second order are included,
since the constraints imposed by the sharing of Ge
atoms by first- and second-neighbor local-mode octahe-
dra suggest the coupling is important. The lowest-order
terms involving long-wavelength strain fields are includ-
ed explicitly, as discussed above.

Carrying out this construction, we obtain the following
explicit form for H, d. The expression for the onsite po-
tential is

A
(
g'(R;)

(
+uo

(
g'(R;)

[ +Uog g (R, )
E a

+D
i
g'(R;)

i
+E

i g(R, )
i

'

with the first-neighbor intersite interactions

d& I(+x+y), (+xkz) I

g„(R,+aod/2)+a2 g g„(R;+aod/2)
dE I(+y+z) I

+a3
dE I(kxky) I

(d x)(d y)g (R, +aod/2)+a3
dE I ( kx+z) I

(d x)(d z)g, (R;+aod/2) +c.p.

where c.p. denotes cyclic permutation, and second-neighbor intersite interactions

g (R;) 5) Q'g (R;+aod)+b~
dE t+xI dC I+y, kzj

g„(R;+aod) ' +c.p.

where g(R; ) is the local-mode variable at the fcc lattice site R;.
With the strain tensor e &

——(5u&/5x +5u /5x&)/2, the lowest-order terms which describe long-wavelength strain
deformations and their coupling to the order parameter are

(Qo) ' f d r C„pe (r)/2+C, 2 g e (r)e&&(r)/2+C~4 g e &(r)
a a, p a,p

a~p a@p

(r) ~g; ~'/3 —
g& g e q(r)g; g;z —g2+e (r)(g,' —~g; '/3)

a, pa(p

These expressions define the model Hamiltonian
coeScients A, uo, Uo, D, E, a &, az, a3, b] +2hz, C», C)z,
C44, gp g~, and gz which will be calculated in Sec. III. (a)

III. TOTAL-ENERGY CALCULATIONS

The values of the coeScients for Ge Te are obtained by
fitting the model Hamiltonian to the energies of a variety
of local-mode configurations. For the zero-strain
coe%cients 3, uo, Uo, D, E, a], az, a3, and b&+2hz we
must consider configurations with the full fcc transla-
tional symmetry [Fig. 3(a)] as well as configurations with
two translationally inequivalent types of local-mode vari-
ables on fcc lattice sites. For the fcc lattice, there are
only two ways to divide the sites into two inequivalent
classes, giving rise to an arrangement with a tetragonal
unit cell [Fig. 3(b)] and to one with a rhombohedral unit
cell [Fig. 3(c)]. In each type of unit cell we study two
families of local-mode configurations, specified by a fixed
polarization vector at each inequivalent site and a vary-
ing amplitude r. For each family the energy as a func-
tion of ~ determines one combination of coe%cients at
each order. Unfortunately, the second-neighbor cou-
plings b, and bz cannot be separately determined
without using still larger unit cells.

To obtain the strain coeflicients C», C]z, C44, go, g&,
and gz, it is sufticient to consider configurations in which
the local mode is uniform and only the lattice changes.
We study three types of variation corresponding to pure
volume change (e„„=e~~=e„),pure rhombohedral angle
change at fixed volume (e„=e~~=e„,e ~ =e~, =e„,),

C

(c)
o-&

4L

FICx. 3. The translational symmetries of the various local-
mode configurations studied are illustrated. An fcc lattice with
all sites equivalent is shown in (a). The division of lattice sites
into two inequivalent types, as indicated by solid and open cir-
cles, yields (b) a tetragonal unit cell with equivalent sites lying in
(010) planes, and (c) a rhombohedral unit cell with equivalent
sites lying in {111)planes.
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TABLE I. Specifications of the families of local-mode configurations for which total energies were calculated, the combinations
of quadratic parameters determined, and the two Monkhorst-Pack (Ref. 29) k-point sets used to study convergence. Open and solid
circles are used to label translationally inequivalent lattice sites (see Fig. 3).

Configuration

(a)
(b)
(c)
(d)
(e)
(f)

Unit cell type

fcc
fcc

tetragonal
tetragonal

rhombohedral
rhombohedral

Local-mode variables
Open circles Solid circles

~(111)
~(010)
~(010)
~(101)
~(111)
z(112)

Quadratic
parameters
determined

3 +4a l +2ap+b l +2b2
3 +4a, +2a, +b, +2b,
3 —4a, +2a2+b, +2b2
3 —2a2+b l +2b,
3 —4a, —bl —2b~
3 +2a3 —b, —2b,

k-point sets
(number of points

in full BZ)

125,343
125,343
48, 100
48, 100
27, 125
27, 125

and uniaxial strain (e„).The coefficients Cii, C, z, and
C~ are obtained from configurations with ~=0, while
for go, g, , and gz a configuration with nonzero ~ must
be included at each e.

As discussed in Sec. II, the local-mode configuration
energy can be taken as the minimum over the energies of
ionic configurations with the same translational and point
symmetries. The types of zero-strain ionic configurations
for which we must calculate the energy are specified in
Table I and Fig. 4. For families (a), (b), (e), and (f) the
choice of ~ and the symmetry requirement completely

specify the ionic configuration. For families (c) and (d),
the symmetry requirement is less restrictive, resulting in a
one-dimensional space of ionic configurations, here la-
beled by o. , which must be searched for the energy
minimum.

The necessary calculations of the energies of ionic
configurations are performed using the self-consistent
ab initio pseudopotential total-energy method. ' We
use the spin-orbit averaged relativistic nonlocal atomic
pseudopotentials for Ge and Te given by Bachelet,
Hamann, and Schluter. Exchange and correlation are

(a) ~ = (ao~/2)(x+y+z) (~) = = (aox/2) y
(c) ~ = aoxy

~ = (aoa/2)y
= (3aoo/2)y

(d) P = (acr)(x+ z)

= (-aea/2)(x + z)

r = (-3ao&/2)(x+ z)

(e) ~ = aoz(x+y+z) A A h= aors(-x-y+2z)

FIG. 4. For each family of zero-strain local-mode configurations, labeled (a) —(f) as in Table I, the type of ionic configurations for
which total energies are calculated is shown. These ionic configurations are constructed according to the symmetry of the correspond-
ing local-mode configuration, as described in the text. Open and solid circles here represent Ge and Te ions, respectively. For (a), (b),
(e), and (f) a fixed ~ corresponds to a single ionic configuration. For (c) and (d), the requirements imposed by symmetry are less
stringent and a one-dimensional space of ionic configurations, parametrized by o., corresponds to fixed ~.
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FIG. 5. For each member of a family of local-mode
configurations, parametrized by ~, the space of corresponding
ionic configurations of same translational and point symmetry,
parametrized by 0., is searched for the minimum energy, which is
assigned to the local-mode configuration (inset). For the longitu-
dinal tetragonal family shown here, the corresponding space is

one dimensional. Energies are given relative to the rocksalt
structure minimum in meV per atom.

included through the local density approximation using
the Ceperley-Alder-Perdew-Zunger parametrization.
Eigenfunctions are expanded in a plane-wave basis with
energy cutoff E

&

——10.5 Ry, and Lowdin perturbation
theory is used to include the effect of plane waves up to
E2 ——16.5 Ry. Brillouin zone averages are performed us-
ing Monkhorst-Pack special k-point sets. The specific
details of the k-point sets for each configuration are in-
cluded in Table I. In previous work we have seen that
this gives extremely good basis-set convergence, and the
error is dominated by k-point sampling. Computations
were done on an IBM 370/4381 with 8-byte word length.

Details of the minimization procedure relating local-
mode configuration energies in families (c) and (d) to ionic

10—

0- T = 0.010

30-
20-

E 10-

I I I I I I

—0.01 0 0.01

o 0
LJ

T = 0.005
I I I I I I

—0.01 0 0.01

IY (arbitrary units)

FIG. 6. Same as Fig. 5 for the transverse tetragonal family
(d).

configuration energies are shown fully in Figs. 5 and 6.
The results for the energies of all the zero-strain local-
mode configurations are shown in Fig. 7. Energies of
configurations including strain are shown in Fig. 8. We
include the results for smaller k-point sets in Fig. 7 to
demonstrate the convergence. With the cutoffs used, en-

ergy curvatures are determined to about 10% accuracy.
The model Hamiltonian parameters were obtained

through a two-step fitting process. First, the zero-strain
coefticients were fit to the zero-strain local-mode
configuration energies, measured relative to the energies at
~=0. Then, the strain parameters were fit to the energies
of strained configurations, holding the zero-strain
coefficients fixed and letting the ao in the definition of g
vary with e. The quality of the fit can be seen from the
solid lines in Figs. 7 and 8. The resulting parameters are
given in Table II.

TABLE II. Model Hamiltonian parameters for GeTe (eV).

On site Intersite Elastic Coupling

Qp

Up

D
E

59.3
8.73 && 10'
4. 12 && 10'
7.32 X 10'
2.36' 10"

a~

Q2

Q3

b) +2b2

6.08
10.5
4.38
42.0

Ci2
C44

29.7
0.12
5.75

go
g&

g2

167
420
134
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0 0.01 0.02
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STRAIN e„
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FIG. 7. Calculated local-mode configuration energies, given
relative to the rocksalt structure minimum in meV per atom.
Solid lines show fit using model Hamiltonian parameters given
in Table II. The energies for six families of local-mode
configurations with zero strain are shown —longitudinal and
transverse: (a),(b), fcc; (c),(d), tetragonal; and (e),(f), rhom-
bohedral. The crosses show the results of calculations with the
smaller k-point sets given in Table I.

IV. STATISTICAL MECHANICS

FIG. 8. Same conventions as Fig. 7. On the right, energies
of configurations which include strain are shown: (a), (c), and
(e) are pure strain distortions, while (b), (d), and (f) show
E ( e, ~=0.01)—E (e, ~=0.00) which determines the order-
parameter strain coupling. Note the differences in energy scale
among (a), (c), (e); (b), (d), (f), and Fig. 7.

tion function

Z = f [II(dg, )]X)e(r)exp[ /3H, d(—[g; I, [ger) I )],
Given this microscopic Hami1tonian, the transition tem-

perature and critical properties follow from the evaluation
of the partition function. A systematic approach begins
with a Hubbard-Stratonovich transformation on the parti-

to introduce a field P; which couples linearly to the order
parameter. The trace over g; is expanded in P; and ger)
to give a functional of the same form as the original Ham-
iltonian:

PHHs= f d r [ro(T —To)
I
P(r)

I

'+
I
~k(r)

I

']/2

+ g f(& P )' —g &(dP )(d Pp)
a a,p

a~p

2+u
~

P(r)
~

+U g P (r) +O(P )

+(6ir )
' Z3 g e (r)/3 C+» g e (r)/2+C&z g e (r) ~e~(r) 2/

a a a,p
a~p

+C44 g e p(r) —go g e«(r)
~
P(r)

~

/3 —gi g e &(r)P (r)P&(r)
a,p a a, p
a~p a(p

—g& g e (r)[P (r) —
~

P(r)
~

/3]

In anticipation of the RCx analysis below, we have taken the continuum limit, defined the length scale so that the Bril-
louin zone is approximated by a sphere of radius l, and normalized the P(r) so the

~
VP(r)

~

term has coefficient —,'.
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TABLE III. Coefficients in the functional PHHs( t g; I, I e (r) ] )

Tp

kg Tp
Q

On site

3.68 (eV)
669 K
0.0175
0.0133

Intersite

0.00
0.10

C44

Z3

Elastic

1.03 ~ 10'
3.72
194
—5.75

go
gl
g2

Coupling

19.5
57.5
17.5

All the coefficients except ro, f, and h, which arise from the quadratic intersite coupling, are now functions of single-
site traces (and thus of P):

f d'kexp —& ~ 141'+uo141'+vo g k'+D
I 4 I

'+&
I 0 I

' l (P

f d'0 exp l3 '~ —141'+uo141'+vo 2 4'+D 141'+&
I & I

'

Having manipulated the partition function into a stan-
dard functional integral form, we now proceed to evaluate
it. The use of the stationary phase approximation leads to
a mean-field-theory transition temperature

T, M„To 2go——Z3—/[3ro(C»+2C, 2)] .

For GeTe, we find To ——669 K while the contribution
from strain coupling contributes + 4 K, giving
Tc,MF= 673 K.

An estimate of the correction to the mean-field value of
T, and information about the critical behavior can be ob-

tained through the renormalization group in the e expan-
sion. Since the critical temperature dependence is con-
tained in the vanishing of T —T, MF, all other coeScients
in f3H„s are evaluated at T, MF and their temperature
dependence is neglected in the following discussion. The
resulting values of the coefficients in PHHs are given in
Table III. This type of compressible three-component
model with cubic anisotropy has been studied previous-
ly. For the present discussion we write the functional in
the standard Landau-Ginzburg-Wilson form with n =3,
d = 3 and cubic symmetry, including the infinite-range in-
tersite quartic couplings generated by integrating out the
homogeneous strain. This leads to

&HLow = f d " Ero( ~c,MF) 14«) I

'+ 1~4«)
I
']/2+u 14'«)

I

'+v g 4.«)'

+o(y6)+ f y(a.y. )~ l y (ap. )(a.y, )

a a,p
a~p

+ f d r f d r' wogP (r) P (r') +w, g P (r) P&(r') +w2 g P (r)P&(r)P (r')P&(r')
a,pa(p

a, pa(p

In analyzing this model, we neglect the higher-order
anharmonicities and the anisotropic components of the
gradient terms since these are marginal or irrelevant fields
and will modify the Aows significantly only in extreme
cases. Thus we consider the differential recursion rela-
tions to first order in a=4 —d in the six-dimensional pa-
rameter space r =ro(T —T, M„),u, u, wo, w~ and w2..

dr/dl =2r+(8+2) '(20u + 12u +4w +4ow& )/( I+r),
du/dl =u —(8n. ) 'u(44u +24v)/(1+r)

dv /dl =v —(8~ ) 'u(36u +48u)/(1+r)

dwo/dl =wo —(8~ ) '(24wou +8w, u

+24wou +4wo )/(1+ r)

dw, /dl =w, —(8~ ) '(32w, u +Swou +24w, v

+2w, +4wow, )/(1+r)

dw2/dl = wz —(8n. ) '(8w2u +2w2 )/(1+r)

By iterating the recursion relations numerically, we ex-
amine the changes in the Rows as the system moves along
the line in parameter space according to the physical tem-
perature T, and find a shift in T, of —16 K, yielding
T, =657 K.

An analogous treatment of the nearest-neighbor Ising
model on a face-centered-cubic lattice gives a shift in T,
of —14%, comparable to that of —18% obtained from
numerical studies ' in d =3. The smaller shift in the
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present case results from smaller ratios of the fourth-order
couplings to rp, as determined by the several independent
microscopic coupling constants. To lowest order, the
strain-related fluctuation contribution to the shift in T,
can be estimated by mapping to an effective cubic-
anisotropy model ' r=r +(2~ ) '(wo+w~ ), u =u, v =v,
which shows that at this level, the shift of 0.35 K is in-

dependent of wz. In fact, in the present case higher-order
effects are also important since comparison of the full
Aows with those in which we set w; =0 yields a slightly
larger contribution of 3 K.

This RG analysis can also be used to understand the
observed first-order character of the transition. At the
fixed points of the pure cubic-anisotropy model (w; =0),
the w; are relevant. There are new fixed points with
w;* ~ 0, but these are not accessible to flows starting in the
w; &0 region of parameter space, as in the present case
where wp = —2.71 & 10 w i = —3.83&& 10 and
wz ———3.60)&10 . The resulting runaway behavior of
the strain-generated couplings is associated in principle
with the occurrence of a first-order transition. To see that
this runaway, particularly in w 2, provides a plausible
mechanism for the observed character of the transition,
consider that within mean-field theory, the effect of the
strain coupling is to shift the e6'ective values of (u, v) to-
wards the mean-field phase boundary u, ff + v ff /3 =0,
from (0.018,0.013) to ( —6. 1X10,0.028). This sub-
stantial shift suggests that though the transition within
mean-field theory is still second order, the strain effects
could be large enough to produce an observable discon-
tinuity within RG, and thus the transition is
fluctuation-driven first order.

V. DISCUSSION AND CONCLUDING REMARKS

Here we review the calculation to see where important
approximations and calculational inaccuracies enter, and
to separate the features which are special to the GeTe
transition from more widely applicable aspects.

We started by assuming that the transition could be
described by a purely ionic Hamiltonian expanded about
the prototype structure. Although models have been
proposed in which the near-band-gap electronic states
are the direct source of the temperature dependence, 33, 34

it seems unlikely that this effect could be significant
compared to the lattice anharmonicity in the case of
GeTe. Defining a local-mode variable, we formally ob-
tained a model Hamiltonian that exactly reproduced the
thermal behavior of the original. Then we approximated
the model by a truncated expansion —local anharmonici-

ty, no intersite interactions beyond second neighbor,
lowest-order local-mode-strain coupling —with no tem-
perature dependence in the coefBcients. Because the
definition of the local-mode variable and truncation of
the model Hamiltonian (which is important in determin-
ing the quantitative accuracy of the model) depends on
the physics of the GeTe transition, the details of this
part of the procedure would need to be rethought when
applied to other systems. In particular, although the
local-mode approximation can be used to obtain model
Hamiltonians for both displacive and order-disorder

structural transitions, ' the large local anharmonicity in
the latter case probably implies that nonlocal anharmon-
ic terms must also be included for a good quantitative
description. Therefore this approach is generally feasi-
ble only for transitions, like that in GeTe, which have
displacive character.

In contrast, once we have obtained the numerical
form of the model, the statistical mechanical analysis de-
pends mainly on the universality class of the transition.
The dropping of terms from H„Gw and the validity of
techniques such as the e expansion rely less on the phys-
ics of GeTe and are more subject to systematic improve-
ment than the approximations in the form of H, d. For
example, the fluctuations could be described using the
full Green's function instead of its gradient expansion,
the analysis could be carried to higher order in e, and
the higher-order anharmonicities, anisotropic fluctua-
tions, and the terms generated by the inhomogeneous
strains, could be included explicitly in the recursion rela-
tion analysis. In fact, to first order in e the sixth-order
anharmonicities can be included in the analysis simply
by introducing effective values of u and v. For the
zero-strain coupling case, we find (u, tr, v, fr) shifts only
slightly, from (0.018,0.013) to (0.013,0.011), so that this
correction cannot account for the observed first-order
behavior.

The most important calculational errors enter via the
total-energy calculations. As discussed in Sec. IV, k-point
convergence makes the largest contribution to errors at
the level of ionic configuration energies, resulting in un-
certainty in the quadratic coeScients in H, d of about
10%. Propagation through to T, shows that the error in

T, is slightly sublinear in the uncertainty in the
coefficients. At the level of H, d, we also were unable to
separate b& and b2. Since we expect both of these to be
positive, we introduce v&[0, 1] with b, =v(b&+2b2),
bz ——(1 v)(b&+2hz)—I2. For the RG analysis, we chose
v=0. 37 which is a reasonable value in view of the lack of
strong anisotropy of the first-neighbor interactions and
has the additional advantage that f =0. If we had includ-
ed f explicitly in the RG analysis, it would be possible to
obtain quantitative bounds on T, (v). However, since
T, M„depends only on b, +2b, , T, sh«ld be f»rly in-
sensitive to v. With the above considerations, we make an
estimate of the error in T, to obtain a final answer of
657+100 K.

Aside from T, and the character of the transition, a
number of other properties derivable within this frame-
work could be compared with experiment. Experimental-
ly observable quantities related to the strain include
d T, /dP, elastic constants and their discontinuity at the
transition, and the discontinuity of the thermal expansion
coefficient at the transition. These provide information
about the order-parameter strain couplings in the system
and could be calculated using our approach, although a
more refined treatment of the strain degrees of freedom
would be required than that given here.

In summary, we have studied the phase transition of
GeTe completely ab initio, predicting T, =657+100 K.
This compares quite favorably with the range of experi-
mental values of 625 —700 K. In addition, we find that
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the presence of the order-parameter strain coupling
moves the system into the fluctuation-driven first-order
region of the phase diagram, consistent with experimen-
tal indications of a discontinuous transition. This pro-
vides an encouraging prospect for future applications of
the pseudopotential total-energy method to the calcula-
tion of finite-temperature properties of solids.

ACKNOWLEDGMENTS

We acknowledge valuable discussions with A. N. Ber-
ker, A. Aharony, M. Kardar, and D. Blankschtein. One
of us (K.R.) thanks AT&T Bell Laboratories for support.
This work ~as supported in part by Once of Naval
Research Contract No. N00014-86-K-0158.

'J. Ihm, D. H. Lee, J. D. Joannopoulos, and J. J. Xiong, Phys.
Rev. Lett. 51, 1872 (1983).

L. L. Boyer and J. R. Hardy, Phys. Rev. B 24, 2577 (1981).
See, for example, references cited in K. M. Rabe and J. D.

Joannopoulos, Phys. Rev. B 32, 2302 (1985).
4K. M. Rabe and J. D. Joannopoulos, Phys. Rev. 8 32, 2302

(1985).
5L. E. Shelimova, N. Kh. Abrikosov, and V. V. Zhdanova, Russ.

J. Inorg. Chem. 10, 650 (1965}.
A. D. Bigava, A. A. Gabedava, E. D. Kunchuliya, S. S.

Moiseenko, and R. R. Shvangiradze, Izv. Akad. Nauk. SSSR,
Neorg. Mater. 12, 835 (1976) [Inorg. Mater. 12, 708 (1976)].

N. Kh. Abrikosov, O. G. Karpinskii, L. E. Shelimova, and M.
A. Korzhuev, Izv. Akad. Nauk. SSSR, Neorg. Mater. 13,
2160 (1977) [Inorg. Mater. 13, 1723 (1977)].

M. Iizumi, Y. Hamaguchi, K. F. Komatsubara, and Y. Kato, J.
Phys. Soc. Jpn. 38, 443 (1975).

K. Schubert and H. Fricke, Z. Naturforsch. 6a, 781 (1951);
Struct. Rep. 15, 72 (1951); Z. Metallkd. 44, 457 (1953);
Struct. Rep. 17, 44 (1953).

J. N. Bierly, L. Muldawer, and O. Beckman, Acta. Metall.
11, 447 (1963).

T. B. Zhukova and A. I. Zaslavskii, Kristallografiya 12, 37
(1967) [Sov. Phys. —Crystallogr. 12, 28 (1967)].

' N. Kh. Abrikosov, M. A. Korzhuev, L. A. Petrov, O. A.
Teplov, and G. K. Demenskii, Izv. Akad. Nauk. SSSR,
Neorg. Mater. 19, 370 (1983) [Inorg. Mater. 19, 334 (1983)].

S. I. Novikova, L. E. Shelimova, N. Kh. Abrikosov, V. I.
Galyutin, and B. A. Evseev, Fiz. Tverd. Tela (Leningrad) 12,
3623 (1971) [Sov. Phys. —Solid State 12, 2945 (1971)].

~S. I. Novikova, L. E. Shelimova, N. Kh. Abrikosov, and B. A.
Evseev, Fiz. Tverd. Tela (Leningrad) 13, 2764 (1972) [Sov.
Phys. —Solid State 13, 2310 (1972)].

I5S. I. Novikova, L. E. Shelimova, N. Kh. Abrikosov, and O. G.
Karpinskii, Fiz. Tverd. Tela (Leningrad) 19, 1171 (1977) [Sov.
Phys. —Solid State 19, 683 (1977)].
S. I. Novikova, L. E. Shelimova, E. S. Avilov, and M. A. Kor-
zhuev, Fiz. Tverd. Tela (Leningrad) 17, 2379 (1975) [Sov.
Phys. —Solid State 17, 1570 (1975)].
N. Kh. Abrikosov, M. A. Korzhuev, and L. E. Shelimova, Izv.

Akad. Nauk. SSSR, Neorg. Mater. 13, 1757 (1977) [Inorg.
Mater. 13, 1418 (1977)].

'sM. E. Lines and A. M. Glass, Principles and Appiications of
Ferroelectrics and Related Materials (Clarendon, Oxford,
1977).

W. Cochran, Adv. Phys. 9, 387 (1960).
P. W. Anderson, in Fizika Dielectrikav, edited by G. Skanavi
(Akad. Nauk, Moscow, 1960).

M. E. Lines, Phys. Rev. 177, 797 (1969).
P. B. Littlewood, J. Phys. C 13, 4855 (1980); 13, 4875 (1980).

23A. Bussmann-Hokler, H. Bilz, and P. Vogl, in Dynamical
Properties of IV VI Compo-unds, Vol. 99 of Springer Tracts in
Modern Physics (Springer, New York, 1983).

24M. T. Yin and M. L. Cohen, Phys. Rev. B 25, 7403 (1982).
D. Vanderbilt, Ph. D. thesis, Massachusetts Institute of Tech-
nology, 1981.

6G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys. Rev.
B 26, 4199 (1982).

D. M. Ceperley, Phys. Rev. B 18, 3126 (1978); D. M. Ceper-
ley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980); J. Per-
dew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
P. O. Lowdin, J. Chem. Phys. 19, 1396 (1951).

2 H. J. Monkhorst and J. D. Pack, Phys. Rev. 8 13, 5188
(1976).
T. Natterman, J. Phys. A 10, 1757 (1977); K. K. Murata,
Phys. Rev. B 15, 4328 (1977); G. Bender, Z. Phys. 8 23, 285
(1976)~

'C. Domb and A. R. Miedema, in Progress in Lou Temperature
Physics IV, edited by C. J. Gorter (North-Holland, Amster-
dam, 1964).
A. Aharony, Phys. Rev. B 8, 4270 (1973); in Phase Transitions
and Critical Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, 1976), Vol. 6, p. 357.

M. A. Korzhuev, L. I. Petrova, G. K. Demenskii, and O. A.
Teplov, Fiz. Tverd. Tela (Leningrad) 23, 3387 (1981) [Sov.
Phys. —Solid State 23, 1966 (1981)],and references therein.
V. A. Volkov and Yu. V. Kopaev, Zh. Eksp. Teor. Fiz. 64,
2184 (1973) [Sov. Phys. —JETP 37, 1103 (1981)].

3~D. Blankschtein and A. Aharony, Phys. Rev. B 28, 386 (1983).


