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Inclusion of collision broadening in semiconductor electron-transport simulations
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The collision broadening of electronic states due to interactions with phonons is included in a
semiclassical transport calculation for semiconductors. The quasiparticle spectral function is used
in the transition rates of a Monte Carlo simulation to study the many-body effects of the interact-
ing electron. The full semiconductor band structure is employed through an empirical nonlocal
pseudopotential method and the scattering is calculated in the Fock approximation. %'e find a
significant increase in the high-energy tails of the electronic distribution function when the
broadening is included. Comparison is made with a similar calculation employing a simpler elec-
tronic model.

I. INTRODUCTION

The development of methods to calculate electronic
transport properties of materials far away from equilibri-
um conditions is an unsolved problem in physics today.
An understanding of the behavior of electrons in high
electric fields is becoming increasingly important in
semiconductor structures which approach angstrom
sizes. Such effects as collision broadening, finite collision
lifetimes, the intracollisional field effect, and extremely
high electron scattering rates must be considered in
studies of these nonequilibrium problems. For systems
which are not highly perturbed from equilibrium and
where such effects are of only limited importance, semi-
classical calculations based on the Boltzmann equation
prove to be very useful in predicting physical properties.
Monte Carlo methods' in particular are very flexible and
powerful for transport calculations in this semiclassical
regime. Unfortunately, these methods fail in the high-
field, high-scattering-rate environments which are of in-
creasing interest in microstructured semiconductor de-
vices. In situations where the quantum-mechanical na-
ture of the system becomes important, a technique
which has the power to calculate electronic transport
has not yet been found. Although a reasonably complete
theoretic framework has been established, ' quantum
transport has, to this point, proven to be computational-
ly intractable.

This paper will present results of a method which in-
cludes one particular quantum effect, collision broaden-
ing, into the semiclassical Monte Carlo method. Col-
lision broadening is the spread of the electronic energy-
momentum relation due to scattering. This quasiparticle
nature of the electron is best described by the finite
width of the spectral function of an electron interacting
with its environment. In a seminal paper, Chang et al.
explored the idea of including collision broadening into
Monte Carlo calculations of electronic transport in semi-
conductors. Their approach was to include the broaden-
ing of the electronic states using the ideas developed by
Barker" in his work on quantum transport and the in-

tracollisional field effect. This paper by Chang has re-
ceived much comment and has spurred further research
into the problem. ' Recently, Lugli et a/. included the
broadening of the electronic states in a model Monte
Carlo calculation using a more precise method which
makes use of the many-body spectral function. Their
work used a single parabolic band with no upper band
edge and the Born approximation for the scattering.

In this paper we will apply the spectra1-function
collision-broadening technique to semiconductor trans-
port calculations. This work will include the band struc-
ture of the semiconductor using a nonlocal pseudopoten-
tial method and calculate the scattering rates in the
Fock approximation. Comparisons will be made with
the work of Chang et al. and Lugli et al.

It should be emphasized that these calculations do not
constitute a complete quantum transport method. This
work incorporates only one of many quantum phenome-
na into a semiclassical transport calculation. A full
quantum treatment is still a problem for the future. It is
quite revealing, however, to study the effects of this sin-
gle new mechanism. At high fields the broadening of the
electronic states significantly changes the electronic dis-
tribution, particularly its high-energy tail. This will
cause large changes in the calculated rates of any high-
energy process, such as impact ionization or barrier
emission. Therefore this work gives some indication of
the importance of quantum effects in highly nonequili-
brium situations.

II. MODEL

This work is based on the semiconductor model that
was employed by Chang et al. The full band structure
of the bulk GaAs conduction band is calculated using an
empirical nonlocal pseudopotential method. The band
structure is needed for a quantitative and even qualita-
tive understanding of transport in semiconductors be-
cause of the large effect of the density of states on the
scattering rates. Our model simplifies the electron dy-
namics by approximating the full electron scat tering
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from all the scattering mechanisms by an interaction
with a single nonpolar optica1-phonon mode with fre-
quency coo. The coupling between the electrons and the
phonons is chosen so that the cross section at an energy
of 0.6 eV above the conduction-band edge is equal to the
total cross of electrons scattering from all the scatterers
in GaAs. "

The electronic scattering rate due to the phonons is
calculated in the Fock" approximation by solving self-
consistently the equation

X(k,E)
pdk' g (k')

(2~)3 E fuoo e—(k —k—') —X(k —k', E ficuo—)

0&5 i & i i
J

i t

0.10—

LL1

E
' 005—

0
1.0 2.0 3.0

E:nergy (eVj
4.0

FIG. 1. Electron self-energy in the Fock approximation,
—ImX(E) and ReX(E) (inset), plotted as a function of the elec-
tronic energy. Also shown is —IrnX(E) calculated using the
Born approximation {———).

for the electronic self-energy X. In Eq. (1), g(k') is the
coupling between the electrons and the phonons, and
e(k) is the dispersion relation for the electrons as given

by the band-structure calculation. The use of Eq. (1) for
the self-energy includes the approximation, used
throughout this work, that phonon-absorption processes
are negligible. At the temperature of 77 K which was
used in our simulation, the phono n occupation
coefficient for absorption is of the order 10 while the
emission coefticient is of order 1. In the case of nonpo-
lar optic phonons, g(k) is well approximated by a con-
stant. As pointed out by Chang et al. , when the
electron-phonon coupling is independent of the wave
vector, the self-energy is a function of the electron ener-

gy alone, X(k,E)=X(E). Figure 1 shows the self-energy
as calculated self-consistently from Eq. (1) and the self-
energy calculated by the Born approximation [where the
X on the right-hand side of Eq. (1) is replaced by an
imaginary infinitesimal i5] In the B.orn approximation
ImX(E)-po(E Sicko), where po—is the density of states.
Thus we see from Fig. 1 that the first conduction band
extends to approximately 4 eV. It is also evident that
the Fock approximation results in considerably reduced

K(kf, k; ) = f A (kf, E —Acro) A (k;,E ) .
dE
277

The transition rate in this case is given by

W'(kf k')
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In Eq. (3), the spectral function for the interacting elec-
tron is caIculated from the se1f-energy by

—21m'(k, E )

[E —E(k) —ReX(k, E)] +[1m'(k, E)]
The final electron state after scattering from a phonon is
given by the spectral density distribution K(kf, k, ),
reAecting the spread in the quasiparticle energy. It is
obvious that this method of including the broadening of
the electronic states reduces to the golden rule when the
bare electron spectral function A (k, E)=2m5(E —e(k))
is used in Eqs. (3) and (4).

To get some idea of the e6'ect of the collision broaden-
ing, we need to look at the spectral density K. Since the
self-energy is a function of the electron energy alone, K
will be a function of only the initial and final electron en-
ergies, K(kf, k, )=K(e(kf), e(k;)). The quasiparticle en-
ergies E are integrated out in Eq. (3). In Fig. 2 the func-
tion K(ef, e;) is plotted as a function of the final energy
cf for three values of the initial energy, c;. %'e see that
K has a width of up to 1 eV about its peak and is asym-
metric, with an enhanced tail which extends into the re-
gion of the band where the density of states is large.
This tail is due to the peak in the density of states near
the band center. For c.; below the peak in the density of
states, this tail in K extends out for cf & c,;, while for c.;
above the peak, this tail extends out for zf ~c.;. It will
be shown below that the collision broadening spreads
out the calculated electron distribution to both lower
and higher energies, moves the peak in the distribution
to lower energy, and gives a wide high-energy tail.

We also note that the integral fdsfK(ef c, , )=1.
This, of course, is needed for conservation of the elec-
trons. This integral over K gives a check on the nurneri-
cal calculation. Finally it should be pointed out that we

scattering near the center of the band where the density
of states is high. This approximation is therefore needed
for a more accurate calculation of the scattering rates at
high energies.

Collision broadening is introduced into Monte Carlo
calculations by the inclusion of a distribution for the
electronic energy after collisions. In the usual semiclas-
sical transport calculations, the transitions of the elec-
tron state from before to after phonon collisions are
given by the golden rule

IV(kf k')
~

V
~

5(E(kf ) —s(k;) —fi O)

where V is the eA'ective electron-phonon potential. The
final state is given exactly by the initial state and the
phonon energy. As described in some detail by Reggiani
et al. ,

' the quasiparticle nature of the interacting elec-
tron can be included by replacing the delta function in
the golden rule by a spectral density K. K is a convolu-
tion over the initial- and fina1-state spectral functions,
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FIG. 3. tea y-s aS d - t te electronic distribution u punction lot ted
for olden-rule (nonbroadened) calcula-as a function of energy for go en-ru

in ( ———),tion (, initia -s at l- tate (Lorentzian) broadening
and full collision broadening

have included the real part of X(E) in the calculattons,

makes the model completely consistent with the quasi-
particle picture of the electrons.

III. RESULTS AND DISCUSSION

Monte Carlo calculations of the e electronic distribution
function in a uni orm e ecf 1 tric field were performed using
the mode escri e1 d bed above. The phonon energy was

V and the electron-phonon coup ing wamo ——29 me an
as set at 77 K for=0.2 eV. The lattice temperature was se ag=. e

tical honons and interval-the calculation, and polar op ica p
1 ded for low electron energy lossley scattering were inc u e

W 1 oand intervalley electronic mot, p
' . oion res ectively. e a so

onl consi ere emd d mission of the nonpolar optical p o-
d above, absorption processes

are smaller by a factor of 100. The simulations gave t e
steady-state distribution ors - 'b f r the electrons and converged
to the final result after about 50000 scatterings.

Fi ure 3 shows the steady-state electron distribution
ld f SOO kV/cm. Included in thisfor an external fie d o
f lculations using three differentfigure are results o cacua

urve in Fi . 3f r the transition rate. The solid curve in ig.

ives the electronic distribution witii t e u co i
'b d bove included. The dashedas descri e a ove

simulation using a Lorentzian appcurve is a sim
b Chan et al.he broadening similar to that used y g

idth of the state before theIn this approximation the wi~th o e
X(E ) has been used to broaden the transt-scattering, Im c.;, as

the s ectraltion rate. orF this initial-state broadening, e p
density distribution is

—2 ImX(s;)
7r (s —s; —fico)'+[ImX(s, )]f 1

ation simp i esatio
' pl'fi the calculation of t e

spectral density K(Ef, s;) considerab y w i e i

nin of the electronic states. T isan approximate broadening o
f thenin re roduces many oLorentzian state broade i g p

res of the full broadening calculation. It s ou e

the spread in od b th the initial and final states, as sugges-
ed yb the work of Barker.

F . 3 that the collision broaden-It is easily seen from ig. a
nd effect on the calculated electronic

ode q h' th accuracy of the calculation,odels are equal wit in e a

lar er s read in the electronic distribution wit a max-

in the hi h-energy tai . ep
center of the anb d the electron population is en ance

f 3. Even larger increases occur atb nearly a factor o . ven
e the distributions with broadeninghigh energies becaus

included fall off more slowly at high energy t an
-rule result. In fact we see that the broadened dis-

tri utions'0 '
have a very nont erma n

high-energy tail.
ulation enhancement dueThe hi h-energy electron-population en ane ig -e

to broadening is exactly in t e region
such as im act ionization begin to occur. is

d' b
' 'll hchan e in the electronic is ri u
'

1 ulated rates of anyan e ually large effect on the ca cu a e
- ne . Th rate calculation of these

uire therefore, the inclusionprocesses would seem to require, t ere o
of the electronic states.of the broadening o

f d runawayUnlike our work, Lug
'

li et al. oun a
non when the collision broadening was inc u-

ed. The average electron energy o t eir
s si nificantly higher than that calcu ate

f h b dthe olden rule. The inclusion o e
Th o fo th'structure inhibits this runaway. e

Fi . 2.considering the function K plotte in ig.
Hi h in the band the scattering pro a i i y i

d to the larger density of statesr s lower energies ue owar

Lu li the density of states always increases. n oby ug i,
resu ts,lt the electronic distribution is g
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high- and low-energy regions than the golden-rule re-
sults, with little or no change in the average energy.
There is no runaway when the band structure of the
semiconductor is considered in the electronic model.

IV. CONCLUSION

In conclusion, we have calculated the electronic distri-
bution of a semiconductor in large electric fields using
Monte Carlo methods which take into account the quasi-
particle nature of the interacting electrons. The spectral
function is used to broaden the transition rates due to
collisions with phonons. We find that the broadening
has significant erat'ects on the steady-state energy distribu-
tion of the electrons. The peak in the distribution
occurs at a lower energy for simulations which include

broadening than for simulations which do not, and the
broadening causes a wide, nonthermal high-energy tail.
This high-energy tail should have profound efFects on the
calculated rates of high-electron-energy processes such
as impact ionization and emission over barriers. Unlike
other authors, however, we do not find a runaway in the
electronic energy. This appears to be due to the in-
clusion of the correct band structure in the simulation.
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