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Inclusion of collision broadening in semiconductor electron-transport simulations
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The collision broadening of electronic states due to interactions with phonons is included in a
semiclassical transport calculation for semiconductors. The quasiparticle spectral function is used
in the transition rates of a Monte Carlo simulation to study the many-body effects of the interact-
ing electron. The full semiconductor band structure is employed through an empirical nonlocal
pseudopotential method and the scattering is calculated in the Fock approximation. We find a
significant increase in the high-energy tails of the electronic distribution function when the
broadening is included. Comparison is made with a similar calculation employing a simpler elec-

tronic model.

I. INTRODUCTION

The development of methods to calculate electronic
transport properties of materials far away from equilibri-
um conditions is an unsolved problem in physics today.
An understanding of the behavior of electrons in high
electric fields is becoming increasingly important in
semiconductor structures which approach angstrom
sizes. Such effects as collision broadening, finite collision
lifetimes, the intracollisional field effect, and extremely
high electron scattering rates must be considered in
studies of these nonequilibrium problems. For systems
which are not highly perturbed from equilibrium and
where such effects are of only limited importance, semi-
classical calculations based on the Boltzmann equation
prove to be very useful in predicting physical properties.
Monte Carlo methods' in particular are very flexible and
powerful for transport calculations in this semiclassical
regime. Unfortunately, these methods fail in the high-
field, high-scattering-rate environments which are of in-
creasing interest in microstructured semiconductor de-
vices.? In situations where the quantum-mechanical na-
ture of the system becomes important, a technique
which has the power to calculate electronic transport
has not yet been found. Although a reasonably complete
theoretic framework has been established,”* quantum
transport has, to this point, proven to be computational-
ly intractable.

This paper will present results of a method which in-
cludes one particular quantum effect, collision broaden-
ing, into the semiclassical Monte Carlo method. Col-
lision broadening is the spread of the electronic energy-
momentum relation due to scattering. This quasiparticle
nature of the electron is best described by the finite
width of the spectral function® of an electron interacting
with its environment. In a seminal paper, Chang et al.®
explored the idea of including collision broadening into
Monte Carlo calculations of electronic transport in semi-
conductors. Their approach was to include the broaden-
ing of the electronic states using the ideas developed by
Barker* in his work on quantum transport and the in-
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tracollisional field effect. This paper by Chang has re-
ceived much comment and has spurred further research
into the problem.”® Recently, Lugli et al.” included the
broadening of the electronic states in a model Monte
Carlo calculation using a more precise method which
makes use of the many-body spectral function. Their
work used a single parabolic band with no upper band
edge and the Born approximation for the scattering.

In this paper we will apply the spectral-function
collision-broadening technique to semiconductor trans-
port calculations. This work will include the band struc-
ture of the semiconductor using a nonlocal pseudopoten-
tial method and calculate the scattering rates in the
Fock approximation. Comparisons will be made with
the work of Chang et al.® and Lugli et al.”

It should be emphasized that these calculations do not
constitute a complete quantum transport method. This
work incorporates only one of many quantum phenome-
na into a semiclassical transport calculation. A full
quantum treatment is still a problem for the future. It is
quite revealing, however, to study the effects of this sin-
gle new mechanism. At high fields the broadening of the
electronic states significantly changes the electronic dis-
tribution, particularly its high-energy tail. This will
cause large changes in the calculated rates of any high-
energy process, such as impact ionization or barrier
emission. Therefore this work gives some indication of
the importance of quantum effects in highly nonequili-
brium situations.

II. MODEL

This work is based on the semiconductor model that
was employed by Chang et al.® The full band structure
of the bulk GaAs conduction band is calculated using an
empirical nonlocal pseudopotential method.® The band
structure is needed for a quantitative and even qualita-
tive understanding of transport in semiconductors be-
cause of the large effect of the density of states on the
scattering rates. Our model simplifies the electron dy-
namics by approximating the full electron scattering
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from all the scattering mechanisms by an interaction
with a single nonpolar optical-phonon mode with fre-
quency @, The coupling between the electrons and the
phonons is chosen so that the cross section at an energy
of 0.6 eV above the conduction-band edge is equal to the
total cross of electrons scattering from all the scatterers
in GaAs.!"°

The electronic scattering rate due to the phonons is
calculated in the Fock'! approximation by solving self-
consistently the equation
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for the electronic self-energy X. In Eq. (1), g(k') is the
coupling between the electrons and the phonons, and
e(k) is the dispersion relation for the electrons as given
by the band-structure calculation. The use of Eq. (1) for
the self-energy includes the approximation, used
throughout this work, that phonon-absorption processes
are negligible. At the temperature of 77 K which was
used in our simulation, the phonon occupation
coefficient for absorption is of the order 102 while the
emission coefficient is of order 1. In the case of nonpo-
lar optic phonons, g(k) is well approximated by a con-
stant. As pointed out by Chang et al.,® when the
electron-phonon coupling is independent of the wave
vector, the self-energy is a function of the electron ener-
gy alone, 2(k,E)=ZX3(E). Figure 1 shows the self-energy
as calculated self-consistently from Eq. (1) and the self-
energy calculated by the Born approximation [where the
3 on the right-hand side of Eq. (1) is replaced by an
imaginary infinitesimal i8]. In the Born approximation
Im2(E) ~po(E —fiwy), where pg is the density of states.
Thus we see from Fig. 1 that the first conduction band
extends to approximately 4 eV. It is also evident that
the Fock approximation results in considerably reduced
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FIG. 1. Electron self-energy in the Fock approximation,

—ImZ(E) and ReZ(E) (inset), plotted as a function of the elec-
tronic energy. Also shown is —ImZ(E) calculated using the
Born approximation (— — —).

scattering near the center of the band where the density
of states is high. This approximation is therefore needed
for a more accurate calculation of the scattering rates at
high energies.

Collision broadening is introduced into Monte Carlo
calculations by the inclusion of a distribution for the
electronic energy after collisions. In the usual semiclas-
sical transport calculations, the transitions of the elec-
tron state from before to after phonon collisions are
given by the golden rule

Wik, k)~ | V|*8(elk,)—e(k;)—Fimg) , (2)

where V is the effective electron-phonon potential. The
final state is given exactly by the initial state and the
phonon energy. As described in some detail by Reggiani
et al.,'? the quasiparticle nature of the interacting elec-
tron can be included by replacing the delta function in
the golden rule by a spectral density K. K is a convolu-
tion over the initial- and final-state spectral functions,

K(kf,ki)zf%A(kf,E——ﬁwo)A(k,,E) . (3)

The transition rate in this case is given by
Wik k)~ | V|*K(kk;) . 4)

In Eq. (3), the spectral function for the interacting elec-
tron is calculated from the self-energy by

—2Im2(k,E)
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(5)

The final electron state after scattering from a phonon is
given by the spectral density distribution K(k,,k;),
reflecting the spread in the quasiparticle energy. It is
obvious that this method of including the broadening of
the electronic states reduces to the golden rule when the
bare electron spectral function A4 (k,E)=278(E —e(k))
is used in Egs. (3) and (4).

To get some idea of the effect of the collision broaden-
ing, we need to look at the spectral density K. Since the
self-energy is a function of the electron energy alone, K
will be a function of only the initial and final electron en-
ergies, K(k,,k;)=K(e(k,),e(k;)). The quasiparticle en-
ergies E are integrated out in Eq. (3). In Fig. 2 the func-
tion K(es,g;) is plotted as a function of the final energy
g, for three values of the initial energy, ¢;. We see that
K has a width of up to 1 eV about its peak and is asym-
metric, with an enhanced tail which extends into the re-
gion of the band where the density of states is large.
This tail is due to the peak in the density of states near
the band center. For g; below the peak in the density of
states, this tail in K extends out for £, > ¢;, while for &;
above the peak, this tail extends out for e, <¢;. It will
be shown below that the collision broadening spreads
out the calculated electron distribution to both lower
and higher energies, moves the peak in the distribution
to lower energy, and gives a wide high-energy tail.

We also note that the integral fdst(sf,e,« )=1
This, of course, is needed for conservation of the elec-
trons. This integral over K gives a check on the numeri-
cal calculation. Finally it should be pointed out that we
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FIG. 2. Spectral density K (g/,€;) plotted as a function of
the final energy € for g;=1.0eV (— — —), g;=1.5eV ( ),
and g;=2.0eV (—. —. —.).

have included the real part of Z(E) in the calculations,
unlike Lugli et al.,” which gives the renormalization of
the electronic band energies due to the phonons. This
makes the model completely consistent with the quasi-
particle picture of the electrons.

III. RESULTS AND DISCUSSION

Monte Carlo calculations of the electronic distribution
function in a uniform electric field were performed using
the model described above. The phonon energy was
@0o=29 meV and the electron-phonon coupling was
g=0.2 eV. The lattice temperature was set at 77 K for
the calculation, and polar optical phonons and interval-
ley scattering were included for low electron energy loss
and intervalley electronic motion, respectively. We also
only considered emission of the nonpolar optical pho-
nons, since, as mentioned above, absorption processes
are smaller by a factor of 100. The simulations gave the
steady-state distribution for the electrons and converged
to the final result after about 50 000 scatterings.

Figure 3 shows the steady-state electron distribution
for an external field of S00 kV/cm. Included in this
figure are results of calculations using three different
forms for the transition rate. The solid curve in Fig. 3
gives the result for a simulation using the golden-rule
transition rate as given by Eq. (1). The dotted curve
gives the electronic distribution with the full collision
broadening as described above included. The dashed
curve is a simulation using a Lorentzian approximation
to the broadening similar to that used by Chang et al.®
In this approximation the width of the state before the
scattering, Im3(g; ), has been used to broaden the transi-
tion rate. For this initial-state broadening, the spectral
density distribution is

et =" (g7 —e&; —fiw)*+[ImZ(g;)]? '

This approximation simplifies the calculation of the
spectral density K (ef,g;) considerably while including
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FIG. 3. Steady-state electronic distribution function plotted
as a function of energy for golden-rule (nonbroadened) calcula-
tion ( ), initial-state (Lorentzian) broadening (— — —),
and full collision broadening (- - - ).

an approximate broadening of the electronic states. This
Lorentzian state broadening reproduces many of the
features of the full broadening calculation. It should be
possible to improve on this approximation by including
the spread in both the initial and final states, as suggest-
ed by the work of Barker.*

It is easily seen from Fig. 3 that the collision broaden-
ing has a profound effect on the calculated electronic
distribution. Although the average energies of all three
models are equal within the accuracy of the calculation,
the simulations which included broadening have a much
larger spread in the electronic distribution with a max-
imum at a somewhat lower energy and a particularly
pronounced enhancement in the high-energy tail. At the
center of the band the electron population is enhanced
by nearly a factor of 3. Even larger increases occur at
high energies because the distributions with broadening
included fall off more slowly at high energy than the
golden-rule result. In fact we see that the broadened dis-
tributions have a very nonthermal (nonexponential)
high-energy tail.

The high-energy electron-population enhancement due
to broadening is exactly in the region of the band where
processes such as impact ionization begin to occur. This
significant change in the electronic distribution will have
an equally large effect on the calculated rates of any
high-energy effects. The accurate calculation of these
processes would seem to require, therefore, the inclusion
of the broadening of the electronic states.

Unlike our work, Lugli et al.” found a runaway
phenomenon when the collision broadening was includ-
ed. The average electron energy of their broadened dis-
tribution was significantly higher than that calculated
using the golden rule. The inclusion of the precise band
structure inhibits this runaway. The reason for this can
be seen by considering the function K plotted in Fig. 2.
High in the band the scattering probability is skewed to-
wards lower energies due to the larger density of states
there. For the strictly parabolic dispersion relation used
by Lugli,’ the density of states always increases. In our
results, the electronic distribution is larger in both the
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high- and low-energy regions than the golden-rule re-
sults, with little or no change in the average energy.
There is no runaway when the band structure of the
semiconductor is considered in the electronic model.

IV. CONCLUSION

In conclusion, we have calculated the electronic distri-
bution of a semiconductor in large electric fields using
Monte Carlo methods which take into account the quasi-
particle nature of the interacting electrons. The spectral
function is used to broaden the transition rates due to
collisions with phonons. We find that the broadening
has significant effects on the steady-state energy distribu-
tion of the electrons. The peak in the distribution
occurs at a lower energy for simulations which include
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broadening than for simulations which do not, and the
broadening causes a wide, nonthermal high-energy tail.
This high-energy tail should have profound effects on the
calculated rates of high-electron-energy processes such
as impact ionization and emission over barriers. Unlike
other authors, however, we do not find a runaway in the
electronic energy. This appears to be due to the in-
clusion of the correct band structure in the simulation.
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