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We study the collective excitations of an array of two-dimensional electron-gas layers arranged
in a Fibonacci sequence. The plasmon spectrum is calculated using a transfer-matrix method. It
is demonstrated that the spectrum is critical. Global scaling properties of the spectrum are dis-
cussed. The infrared resonant absorption and Raman spectra are calculated. They provide infor-
mation about the structure of frequency spectra and local density of states in reciprocal space.

I. INTRODUCTION

Electronic and elastic properties of one-dimensional
(1D) quasiperiodic systems (1QPS) have been studied ex-
tensively. ' These systems show extended, localized, and
critical states associated with metal-insulator transition.
This has to be contrasted with disordered systems which
show "localization transition" only in higher dimensions.
The nature of critical states and the properties of the
system at the critical point are of interest. For the sys-
tem close to the metal-insulator transition, critical states
will control properties of the system on a length scale
smaller than the correlation length. The remarkable
feature of 1D QPS is the existence of a class of entirely
critical systems. This has been demonstrated by
Kohmoto et al. and Ostlund et al. , who studied a
tight-binding Hamiltonian based on a Fibonacci se-
quence and found all states to be critical. Recently, Das
Sarma et al. pointed out that plasmons in modulation-
doped semiconductor superlattices exhibit many interest-
ing phenomena, such as localization transition and criti-
cal states, in a way similar to electrons. At the same
time, charge-density fluctuations can be probed directly
by Raman scattering, electron energy loss, and infrared
resonant absorption (IRA). We will discuss here a sys-
tem with an entirely critical plasmon spectrum and how
this spectrum can be observed experimentally. Prelimi-
nary results have been reported in Ref. 5.

In periodic semiconductor superlattices, such as
modulation-doped GaAs-Ga& Al„As, plasmons are
now well understood. Plasmons can propagate along
the superlattice direction, and the allowed plasmon fre-
quencies form bands characterized by a Bloch index k.
The case of a quasiperiodic superlattice is more challeng-
ing because the Bloch theorem is not applicable. Re-
cently, a quasiperiodic semiconductor superlattice has
been grown by Merlin et al. It consists of two building
blocks 2 and 8 having thicknesses a and b, respectively,
arranged in the Fibonacci sequence. Each block is com-
posed of GaAs and Ga& „Al As layers. If the
Ga& Al As region is doped with donors, a layer of
quasi-two-dimensional electrons can be produced in
every block A and 8. Such a system can be thought of
as an array of electron-gas layers, separated by distances

a or b, arranged in a quasiperiodic (Fibonacci) sequence.
Because electrons do not tunnel between the layers, the
problem of collective charge-density excitations is essen-
tially that of obtaining a self-consistent solution of the
Poisson equation for the induced potential (charge densi-
ty) on every layer. This problem of solving a quasi-
periodic Poisson equation is similar to the problem of
solving a quasiperiodic Schrodinger equation, which has
been studied in detail. ' It is now well established that
the spectrum of a quasiperiodic Schrodinger operator is
a Cantor set having pure point components (localized
states), components with absolutely continuous measure
(extended states), and singular components with critical
(self-similar or chaotic) states. We find a similar behav-
ior for the plasmon spectrum. The case of a continuous
incommensurate modulation of electron density in equal-
ly spaced layers has been studied by Das Sarma et al.
Using a duality transformation, these authors demon-
strated the existence of a "mobility edge" in the plasmon
spectrum. For the strength of Coulomb interaction be-
tween the layers smaller than a certain critical value, all
plasmon states become localized, while for Coulomb in-
teraction above the critical value all plasmon states are
extended. Critical states exist precisely at the mobility
edge. Any arbitrary small deviation from the critical
point, as is bound to happen in experiment, will produce
extended or localized states. Our main interest is in crit-
ical states, which are the least understood at present.
We will show that the system studied here is entirely
"critical, " i.e. , it never admits either extended or local-
ized states, and is therefore ideally suited for the study
of critical states.

The rest of the paper is organized as follows. In Sec.
II we describe the model and the plasmon spectrum.
Global scaling properties are discussed in Sec. III. Sec-
tion IV contains calculation of the infrared resonant ab-
sorption spectrum, and Sec. V deals with plasmon spec-
trum of finite superlattice and Raman scattering. The
discussion and conclusions are in Sec. VI.

II. THE MODEL AND PLASMON SPECTRUM

Let us consider F two-dimensional electron-gas (2D
EG) layers, where F is a Fibonacci number, i.e., F
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satisfies a recursion relation F + &
——F +F &, with

Fo ——1, F] ——1. Let l label the layers and zl be the posi-
tion of layer l along the superlattice axis. The distance
between layer l and l +1 is called dl, and dl can be ei-
ther a or b. The set IdI I of a a's and b's is generated us-
ing the Fibonacci rule F[a,b]= [ab, a]. In practice we
start with a single 2D EG layer at zl ——0, followed by a
semiconductor layer of thickness a. In the second step,
according to the Fibonacci rule, a 2D EG layer followed
by a semiconductor layer of thickness b is added. This
gives a string Ia, b1. The third generation produces the
string Ia, b, a1 by replacing the element a with two ele-
ments a and b and the element b with the element a in
the string [a,b1. We continue this process m times. In
the mth generation there are F elements of the string.
This includes F

&
elements a and F 2 elements b.

Note that the ratio of the number of elements a to the
number of elements b approaches the "golden mean"
value r=(1+&5)/2.

The potential P, induced on every layer by a perturba-
tion with frequency co and wave vector q parallel to the
layers satisfies the integral equation

P(l) = g uq II(q, co) V(l, I')P(l'),

where the susceptibility X =vq H is the relevant variable.
The matrix T is a 2/2 matrix with a unit determinant.
Note that Id~1 is a Fibonacci sequence, so the string of
matrices 1TI I is also a Fibonacci sequence of matrices
T, and Tb 1. . . T, TbT, TbT, T, TqT, I where T„,bI are
matrices T with d =a (b). Equation (4) is conveniently
studied by the rational approximation method. A ra-
tional approximation m to a Fibonacci sequence consists
of a periodic sequence of unit cells containing F ma-
trices T obtained in the mth generation of the Fibonacci
sequence. The spectrum consists of F bands and F
gaps. The bands consist of those values of X for which
the trace of the transfer matrix across the unit cell is be-
tween —2 and +2. Following Refs. 2 and 5 we define
the matrix M as M = Q, , T;. The matrix M + t is

a product of two previous Fibonacci products of ma-
trices T, i e., M + &

——M &M . By defining z
= —,'Tr(M ) we obtain a recursion relation for x

&m+] =2&m&m —t
—&m —2 .

The starting conditions are x~ ———,'Tr(T, ) = cosh(qa)
—X sinh(qa), xo= —,'Tr(Tb ) = cosh(qb) —X sinh(qb), and

x, = cosh[q (a —b)]. The value of x
&

has been deter-

where P(l)=P(z&), u =2vre /eq, II is the polarizability
of a 2D electron gas, and V(l, l')= exp( —q I

z& —z, 1).
In the long-wavelength limit the product v H, defined
as X, can be written as 1/co 2=(cu /co), where
co =2~e nq/em' is the two-dimensional plasma fre-
quency. Here n is the electron density, e is the back-
ground dielectric constant, and rn* is the electron mass.
We can rewrite Eq. (1) in the form of the tight-binding
Hamiltonian.

1.80—
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2 3I 5

co P(l)= g V(l, l')(b(l')+ V(l, l)(b(l), (2)

—q(z —zI ) q(z —zI )

P((z) = A(e +Ble (3)

Standard electromagnetic boundary conditions across
the electron layer allow us to connect ( A~, B~ ) with

(A&+, , B~+, ) via a transfer matrix T:

where 6 plays the role of the eigenvalue, V(l, I') are the
hopping matrix elements, and V(l, l)=1. The solution
to the eigenvalue problem, Eq. (2), gives the plasma
modes of the system.

Much of the progress in studying the quasiperiodic
Schrodinger operator has been achieved by the transfer-
matrix method. Equation (2) cannot be cast in this form
due to the long-range hopping matrix elements V(l, l'),
unless only nearest-neighbor hopping is included. Pro-
gress is made by another approach. We write the solu-
tion to the Poisson equation (d /dz —q )P(z) =0 in the
region between layer l and I + 1 as
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FIG. 1. The allowed values of susceptibility X for qb = l.
The band structures for m =2, 3, . . . , 7 are shown. Note that
X ' = co . Roman numerals denote three major bands and
Arabic numbers enumerate bands for each m.
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mined by requiring that Eq. (5) with x&,xo as defined
above, gives xz ———,'Tr(Tt, T, ). The recursion relation (5)
has an important invariant equal to

A, = —1+x~+x~ —i+x~ —z
—2x x ix~ 2 . (6)

This quantity remains constant at every step of the re-
cursive formula, Eq. (6). Note that here X is a function
of X. The three-dimensional map given by Eqs. (4) and
(5) has been studied by Kohmoto and Oono for the case
of k =const. Fixed-point analysis yielded escaping,
periodic, and chaotic orbits.

We now turn to the plasmon spectrum obtained using
Eq. (5). We have set here b =1, a =r, and q =1 (b is
the unit of length). In Fig. 1 we plot the bands of X for
various rational approximations m to the Fibonacci se-
quence, with F being the size of the unit cell. When
x &1, X is allowed, otherwise X is forbidden. This
band structure is very similar to that obtained by Hofs-
tadter, Kohmoto et al. , and Ostlund et al. As
m ~ oo we see an infinite number of very narrow bands
which have a typical self-similar Cantor set structure.
An important quantity here is the total width B of al-
lowed values of X. As in Ref. 2, we find that B scales

with a size of the unit cell as B-F . The scaling in-
dex 5 can be identified as a diffusion constant of the map
(Ref. 2). The dependence of lnB on lnF is shown in
Fig. 2. This scaling indicates that the spectrum has a
zero Lebesque measure. The inset in Fig. 2 shows
schematically the dependence of lnB on lnF for extend-
ed, localized, and critical states (Ref. 2). The spectrum
of plasmons is clearly critical, with exponent 5 depend-
ing on q. The measure of the criticality here is more
subtle, however. We see that there are two large gaps
and three bands. Even though the bands are self-similar,
their measure B scales differently with the number of
bands. The dependence of lnB for bands I (low X) and
III (high X) on the lnF is shown in Fig. 2. Clearly B3
scales to zero faster than B&. In this sense, the low-X
(high-frequency) part of the spectrum corresponds to
more extended states than the high-X (low-frequency)
part of the spectrum. This dependence is due to the
dependence of A, on X.

III. GLOBAL SCALING

Global scaling properties of the plasmon spectrum can
be analyzed using the ideas proposed recently for
dynamical systems by Halsey et al. and applied to a
quasiperiodic tight-binding Hamiltonian by Tang and
Kohmoto. Let IS I be the set of F bands of X. We
define the measure of each band i in the set of IS I as
P; =1/F . Let the width of the ith band be m;. Then
the scaling index a tells us how the measure scales with
the bandwidth, i.e. , p;=(I/F )=w;. The set of bands
with the same scaling exponent a has a fractal dimen-
sion f (a), i.e. , the number of elements N in this set is
given by X(a)=w; f' '. The function f(a) is obtained
by introducing a partition function I as

F

c -Po A
+~band I

A

~ band ~ L

I (r, s, tS ) )= g (F ) "w; ' .

The condition

I (r, s)= lim I (r, sIS I)=1

uniquely determines the function s(r). Then the scaling
indices a and the function f (a) are given by

a(r) = ds
67

f(r)=ra(r) —s(r) .
(9)

FIG. 2. The dependence of lnB on lnF for full band and
bands I and III. B is the total bandwidth of the spectrum of
Fig. 1. Here B is the allowed susceptibility values and F is the
size of the unit cell. F~ ~ represents quasiperiodic system.
The inset shows the typical dependence of lnB on lnE for local-
ized, extended, and critical states.

The function f (a) for the plasmon spectrum, i.e., the
fractal dimension of the set of bands of X scaling with
the same scaling index a is shown in Fig. 3 for qb =1.0
and for the finite number of bands F» ——987. There is a
finite interval of the scaling indices a, 0.459 &a &0.861.
The most probably scaling exponent cz =0.745 corre-
sponds to the maximum of f (a)=0.709, which is the
Hausdorff dimension of the set. Our results for the
plasmon spectrum are similar to those of Tang et al.
for the quasiperiodic tight-binding Hamiltonian.
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Here P„t(l) is the total potential on layer 1, measured
in units of external potential on first layer Po(0). For a
periodic, semi-infinite system with a unit cell obtained in
the rnth generation of a Fibonacci sequence, the total
potential in the superlattice can be written in terms of
the coefficients A~, B~ and the transfer matrix T~ as given
by Eqs. (3) and (4). Let M be the transfer matrix across
the unit cell with F layers, i.e., M = g& o'TI of length
d. We introduce the ansatz
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FIG. 3. The function f (a) for the plasmon spectrum shown
in Fig. 1(a). Here f is a fractal dimension of a set of bands
scaling with the scaling index cz.

IV. INFRARED RESONANT ABSORPTION

We now turn to experimental techniques which would
allow for the direct observation of plasmon spectra of
Fig. 1. Since we are interested in the structure of fre-
quency spectra, Raman scattering (discussed in Sec. V),
which couples to plasmons with a well-defined wave vec-
tor along the superlattice axis, is not very useful. The
appropriate technique is infrared absorption of elec-
tromagnetic waves in superlattices, achieved by a grating
coupler on the surface of the superlattice. The electric
field of the wave passing through the diffraction grating
can be represented by a Fourier series in cos(q, x ),
where q, =2vrs/L, L is the period of the diffraction grat-
ing and s =0, 1,2, . . . . The harmonics with s ~ 1 corre-
spond to the electric field which attenuates exponentially
with increasing distance from the diffraction-grating
plane. These evanescent waves interact resonantly with
plasma oscillations of the superlattice if the frequency of
the incident radiation is in the plasmon band. The
theory of resonant infrared absorption in periodic super-
lattices has also been formulated by Krasheninnikov and
Chaplik. The total work Q performed by an external
field Eo „e' " 'e '"' parallel to the layers is

Q = —,'Re g Eo (1)j„(l), (10)

where j„(l) is the current on layer 1 in the direction x of
applied field. The current is related to the total electric
field component j~(x) =o„E„, (1) where 'we take
o. =inc /men. We can express the electric field com-
ponents in terms of the total and external potential, e.g. ,
Eo (1)=—iqt)to(l), and arrive at the expression for ab-
sorbed power Q:

Q(4qrb /e
I Po I

coq )

= —Im [ co/coq I qbX g Pt„t( 1 )e
1

Equation (12) has nontri vial solutions when cos( kd )
= —,'Tr(M), which determines k, and moreover in this
case Ao aBo a——nd a=M&z/(e ' "—M» ).

In addition, we must match the total electric fields
across the first layers of the superlattice. Noting that
the external field has a component only in the layer
plane but the total field does not, we find that

2 o =go/I 2[a(1 —x) —x ]I,
Bo ——boa/[2[a(1 —x) —x) I

(13)

The total potential on every layer is now simply gen-
erated using transfer matrices and absorbed power calcu-
lated using Eqs. (11) and (12). The results are well illus-
trated in the case of a system with one layer per unit cell
(F, =1). In this case we have the total potential on lay-
er l and absorbed power

»nh(qd)
v tot ikd qd

e
e —e

cos(kd ) = cosh(qd ) —X sinh(qd ),

e
I Po I ~,
4~b

= —,'(co/co, ) qbeq" sin(kd) . (15)

Note that the external potential is a decaying wave, but
for the frequency and wave vector in a plasmon band the
total potential is a propagating wave, i.e. ,

I

t(tt(l)
I

=const on every layer. Our results are in agree-
ment with Krasheninnikov and Chaplik, who used the
Wiener-Hofp method. Our method can, however, be
very easily extended to systems with large unit cells,
which are of interest here.

The absorption bands for F& ——1, F6 ——13, and F9 ——55
layers per unit cell are shown in Fig. 4, where the value
of qb =0. 1 has been chosen, which can be achieved ex-
perimentally. Absorption occurs in the frequency inter-
val corresponding to the plasmon band. As the number
of bands increases, the power spectrum becomes more
and more fragmented as the bands begin to form a Can-
tor set. Clearly, high-frequency bands give higher ab-
sorption than the low-frequency bands. Note also what
seems to be a set of divergencies or spikes in some of the
bands. These are actually smooth shoulders but we have
no physical explanation for their origin. In experiments
all sharp features would be rounded off by a broadening
due to the finite electronic mobility.
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I(co,q, k)= —Im g A (q, co, l, l')e
t, I'

(17) (~ ' —v)I, ~' = g 4m (I )

m ~ —~m
(21)

Using the fact that U~ H =X=co we can write

A(I, I ) =(m ' —v);, .'a '11 .

The induced potential satisfies Eq. (2)

(19)

where the polarizability matrix A(q, co, l, l ) satisfies the
matrix equation

A(I, I')=IIfi„.+U, II y v(I, I")A(I",I ) .
It l

one finds that

I(co, q, k)= g ~ P (k)
~

6(co —co ), (22)
rn

where P (k) = g, e 'P (I) is the Fourier transform of
the induced potential. Hence, as pointed out in Ref. 2,
the Raman intensity measures the plasmon density of
states in reciprocal space.

It is worthwhile to remark that the power Q can also
be written in a similar way:

co p (l)= g v(l, l')p (1'), (20) Q(co, q)= g ~ P (q)
~

5(co —co ),

(a) P ERIODIC

I—

LLJ

with co being the square of plasmon frequencies. Us-
ing the identity

where P (q)= g&e 'P (l). Obviously the main con-
tribution to Q comes from the states which have a
significant amplitude in the vicinity of the superlattice
surface.

We now turn to Raman intensities. Two Raman spec-
tra are shown in Fig. 6 for a finite set of n =34 layers.
Figure 6(b) shows a Fibonacci spectrum, while Fig. 6(a)
shows a periodic approximation t aha ]. The intensity in
both spectra is normalized to the highest peak and the
integrated intensities are identical. The spectrum for a
periodic system shows two sharp peaks, broadened due
to finite-size effects (the third peak has intensity too low
to be visible). The spectrum for a Fibonacci sequence
consists of two broad but well-resolved peaks and some
background, and is intermediate to that of a periodic
and disordered system. The positions of the peaks in
Figs. 6(a) and 6(b) do not correspond to each other.
Both spectra are easily distinguishable and Ram an
scattering should prove useful in studying critical
plasmons.

C) 5
X

2 C) VI. SUMMARY

(b) QU&SIPERIODIC

l

0 5 IO
X

fl rl n

I 5 i.O

FICz. 6. Raman intensities for a finite system of m =34 elec-
tron layers: (a) periodic and (b) quasiperiodic, as a function of
X '=co . Parameters are qb =1, kb= l.

We have studied plasmons in arrays of two-
dimensional layers arranged in a Fibonacci sequence. To
obtain the plasmon spectrum, a transfer-matrix tech-
nique has been used. This allows for drawing analogies
with previously studied electronic, phonon, and dynami-
cal systems, It has been demonstrated that the plasmon
spectrum is critical. Global scaling properties of the
spectrum have been analyzed. Special emphasis has
been placed on experimental techniques, i.e., infrared
resonant absorption and raman scattering. The theory
of IRA and Raman scattering based on transfer matrices
has been formulated and both spectra calculated. The
IRA is suitable for measuring global structure of the
spectrum, while Raman spectra provide information
about local density of states in reciprocal space. Both
techniques should be useful in unraveling the intriguing
properties of critical plasmon states.
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