
PHYSICAL REVIE%' B VOLUME 36, NUMBER 12 15 OCTOBER 1987-II

Effect of interplane coupling on the quantized Hall effect in multilayer structures

S. T. Chui
Bartol Research Foundation of the Franklin Institute, VniUersity of Delaware, Newark, Delaware 19716

(Received 9 June 1986; revised manuscript received 15 June 1987)

The effect of electron-electron interaction on the particle-hole excitations for a fully filled band
of coupled layers is studied. For coupled layers, there exists a continuum of particle-hole excita-
tions with a plasmonlike collective excitation which lies at the bottom of the continuum for small
transverse momentum transfer q. As q is increased, this excitation rises and is split off the top of
the continuum. Eventually it comes down and merges with the continuum again when q reaches
2.2I . This collective excitation has similarities to the so-called magnetoexciton (plasmon) stud-
ied in two-dimensional (2D) systems. Due to the long-range nature of the Coulomb interaction, in
addition to the cyclotron energy, the excitation energies depend on the angle of propagation 8
with respect to the xy plane as cos 8. The response function is also investigated. Over a substan-
tial region of phase space, it can be very well reproduced by a single-mode approximation. The in-
stability toward the formation of a Wigner solid in multilayer structures is investigated by treating
the interlayer coupling in the mean-field approximation. It is found that this tendency is much
stronger in the fractional case than in the integral case, chiefiy because the density-response func-
tion is much larger in the latter situation. The effect of the interplane hopping and charge transfer
between layers is discussed.

I. INTRODUCTION

The quantized Hall effect has received much interest
lately, ' partly stimulated by experimental discoveries
that were originally carried out on systems that consist
essentially of a single layer of electrons such as metal-
oxide-semiconductor field-effect transistors (MOSFET's).
Due to the progress of the semiconductor technology, it
is now possible to manufacture devices that consist of
coupled layers such as the Ga& AsAl or the Hg-Cd-
Te heterojunctions. At the same time there are other sys-
tems such as the graphite intercalation compounds that
consist of coupled layers of electrons in which the quan-
tized Hall effect may also occur. In this paper we inves-
tigate the possible effect of the interplane coupling on
the integral and the fractional quantized Hall effects.

The effect of electron-electron interaction on the
particle-hole excitations for a fully filled band of coupled
layers is studied. For coupled layers, there exists a con-
tinuum of particle-hole excitations with a plasmonlike
collective excitation which lies at the bottom of the con-
tinuum for small transverse momentum transfer q. As q
is increased, this excitation rises and is split off the top
of the continuum. Eventually it comes down and merges
with the continuum again when q reaches 2.2l '. This
collective excitation has similarities to the so-called mag-
netoexciton (plasmon) studied in 2D systems. Due to the
long-range nature of the Coulomb interaction, in addi-
tion to the cyclotron energy, the excitation energies de-
pend on the angle of propagation 8 with respect to the
xy plane as cos 8.

The response function is also investigated. The density
response function for coupled layers does not depend
strongly on the z momentum and is quite similar to that

for a single plane. Over a substantial region of phase
space, it can be very well reproduced by the single
(plasmon) mode approximation.

When the interplane coupling is strong enough, there
will be an interaction between the intraplane charge fluc-
tuations on different layers and hence a tendency toward
the formation of a Wigner solid with true long-range po-
sitional order. We explore this transition by treating the
interplane coupling in the mean-field approximation. It
is found that this tendency is much stronger in the frac-
tional case than in the integral case, chiefly because the
density response function is much larger in the latter sit-
uation.

When the interplane-hopping matrix element gets high
there can be charge transfer and fluctuations between
layers. For the fully filled band, hopping is not impor-
tant because there are no unoccupied states for the elec-
trons to hop into. For the fractional case, hopping can
create a significant difference and seems to be an impor-
tant effect for some recently studied experimental sys-
tems. We conclude with a brief discussion of impurity
bound states in coupled layers.

II. THK FULLY FILLED CASE

We first focus on the case for which the Landau level
is nearly fully filled. If we ignore the coupling between
different Landau levels, the ground-state

~

0) is particu-
larly simple and corresponds to a determinant of all pos-
sible states occupied. We shall investigate how the
structure factor is changed; how the particle-hole excita-
tion energy is affected by the electron-electron (e-e) in-
teraction in the coupled-layer problem and the instability
toward the formation of a charge-density wave (CDW).
Let us first look at the ground-state properties.
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A. Structure factor

It is well known that the structure factor for a single
layer is given by

S(q) =1—exp( —q /2)+(2vr)5(q).

The evaluation of this is recapitulated in Appendix A.
The factor exp( —q /2) comes from the exchange hole;
the 5 function comes from the direct contribution. The
structure factor for coupled layers depends only on the
transverse momentum and is essentially identical to that
for a single layer (Appendix A). More precisely

S(q,p) = 1 —exp( —q /2)+(2n )5(q)+5 (p 2n—vr/d)N,

where p is the momentum in the z direction, N, is the
number of planes in the z direction. The superscript d in-
dicates a discrete 5 function. Because all states are occu-
pied, there is no way for the different layers to couple to
each other. The exchange-hole contribution is identical
to the single-plane case whereas the direct contribution
reflects the additional scattering from the different
planes.

B. Excitation spectrum

We shall pick units such that the effective mass of the
electron, Planck's constant, the cyclotron frequency, and
the charge are all unity. In general particle-hole excita-
tions are of the form ck &ck ~ 0 I

0 ) for general z
momentum k, k' and angular momentum I, m'. Here
ck „ is the electron destruction operator for a state
with z momentum k, angular momentum m, and Landau
level n For excit.ations of the form c~ &cI m o I

0) with
the same z momentum, the excitation energy is indepen-
dent of m in the absence of the Coulomb interaction. A
proper linear combination of them should be taken so
that degenerate perturbation calculation with respect to
the e-e interaction can be performed. Because of the
translational invariance of the Coulomb e-e interaction,
the xy momentum q is still a good quantum number.

Define

(m'1
I
exp(iq. C)U

I
m0) = V

The excited state with xy momentum q can be written as

I q, k, a ) = A g V(m, m')c k+, ic, o I
0).

m, m'

Here 2 is a normalization factor. C is the center-of-
gyration operator. " It is introduced to separate the
different Landau levels from each other. For excitations
in the z direction of the form ci &ck+t 0 I

0) with the z
momentum changed from I to I +k, the associated
change in the kinetic energy of the electrons is a func-
tion of I. The energy of this state is the sum of the kinet-
ic energy of motion along the z direction,

t Icos[(k+1)d]—cos(kd)]+6,

(t is the hopping integral) and the Coulomb energy Ec.
The set of basis states

I q, k, a ) with different q's are
orthogonal to each other. Since exp(iq C) is a transla-
tion operator, the maximum value of q [y& is the trans-
verse dimension L of the sample. The spacing of q (y) is
2~/L. Hence the total number of such states for a given
k,a is equal to 3/(2') . This is the same as the total
number of excitations of the form c ~ &c o. Hence the
states that we have been discussing completely exhaust
all the spectral weight of particle-hole excitations.
When restricted to the 2D case, the magnetoexciton
(plasmon) ' defined by

I q ) =(1/2N)' +exp( iq C~—)v,
I
0)

J

thus exhaust all the spectral weight of the single-
particle —single-hole excitations. There is no particle-hole
continuum in the excitation spectrum.

In general, many such excitations can be present at
the same time. Because of the existence of the gap Ace„
the probability amplitude of such processes is reduced.
Such processes shall be ignored. From these basis states,
it is possible to construct three-dimensional collective
and noncollective excitations. To do this, we calculate
the Hamiltonian matrix element (q, x, k

I
H

I q, x +a, k )
in Appendix B. We find that

1 —exp( —2lpd I)
1 — /2+ k)= —f + ( —2lpd I)—2 o( d) ( —lpd I)( —lpl

xexp( —
I p I

/2)JO(pq)/N,

+ 1 —exp( —2lqd I)
1+exp( —2

I qd
I

) —2cos(kd)exp( —
I
qd I

)

xexp( —
I q I

/2)/N, +5(a) f dp(1 —
I p I

/2)exp( —
I p I

/2)

The Hamiltonian matrix is then diagonalized numerical-
ly for a system with 31 planes for different values of k
and q with parameters appropriate for the GaAs hetero-
junctions studied by Stormer et al. (d /l =2.64,

I

I =85.6 A, z-band width m =2t =2.5 meV). We find
that for a given k, q the spectrum consists of a continu-
um of states. For intermediate values of q, one state is
split off the top. This spectrum is shown in Figs. 1 —4 for
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FIG. 1. Excitation energy E (e /el) for coupled planes with
fully filled Landau levels as a function of the wave vector k
(2m/d) for q =0.2 (l '). The lower two values form the bounds
of the particle-hole continuum. The uppermost band corre-
sponds to the "plasmon" excitation. The origin of the energy is
at Ace, +1.31.

FIG. 3. Excitation energy E (e /el) for coupled planes with
fully filled Landau levels as a function of the wave vector k
(2~/d) for q =0.8 (l '). The lower two values form the bounds
of the particle-hole continuum. The uppermost band corre-
sponds to the "plasmon" excitation. The origin of the energy is
at fico, +1.3I.

q =0.2, 0.4, 0.8, and 1.8, where we have plotted the en-
ergy of the isolated collective excitation as well as the
boundaries of the continuum of states as a function of k.
For small q, the collective excitation at the top is
separated from the continuum only over a range of k. As
q is increased, this range is increased. This collective ex-
citation band no longer intersects the particle-hole con-
tinuum. As q is further increased, the collective excita-
tion band comes down and merges with the particle-hole
continuum eventually. Even though it is not obvious
from the figures that we have presented so far, an exam-
ination of the imaginary part of the density response
function (Sec.II C) indicated that the plastnon band is

~
q, k ) =g

~ q, k, a ) l+N,

= ~ y V(m, m )p. .
~

O) y~N„
m, m'

(4)

split oft from the bottom of the continuum at small
values of q.

To examine finite-size effects, we have investigated a
run with 61 planes. The eigenvalues are found to change
by less than 1%.

For t =0 or k =0, the kinetic energy of the particle-
hole pair is not a function of a. It is then possible to con-
struct an exact eigenstate of the Hamiltonian as
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FIG. 2. Excitation energy E (e /el) for coupled planes with
fully filled Landau levels as a function of the wave vector k
(2m/d) for q =0.4 (l '). The lower two values form the bounds
of the particle-hole continuum. The uppermost band corre-
sponds to the "plasmon" excitation. The origin of the energy is
at Ace, +1.31.

FIG. 4. Excitation energy E (e /el) for coupled planes with
fully filled Landau levels as a function of the wave vector k
(2m/d) for q =1.8 (l '). The lower two values form the bounds
of the particle-hole continuum. The uppermost band corre-
sponds to the "plasmon" excitation. The origin of the energy is
at Ace, +1.31.
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FIG. 6. The density response function multiplied by a nu-
merical factor 627(q, k, co=0)/q'exp( —q /2) [in units of
(e /el) '] as a function of k (2n/d) for q =0.2 with the
single-mode approximation (lower curve) and with all states in-
cluded.

FIG. 8. A typical imaginary part of the density response
function 62+"(q, k, =0)/q exp( —q /2) at small q (0.01/ '),
with k =1.11(2~/d). The lines are drawn through the points
to guide the eye.

C. Response function

From the eigenfunctions it is possible to calculate the
response functions. In this section we shall concentrate
on the dielectric function which is basically the density
response function at zero frequency defined by

X(q, k, co=0)=g
~

(q, k, i
~ p(q, k)

~

0) [ /E;

and

X"(q,k, co)=g ) (q, k, i
~
p(q, k)

~

0)
~

Q(co —E, ).

From our discussion of the plasmon state it is obvious
that for the real part 7 the sum over i is dominated by
this state in the long-wavelength limit. Hence we expect
the single-mode approximation to work well in that case.
This contribution can be evaluated analytically and has

been carried out in Appendix B. We obtain

X, (q, k, co) =q exp( —q /2)/2A'( —co+co, +E, ).

To test the validity of this single-mode approximation,
we have calculated the response functions with only the
topmost state and then with all the states from our nu-
merical calculation (Rco, =15.6 meV). The results for
62k/q exp( —q /2) as a function of k for q =0.4 and
0.8 are shown in Figs. 6 and 7. Whenever this topmost
state does not merge with the continuum, the single-
mode approximation is quite accurate. When it merges
with the continuum, the topmost state may not be the
collective excitation any more.

The imaginary part of the density response function
7" provides much information about the nature of the
excited states. This can be seen from Figs. 8 —13 where
we have plotted 7" as a function of E for different values

20.0
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OO)XD33)~

FIG. 7. The density response function multiplied by a nu-
merical factor 62+{q,k, co=0)/q exp( —q /2) [in units of
(e /el) 'j as a function of k (2'/d) for q =0.4 with the
single-mode approximation (lower curve) and with all states in-
cluded.

FIG. 9. 62+"(q, k, ~=0)/q exp( —q /2) at q =0.2l ', with
k =0.32)&2'/d. The lines are drawn through the points to
guide the eye.
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FIG. 10. 62+"(q, k, m=O)/q exp( —q'/2) at q =0.2I ', with
k =0.4)&2~/d. The lines are drawn through the points to
guide the eye.

FIG. 12. 62+"(q,k, co=0)/q ezp( —q /2) at q =2.4I ', with
k =0.08)&2m. /d. The lines are drawn through the points to
guide the eye.

of q, k. The lines are drawn through the points to guide
the eye. Figure 8 represents a typical situation at small

q, with k =1.11. Similar results are obtained for other
values of k & q at this q. We see that for small values of
q (0.01) there is a very sharp peak at the bottom of the
band whenever k & q. Thus the plasmon is actually split
off the bottom of the continuum under those situations.
This is very different from the scenario in the quasi-1D
systems where the particle-hole continuum is usually
below the plasmon band and is not a function of 8.
When the collective excitation merges with the continu-
um its identity is still quite well defined. This can be
seen from Figs. 9, 10, and 11, where we looked at q =0.2
but with k =0.32, 0.4 and 1.1. For k =0.32, the plasmon
is above the continuum and 7" is very sharp. For
k =0.4, it has merged with the continuum. 7" is slightly
smeared but is still quite well defined. For k =1.1, the
plasmon has split off the bottom of the band. Another
example of this can be seen from Figs. 12 and 13, where

q =2.4 and k =0.08 and 0.4. For this q, the excitation
has reached the rotonlike minimum and has merged

with the continuum for all values of k. The peaks of 7"
are clearly discernible. The width of the peak increases
as k is increased. We think the sharpness of the peak is
due to the small value of the hopping integral that we
have used. To test this, we have calculated 7" but with t
twice as big. The results for q =0.2, k =0.4 is shown in
Fig. 14. The width of the peaks is much broader than
those in Fig. 10, as we expected.

D. Instability condition

When the interplane coupling is strong enough, there
will be an interaction between the intraplane charge Auc-
tuations on different layers and hence a tendency toward
the formation of a Wigner solid with true long-range po-
sitional order. The onset of the instability depends on
the density autocorrelation function. Chui" has investi-
gated the effect of interplane coupling in the mean-field
approximation for models that consist of layers of cou-
pled spins. He found that the magnetic transition tem-
perature T, of quasi-2D n-component spin models for

16.0-
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8.0
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6.0-
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FIG. 11. 62&"(q,k, co=0)/q exp( —q /2) at q=0. 21 ', with
k =1.1)&2n./d. The lines are drawn through the points to
guide the eye.

FIG. 13. 62+"(q, k, ~=0)/q exp( —q /2) at q =2.4l ', with
k =0.4&(2~/d. The lines are drawn through the points to
guide the eye.
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n ) 3 to agree with the renormalization group calcula-
tion of Kosterlitz and Santos. ' For n =2, the result
agrees with Monte-Carlo simulation' to within 20% in
the limit of weak interplane coupling. This approxima-
tion has been applied earlier to the coupled-chain prob-
lem by Scalapino et al. ' Good agreement is found with
the exact results of the anisotropic 2D Ising model. This
approximation is not restricted to spin models alone. It
can also be generalized to the case such that the interac-
tion is not restricted to that acting between adjacent
planes. When applied to the present case, the effective
transition temperature for an instability with a periodici-
ty characterized by a wave vector K in the direction
parallel to the plane is controlled by the susceptibility
X(K,co=0) of a single plane; when

3X

2-

t.4

o q=0. 2. k=0. 4

2.0

n V(K)X(K, co=0)= 1,

a phase transition must have occurred

(9) FIG. 14. 62+"(q, k, co=0)/q exp( —q /2) at q =0.21 ', with
k =0.4&2~/d and t, the hopping integral equa1 to 0.25. The
lines are drawn through the points to guide the eye.

V = g f V (K, q)exp[i (q p)z)dq—
z~o

= Itanh(dK/2)[1+tan (dp/2)][tan (dp/2)+tanh (dK/2)] ' —l I /2vrK.

X(q, co)=
I q I

exp( —
I q I

/2)/2'(co ~, ) (10)

where we have neglected Eq in comparison with Amc.
It is quite likely that the electronic states close to the

band edge are localized. The above formulas should be
unaffected if the localization length l is larger than the
typical lattice constant of the Wigner solid that we are
interested in.

The optimal instability condition in the present ap-
proximation corresponds to picking the period p =0. In
that case V= [coth(d K/2) —1]/2~K. Substituting the
response function into Eq. (9), we found that a phase
transition will occur at zero temperature when the inter-
plane spacing is given by

c
coth( 1.35d, /1) —1 = 175

e /tl
(1 la)

Approximating cothx by 1/x, we obtain the condition

1.35d, /I = 175 +1
e /el

(1 lb)

For the present case K is the smallest reciprocal lattice
vector of the Wigner lattice. p is the period of the order
parameter along the z direction. n is the number of re-
ciprocal lattice vectors K of the same magnitude. For a
triangular lattice at filling factor v, there are six such
vectors of magnitude E =4~v /1. 7321. We have as-
sumed that the order parameter associated with these six
directions are of the same magnitude. Using the varia-
tional wave function discussed in the previous section,
we find that the matrix element

« I
exp(iq r)

I
0) =

I q I
exp( —

I q I

'/4)/2"

(Appendix 8). Collecting terms, we obtain

This corresponds to quite a small d„hence it is difBcult
to see this effect for the integrally filled case.

III. THE FRACTIONAL CASE

There are two possible types of instability, the CDW
instability due to correlation of the location of charges
on different planes and that due to interplane charge
fluctuation. We first turn our attention to the CDW in-
stability.

There are difFerent guesses as to the nature of the
ground state. ' None of these guesses possess long-range
translational order even though they all seem to manifest
a finite shear modulus. To obtain a conservative estimate
of the criterion of instability toward forming a CDW
with long-range order, we take the wave function with
the least amount of long-range order sug gested by
Laughlin. The response function 7 depends on the excit-
ed state as well. Girvin et al. ' have suggested a simple
guess of the excited states. They find that the response
function is equal to X=S(K)/EK, where S is the pro-
jected structure factor. Using their result and substitut-
ing into Eq (9), we o. btain a critical spacing d given by

coth(0. 77d, /I) —1 =0. 16/S(K), (12)

where we estimated EK to be 0.02e /l. At —,
' filled,

S(K)=0.4. Hence d, /I =1.3. The effect of interplane
coupling is much stronger in the fractional case. This is
mainly due to a much smaller gap and hence a much
larger g in the present case.

For the 3D Wigner solid, the charges are localized in
the z direction as well. In the original argument of
Wigner, the kinetic energy expended in localizing the
electron is of the order n ~ (d is the spatial dimension)
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whereas the potential energy gained is of the order of
n ' ". For n small enough, the potential energy prevails
and the solid phase is stabilized. Because of the magnet-
ic field, there is no extra energy cost in "localizing" the
electrons in the xy plane. Extra energy cost is required
to localize the electrons along the z axis, however. De-
pending on the parameters, we thus expect a crossover
from a 3D Wigner solid to a 2D cylinder-type Wigner
solid. On the other hand, if the temperature is low
enough, there will be a Peierls instability associated with
the one-dimensional motion and hence a concomitant
CDW in the z direction as well.

If one starts off from the small-t limit, then the con-
ventional 2D picture should still be a reasonable approx-
imation. At odd denominator filling factors, the excita-
tion spectrum possesses a gap A. From simple con-
sideration of perturbation theory, we expect the effective
dimensionless coupling constant for interplane charge
fluctuation to be (I v)t/b, —. The factor of I —v comes
from the Fermi exclusion principle. If this coupling is
large compared with one, then we expect the gap 5 to be
destroyed.

In the sample studied by Stormer et al. , the band-
width w due to interplane hopping is of the order of
0. 1%co„ the interplane spacing d is 226 A and the planar
electron density is 4.5/10" cm . For this density, the
cyclotron radius I at —,

' filled will be 60 A. Hence
d, /d =0.27 and we expect the interplane charge correla-
tion not to be very strong. On the other hand, the
effective dimensionless coupling for interplane hopping is
very big. Indeed, the largest theoretical estimate for the
gap at —,

' filled is of the order of 0. 1e /el =0.03%co, . This
gap is believed to be further reduced due to the finite z
extent of the wave function and impurities. In fact, the
experimental estimate' of the gap at —,

' filled is an order
of magnitude smaller than the theoretical value deduced
from finite cluster calculations. Hence w/5 ~ 1. No frac-
tional quantized Hall effect has so far been observed in
three-dimensional systems. This may be due to the de-
struction of the gap as a result of the interplane charge
Auctuation.

IV. CONCLUSION

Stormer et al. recently found the integral quantized
Hall effect in three-dimensional heterojunctions. They
found that the gap deduced from the activation-type
temperature dependence of p to be much smaller than
that expected from simple band-structure calculations
and Shubnikov —de Haas measurements. As we have ar-
gued in this paper, the origin of this effect is most likely
not due to the e -e interaction effect on particle-hole exci-
tations. Nor is it likely a single impurity efFect.

The two-dimensional bound-state energy scales as
B ' . Indeed, if one ignores the inter-Landau-level spac-
ing, the bound-state energy is just (m

I

V
I

m ) (Ref. I g)
where V is the impurity potential. For the Coulomb po-
tential, the lowest (m =0) bound state thus scales as the
inverse of the magnetic length and hence 8' . By con-
trast, in three-dimensional systems, the bound-state ener-
gy in the presence of a Coulomb potential scales as lnB
in the high-field limit. Hence any midgap impurity
"bound" states caused by a single impurity will be less
bound for a quasi-2D system than it is in three. When
the density of impurities is high, this picture may be
changed in that a "bound" state will interact with im-
purities on different layers. The shift in energy will be
increased.

The reduction in the gap may be due to a surface or
interface band, or a reduction in the mobility gap (locali-
zation is much more dim. cult in three than in two dimen-
sions).

The interplanar distance d for the graphite intercala-
tion compounds is smaller than that of the heterostruc-
tures. On the other hand, the electron density is also
higher. It is not clear if the tendency toward the forma-
tion of CDW is higher.

APPENDIX A: STRUCTURE FACTORS

In this appendix the structure factor of different trial
wave functions will be evaluated. Let us first recapitulate
the calculation of the pair correlation function for a sin-
gle layer. The expectation value (exp[iq. (r, —r2)]) can
be written as

2 &m
I
exp(iq ri)

I
m & &m'

I
exp( —iq. rz)

I

m'& —
& m

I
exp«q ri)

I

m'& &m'
I
exp( —iq ri)

I
m &.

m, m'

Since
I

m ) =z exp( r /4)/(2n2— !m)'~ ,
2.

g&m I
exp(iq. r)

I
m &= f d r 'gr /(2 m!) 'exp[ —(r /2 iq r)]/2vr— .

m

= f d r exp( —iq r)/2vr=(2n)5(q).

Similarly

g I
m ) (m

I

=exp(z'z*/2 —r /4 r' /4)—

(A I)

(A3)

and we get, for the exchange term

(m
I exp(iq r, )

I

m')(m'
I
exp( iq r&)

I
m —) = f exp[ —(r r') /2 —iq. (r —r')]—

=exp( —q /2).

(A5)

(A6)
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Hence for q~O, S(q)=1—exp( —q /2)+(2vr)5(q).
We next turn our attention to the coupled plane problem. The expectation value (expIi[q. (rt —rz) +p (1 —l')]I )

can now be written as

(mk
~
exp[i(pl+q r)J

~

mk )(m'k'
I exp[ i —(pl'+q r')]

j
m'k')

mk, m 'k'
(A7)

Since

—(mk
/
exp[i(pl +q.r)]

f

m'k') (m'k'
f
exp[ i (p—l +q.r')]

)
mk ). (AS)

~

mk ) =g z exp[ —(r /4+ ikl)]/(2m2 m!N, )'~,
1

g (mk
~
exp[i(pl +q.r)]

~

rnk ) =(2')6(q)+6 (p 2—nn/d)aL,
m, k

where the superscript d denotes a discrete 6 function. a is the density of the electrons. Similarly

g ~

mk ) (mk
~

=exp(z'z*/2 —r /4 r' /4)6(—l —1')
m, k

and we get, for the exchange term

(mk
~
exp[i (pl +q r)]

~

mk')(mk'
~
exp[ i (pl'—+q r')]

~

mk ) =exp( —q /2)

where p is the perpendicular component of q. Hence

S (q p) = 1 —exp( —q /2)+ (2'�)6(q)+5"(p—2n vr/d)aL.

(A9)

(A10)

(A 1 1)

(A12)

(A13)

Consider next the case for which all the m's but only vth of the k's (from —kF to kF) are occupied. Then the direct
contribution remains the same, i.e.

g (mk
~
exp[i(pl +q.r)]

~

mk ) =(2m)5(q)+5(p —2nvr/d)aL.
m, k

For the exchange contribution,

g ~

mk )(mk
~

=exp(z'z'/2 —r /4 —r' /4)sin[kF(l —1')L]/rr(1 —l')
m, k

and we get, for the exchange term

( mk
f
exp[i(pl +q r)]

/

mk') (mk'
/
exp[ —i (pl'+q r')]

/

mk ) =exp( —q /2)f (p),

f (p) =ad+exp(ipz)sin (kFz )/(kFz) .

(A14)

(A15)

(A16)

(A17)

Hence

S(qp) =1—exp( —q /2)f (p)+(2vr) 5(q)+5"(p —2nn/d)aL. (A18)

APPENDIX 8

We calculated the energy of the excitations in this appendix. We first derive a few commonly used identities involv-
ing the center-of-gyration operators. The position operator r is a sum of the center of gyration operator and the veloc-
ity operator

r=C+e, &&v,

where the operator v +( —)iv~ lowers (raises) the occupation of the I andau level. We shall adopt the convention
where vector operators in the plane such as x +I'y would be written as z, and p would represent p +ip, etc. When
restricted to the lowest Landau level, the C and C operators, defined as C +iC~, multiply the wave function by z
and di6'erentiate the polynomial part by z, respectively. The operators C and v satisfy the commutation relations:
[v, v ]=2, [C,C]=2, [C„,C~ ]= —i We have.

exp(iq r) =exp( —q /4)exp(iq C)exp(qv /2)exp( —q'v/2) (8 1)

and

exp( —pv "/2)vexp(pv /2)=v +p. (B2)
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C„I~I is the generator for moving the center of gyration in the y (x) direction. The operator

T(s) =exp( —is X C)

moves the center of gyration by s. Hence, from the identity exp( 3 +8)=exp( 2 )exp(8)exp( —[ A, B]/2), one gets

exp( —iq C)f (C)exp(iq C)=f (C„+q~,C~ —q„)=f(C+qI)
One also has

(exp(ip C)) =exp(p /4)(exp(ip r) ).

(B3)

(84)

Because of the commutation relations, [C,z ]=—2, but [C,z]=0, [Ct,z] =2, but [Ct,zt]=0, T is a translation opera-
tor associated with a displacement s as well.

The Hamiltonian can be expressed in terms of the density operator restricted to the lowest two Landau levels

P(p, l ) =exp( —p /4) [ I
I ) ( I

I
( 1 —

I p I
/2) +

I
0 ) ( 0

I
+

I

I ) ( 0
I p /3/2 —

I

0 ) ( I
I p

* /3/2] +exp( —iq C. i lz—).

In second quantized notation, this can be written as

P(p, l)=exp( —p'/4) 2 v (p)[cm k+I 1c k1(1—
I p I

'/2)+c k+I oc~ k o+c k+I,c~ 413p/&2
m, m'

crn, k +1, omc', k, 1p /+2].

Here V (p) = (m, O
I
exp( i q CJ—) I

m, O). The Hamiltonian is given by

0 =0.5 f d p dl u (p, l)[p( p, l)p(p—, l)]

—[ I
0, 1)(0,1

I
(1—

I p I
/2) —

I
00)(0 0

I

—
I

1, 1)(1,1
I
(1 —

I p I
/2) ]exp( —p /2),

where (up, l)=(l/2m )exp(ip rI+ilz)/(p +l ) The . matrix element (x,x+k
I
H

I
x+a,x+a+0 ) of the excited

state consists of a contribution from a ladder and a bubble contribution illustrated schematically in Fig. 15. The bub-
ble diagram provides a contribution

2 3

Eb —— gu(q, k+2nn/d)
I q I

.exp( —
I q I

/2) g V V ~

n m, m'

'2 2.

The term in large parentheses is equal to 1 from the
completeness of the set

I

m ) when restricted to the
lowest Landau level. The sum over n can be performed
by using the identity g„[exp(ilnd ) ]/X,

5 (l —2n.m /d) where the superscript d indicates a
discrete 5 function. To go from the discrete to the con-
tinuous 5 function, we multiply by b, l =2m/L, . We ob-.
tain

EI ———fd p u (p, 2n m /d +a )

X(1—
I p I

/2)exp( —
I p I

/2)

X gV 1 2(q)V 2 3(p)V 3 4(q)V 1 4(p)
m

The sum in the large parentheses is equal to

$(m
I
exp( —iq C )exp( i p Cl)e—xp(i.q Cl)

n 2
X exp(ip C )

I

m ) =exp( ip Xq)—
X exp( —

I q I
/2)

=+exp( inkd —
I
nqd

I
)rr—

I q I
exp( —

I q I
/2)/lV, x+k x+a+k X+0+ I('

1 —exp( —2Iqd I)
1+exp( —2

I qd
I

) —2cos(kd)exp( —
I
qd

I
)

X~
I q I

exp( —
I q I

'/2) /N, .

The ladder diagram provides a contribution

x+0

FIG. 15. Bubble and ladder diagrams illustrating the
diferent contributions to the energy.
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where we have used the commutation relations in (B4). We thus get

Et ——— g fd p U(p, a +2nqrld)( 1 —
~ p ~

/2)exp( —
~ p ~

l2)exp( i—pXq).
L,

The sum over n can be simplified and we get

Et ———g fd p dl exp(ilnd)U(p, a+l)(1 —
~ p ~

l2)exp( —
~ p ~

l2)exp( ip—0&q)/N,

= —g f dpexp( —
~

pnd
~

id—na)(1 —
~ p ~

/2)exp( —
~ p ~

/2)JO(pq)/N,

= —fdp " (1—IpI'/»exp( —Ipl'/2»o(pq)/N, .
1+exp —2 pd —2cos ad)exp — pd

Combining these terms and including the contribution from subtracting off' the background and the projection terms
finally, we get

E = —f dp (1 —
i p i

l2)exp( —
i p i

l2)J0(pq)/N,1+exp —2 pd —2cos(ad exp — pd

+ 1 —exp( —2 qd )

1+exp( —2
~
qd

~
) —2cos(kd)exp( —

~
qd

~

)
qr

( q (
exp( —

( q (
'/2) /N,

+5(a) f dp(1 —
) p )

/2)exp( —
) p )

/2)

The response function for the plasmon state can be similarly calculated. The matrix element

(q, k Xexptirpr;) 0) xrN =(0 +exp( —i , ikz, )v, exp( —q—'i4+iq C;+qv; /2) 0) 2' zN
l l&J

=q exp( —q /4)/2'

from Eq. (B2). The response function is thus given by

X(q, k, co)=q exp( —q /2)/[2'(to —co, E, )]. —
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