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New classical models for silicon structural energies
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A theory of classical two- and three-body interatomic potentials is developed. The ability of the
classical potentials to model quantum-mechanical local-density-functional calculations for a wide
range of silicon structures is explored. In developing classical models it was found to be necessary
to perform new local-density-functional calculations for self-interstitial and layered silicon struc-
tures. Two different potentials are derived from fits and tests to energies of bulk, surface, layered,
and self-interstitial structures. One potential models bulk energies and high-pressure properties
well; the other is more appropriate for properties of the tetrahedral structure. Simulated anneal-
ing is used to find low-energy structures for silicon-atom clusters.

I. INTRODUCTION

An understanding of the structure and properties of
materials from a microscopic level is an area of much
current interest. Quantum-mechanical calculations, par-
ticularly with the local-density-functional approach,
have been extremely successful in predicting properties
of simple structures. However, these methods are
presently limited to high-symmetry structures with at
most a few tens of atoms per unit cell, and to exploring a
very limited part of configuration space. For molecular
dynamics simulations or global searches for energy mini-
ma of larger systems, only classical interatomic force
fields are practical. Systems where such classical
methods may be most fruitful include studies of melting,
crystal growth, epitaxy, amorphous structures, and
atomic clusters.

With a view to developing new methods to deal with
such applications, we develop in this paper a general
theory of two- and three-body interatomic potentials for
modeling structural energies of solids. Pair potentials
have been extensively used to model rare-gas solids and
simple metals, but at least three-body interactions are
necessary for strongly bonded systems. In fact, the
three-body Keating model' which is fitted to small dis-
tortions of the diamond structure, has had much success
in describing local distortions and phonons, but has also
been extrapolated to compute energies of complex Si
structures, sometimes beyond its range of validity. We
explore here the feasibility of a global model of classical
potentials. We confine our explorations to two- and
three-body models, since the derivation of atomic forces
becomes exceedingly complex for higher multiatom
models, and this restricts their utility for molecular dy-
namics simulations. Silicon is the material of choice be-
cause of the large number of local-density approximation
(LDA) structural energy calculations ' for simple struc-
tures that span a wide range of atomic bonding
geometries. In developing classical models for silicon,
we found it necessary to perform further LDA calcula-
tions on self-interstitials and slabs of both diamond and
metallic structures. Our LDA calculations are described

in Sec. III and should be useful in developing and testing
other classical models.

We have explored in this paper the ability of classical
theories to model a wide variety of quantum-mechanical
calculations. We highlight the strengths of such classi-
cal models and also identify their potential weaknesses.
We have previously reported a classical two- and three-
body Si potential. We study this classical model in more
detail here, and identify its deficiencies for layered and
interstitial structures.

We then develop a new Si potential that improves con-
siderably on the deficiencies of the former model ~ As a
result though, the new potential does less well in describ-
ing bulk metallic Si structures, and the high-pressure
transitions of Si, which the old potential modeled very
well. The short range of the new model does, however,
make it very attractive for molecular-dynamics simula-
tions.

We note that the development of classical models for
silicon has been an extremely active area. Pearson,
Takai, Halicionglu, and Tiller (PTHT) (Ref. 5) have
developed a nonseparable three-body Si potential that is
a generalization of the Axilrod-Teller three-body interac-
tion. This potential is long ranged (decaying as l lr ).
Stillinger and Weber (SW) have developed a short-range
model confined to two neighbor shells where the angular
variation of the three-body potential has a Keating type
of form. Recently, Tersoff has developed a pair poten-
tial model of Si where the strength of the pair potential
depends on the atomic bonding environment. This
effectively couples three body and higher multiatom
correlations into the model.

Our theory of the interatomic potentials is developed
in Sec. II. Connections are drawn to the description of
bond orientational order in liquids and to the embedded
atom approach. Our LDA calculations of energies of Si
structures are described in Sec. III. The ability of classi-
cal potentials to model these quantum-mechanical re-
sults is explored in Sec. IV, and a new Si potential is
developed. Structural properties of atomic Si clusters
from the new potential are described in Sec. V. Con-
clusions are summarized in Sec. VI.
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II. CLASSICAL INTERATOMIC
POTENTIAL MODELS —THEORY

Our two- and three-body potentia1 model is defined by
the following expression for the structural energy:

E = —,
' g' V2(1,2)+ g' V1(1,2, 3),

calculation of the energy in (1) requires the sum in Eq.
(4) to be corrected for the case when indices 2,3 are iden-
tical. This introduces a modification of the two-body in-
teraction,

g' Vs(r12, r13, O1)=g Vs(r12, r1q, O1) —g fq(r12 ),
2, 3 2, 3 2

1,2 1,2, 3

where primes indicate that all summation indices are dis-
tinct. There is no explicitly volume-dependent term,
since atomic volume is not a useful physical concept for
inhomogenous structures. The assumption of neglecting
four-body and higher terms is used and tested in the
present work. Any three-body potential V&(1,2, 3) may
be expressed as a function of two lengths r&2, r» and the
included angle 0&. This potential is symmetrized over
the three particles in the sums in (1). Without losing
generality we can expand the angular dependence of this
potential in the complete set of Legendre polynomials.
The coefficients in this expansion are functions FI of
bond lengths multiplied by linear coefficients Ct,

Vg(r1z, r13, O, ) = g C&F&(r,z, r13 )Pi( cosO1) .
1

(2)

Our key simplification is to assume that the functions I'&

are separable and symmetric products of functions p1 of
each bond length. This leads to the symmetric separable
form

V3( 12r, r13, O1) = g C1$1(r12 )pl(r13 )P(( cosO1)
I

(3)

Generally, separability is consistent with a local picture
for the atomic bonding interactions. This simplification
can be motivated by the following physical picture:
Atom 2 bonds with atom 1, with a bonding strength that
is a function of r&2. When an atom 3 is brought near
this system, it feels a bonding potential that has azimu-
thal symmetry and is a function of 0&. A simple repre-
sentation of the constrained 1 —3 bond is to assume that
it has a strength that is a function of r~3. Assuming
both bonding strength functions to be identical leads to
the form (3). It is clear that the physical picture sug-
gested here is not plausible when r23 becomes small com-
pared to r, z or r» (e.g. , at small O, ). However, the sym-
metrization in the three-body sum in Eq. (1) restores the
proper notion of the primary bonded pair.

The addition theorem for spherical harmonics now
reduces the three-body energy to a rotationally invariant
scalar product of vectors N& that are simple two-body
sums, i.e.,

1

X V~(r12 r», O1)= g C1, g e,*'eI
2, 3 + Jm= —I

(4)

where

= +41(r,z)I'1 (r, 2)

The &Pj vectors are the moments of the structure
around atom j that describe its local environment. The

where

f~(r) =QC1$1(r) .
1

The classical model presented here is quite general.
There exist interesting connections of this classical mod-
el to the theory of bond orientational order in liquids
and to the embedded atom method for the close-packed
metals.

Moments 4& very similar to (5), have been developed
by Steinhardt, Nelson, and Ronchetti to describe the lo-
cal bond-orientation al order in supercooled liquids.
From this viewpoint, the +~ vectors are order parame-
ters describing the local bond-orientational order in the
solid. The three-body energy (4) can be viewed as the
quadratic term in a Landau expansion of the structural
energy in terms of this order parameter. This perspec-
tive provides a natural way to extend the Landau expan-
sion to a cubic term, involving a contraction of 3 N~ s,
that physically represents a four-body interaction. The
proper form is

l l l
~(4)

1 2 3I m,

The m-dependent coefficients are the Wigner 3j symbols.
These coefficients are nonvanishing only when the sum
over the m; is zero. The form (8) is an invariant under
rotations of the real coordinate system. The l =0 term
of the angular momentum expansion is simply (@00) .
Although we have not attempted to fit such four-body
terms for Si potentials, these may be useful for other sys-
tems.

It is worth noting that the l =0 moment 400 is among
the simplest invariants. +00 describes the local atomic
coordination and is proportional to the atomic density.
The quantities (400) and (400) are the simplest three-
and four-body interactions, and are independent of bond
angles.

It is possible to draw interesting connections between
these interatomic potentials and the embedded-atom
method developed for structural energies of close-packed
metals. ' '" In the embedded-atom method the structural
energy is approximated' '" to be

E„,= g F; (ph; )+ —,
' g' U(R;~ ) .

Here p&; is the host electron density at atomic i due to
the other atoms of the system and F; (p ) is the energy to
embed atom i' in the background electron density p. p is
approximated as a sum of spherical atomic densities.
u(R; ) is a core-core pair repulsion. The embedding en-

ergy is zero for zero electron density and has a negative
slope and positive curvature for typical metallic electron
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densities. Such forms for the embedding energy have
had much success in describing the structural energetics
of fcc metals as well as surface reconstruction and defect
properties in these systems. ' ' "

We note that an embedding function that varies
linearly with the density p is equivalent to a purely pair-
wise interaction. However, an embedding energy that is
a quadratic function of the density [Eq. F(p) =Cp ] is
equivalent to a separable three-body potential that con-
tains only the product (@oo) in addition to a purely
pairwise interaction. The structural energy can be writ-
ten as

E„,=2CQ gg (R,;)
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The density here is expressed as

-4.75--

0.8
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I.2

p(R;)=g g(R,;),

a superposition of densities from all atomic sites.
Embedding functions that are polynomials of degree
higher than quadratic represent higher multiatom terms,
and are all of the form (Coo)".

III. LOCAL DENSITY FUNCTIONAL CALCULATIONS
FOR Si STRUCTURES

A difficult problem in the implementation of any clas-
sical model for structural energies is the choice of physi-
cally plausible model parameters. Generally, this can be
accomplished by fitting the classical model to either ex-
perimental data or to accurate quantum-mechanical cal-
culations. We have chosen to fit to a database of accu-
rate quantum-mechanical calculations performed using
the local density approximation for the energies of Si
structures. The LDA calculations accurately describe
experimental phonon dispersions, the bulk modulus of
diamond Si (Ref. 2), and pressures for transitions to me-
tallic phases. ' In this section previous calculations for
bulk Si phases are summarized. We have extended the
Si database with calculations for energies of Si(111)
slabs, layered slabs of metallic Si structures, and intersti-
tials that are described here.

The local density functional calculations of Yin and
Cohen for bulk Si structures are shown in Fig. 1 ~ This
includes energies of tetrahedral diamond and wurtzite,
high-pressure p-tin, hcp, and other simple hypothetical
structures. Simple hexagonal Si calculations are from
Ref. 3. The energies of the complex tetrahedral struc-
ture B-8 (BC-8) (Ref. 12) are useful as tests of classical
models. The LDA calculations accurately describe the
transitions from diamond to p-tin to simple hexagonal to
kcp under increasing pressure. The atomic coordination
systematically increases in these transitions.

Many of the metallic structures in Fig. 1 may not
have low enough energies to be stable in extended form
but many of these features should be important in under-
standing the structure of molten Si and consequently the
crystal-liquid interface. These metallic environments

FIG. 1. Energies for simple bulk silicon structures as a func-
tion of atomic volume from local density approximation calcu-
lations.
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FIG. 2. Energy of a four-layer Si(111) slab from LDA calcu-
lations and old and new classical models. The two outermost
layers are symmetrically displaced in the normal direction.
The distance of either surface layer from the slab center is

0

plotted. At 2.22 A the slab reduces to two graphitic atomic
planes.

can also appear as intermediate states associated with
complex dynamical processes. Examples of such pro-
cesses are the diffusion of a Si self-interstitial and recry-
stallization processes suck as the solid phase growth of a
crystalline-amorphous interface.

To account for bond breaking energies we have per-
formed ab initio linear augmented-plane-wave (LAPW)
calculations' for the energies of the partially bonded
four-layer and two-layer Si(111) slabs, as a function of
the positions of the outermost atomic layers (Figs. 2 and
3). Both calculations describe the tendency of threefold
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FICx. 3. Energy of a two-layer Si(111) slab [a single (1 ll)
double layer] from LDA calculations, compared with predic-
tions for the old and new classical models. Energies of all
three curves are relative to the corresponding bulk cohesive en-

ergy. Lateral relaxations of the slab were not considered.
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FIG. 4. Energy of n layer simple cubic (100) Si slabs from
LDA calculations compared with predictions from old and
new classical Si models. The lateral lattice constant was kept
fixed at the corresponding bulk equilibrium value. The points
represent actual calculations, the curves are drawn for estirna-
tion of the surface energies.

coordinated atoms at the surface to become more gra-
phitic and display an energy minimum for a more planar
configuration of the surface atoms. The Si(111) surface
also shows a similar relaxation. The two-layer slab
shows a weak energy variation that was less useful for
the fits, but more useful in tests of classical models. The
four-layer energy displays a metastable energy minimum
caused by a back-bonded configuration when the surface
atom is pushed below the second layer and partially
bonds to three additional subsurface atoms. Lateral re-
laxations were not included in either of the slab calcula-
tions.

As a further description of surface energies, we have
performed LAPW calculations for 1, 2, and 3 layer slabs
of simple cubic and simple hexagonal structures as
shown in Figs. 4 and 5. We also repeated the bulk cal-
culations for these structures to provide a consistent
reference energy. The in-plane lattice constants of the
slabs were held fixed at the calculated bulk equilibrium
values. Both calculations display positive surface ener-
gies which can be approximated by half the slope of the
straight-line portions of the energy curves at large layer
number.

The balance between the bulk phase energies (Fig. 1)
and the surface energies is especially important in deter-

mining the equilibrium structures of Si clusters. The
simple cubic layers have a surface energy of -0.66 eV
per atom. This is lower than the surface energy of a
Si(111) slab which is —1.09 eV per atom. The lower
surface energies of the metallic environments make it
favorable for small Si clusters, that have a large fraction
of surface sites, to be metallic and have higher coordina-
tion than a microcrystalline structure. The penalty of
increased bulk energy is offset by the gain in surface en-
ergy for metallic clusters.

We have also performed LAPW calculations for a sil-
icon self-interstitial at the tetrahedral interstitial (Ti)-
site, using a 9-atom supercell containing the interstitial.
We find the T-i to have a formation energy of -4.05 eV
that is comparable to the cohesive energy of 4.65 eV.
The T-i is then to a large extent nonbonded. The unre-
laxed hexagonal interstitial was also found to have an
energy similar to the T-i. These results for the T-i ener-

gy are consistent with other LDA calculations of inter-
stitials and vacancies in Si.'"'

The partially bonded Si(111) slab energies, the positive
surface energies of metallic slabs, the large formation en-
ergies of self-interstitials, and the bulk-phase energies are
the data we have used to construct classical model po-
tentials.
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Here B„represents linear parameters ( 3; and CI ), E„
are the database energies, and X represents both the
atomic volumes and structures chosen. M„,, is the ener-

gy matrix constructed from the two- or three-body po-
tential functions. Minimizing (13) with respect to the
linear parameters B„results in linear matrix equations
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The n nonlinear parameters (A, &, A, 2, and a~) were varied
with a simplex routine which calculates the objective
function at the (n + 1) vertices of a simplex in the space
of the n nonlinear parameters. For each set of nonlinear
parameters, Eq. (14) was solved for the values of the
linear variables. The points of the simplex were varied
to shrink it around a minimum of the objective func-
tion. ' A useful fitting strategy was to limit the number
of nonlinear parameters by constraining the higher l

components to have the same decay rates.
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IV. DEVELOPMENT OF CLASSICAL POTENTIALS
FOR SILICON

A. Fitting strategies

We have explored the ability of the classical two and
three-body potential models to provide a global fit to the
LDA calculations described in Sec. III. These structures
span a wide range of atomic coordinations, bond angles,
and bond lengths. The expectation is that complex
structures will locally resemble one of the fitting struc-
tures, and that the classical model will, in effect, interpo-
late the local density results.

We have examined a few short-range monotonic func-
tional forms for the three-body potential, together with
similar forms for the two-body potential. For example,
the simple exponential class of functions P&

——e ' was
used together with the generalized Morse two-body po-
tential

V2(r)= A&e ' + A2e (12)

The nonlinear parameters for this model are the decays
A, &, A.2, and aI whereas 3 &, Az, and CI are linear param-
eters.

I/O

FIG. 5. Energy of n layer simple hexagonal (001) Si slabs

from LDA calculations compared with predictions from old

and new classical models. The lateral lattice constant was kept
fixed at the corresponding bulk equilibrium value.

Our initial approach was to agument the existing data-

base of bulk energies (Fig. 1) with the Si(111) slab ener-

gies (Figs. 2 and 3) for fitting the classical model. Stud-

ies and tests of the resulting model potential led to the
further LDA calculations for the metallic slabs and the
T-i. Our best initial fit to the LDA calculations of Fig. 1

and the four-layer slab (Fig. 2) were with the family of
simple exponential functions [Eq. (12)]. The parameters

for this fit are given in Table I. The results of our fit

compare very well with the quantum-mechanical ener-

gies for Si(ill) slab, as shown in Fig. 2. Our global fit to
the crystal structures shown in Fig. 6, agrees with the

quantum-mechanical results of Fig. 1 to within an rms

error of 0.05 eV and displays the correct structural

trends over a large range of atomic volumes. The first

high-pressure phase is correctly predicted to be P-tin.

Two body

Three body

3.946 668
1.191 187
1.246 156
1.901 049
1.786 959
1.786 959
1.786 959
1.786 959
1.786 959

0.268 293 6 && 10
—0.425 986 3 ~ 10

0.913977 5 X 10'
0.164401 3 ~ 10'
0.958 029 9 & 10
0.666 314 7 ~ 104

0.398 771 OX 10
0.204 672 2 ~ 104

0.701 8867K 10

TABLE I. The values of the parameters for the old two-
and three-body potentials. A, l and a~, o.~ are nonlinear decay
parameters; C~ and A 1, A2 are the linear coe%cients.

ct;, A. l {A ')
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FIG. 6. Predicted energies for bulk silicon structures as a
function of the atomic volume from the old classical model.
The energy curves compare very well with the quantum-
mechanical results of Fig. 1.

FIG. 7. Angular variation of the three-body potential for
the old classical model. The two bond lengths were kept fixed

0

at the equilibrium diamond-Si bond length (2.35 A).

The structural energies display three structural group-
ings similar to the LDA results. In Fig. 6, bcc, simple
(Si)-hexagonal, and B-8 were test structures that were
not fitted. Si hexagonal is very close to P-tin as it should
be. bcc is also modeled well.

Wurtzite is higher energy than diamond-Si. hcp is not
as well fitted as other phases and s cubic is somewhat
lower in energy than the quantum-mechanical result.
B-8 is too high in energy, indicating that this model is
too stiff for local distortions around the diamond struc-
ture. Our diamond Si phase has an equilibrium bond
length of 2.32 A (experimentally 2.351 A), but the non-
linear decay parameters could be uniformly scaled to
produce the experimental bulk bond length if desired.

The resulting three-body potential exhibits a weak an-
gular dependence for 90' 5 0 5 180' with a shallow
minimum around 0=110'—115', and is plotted in Fig. 7
for the diamond bond length. Bond angles of 0&70'
generate strong repulsions. The two-body potential, la-
beled old in Fig. 8, has a minimum value of 1.09 eV at
the minimum positions of 2.77 A.

These potentials were tested with molecular dynamics
simulations on complex structures. The atomic forces
can be analytically derived from the energy expressions
and have been presented previously. Using the atomic
forces, a Lang evin molecular-dynamics scheme was
developed in which the Si atoms are immersed in a
viscous medium and the dynamics is controlled by the
internal atomic forces together with a random Auctuat-
ing force from the heat bath. ' .

The molecular-dynamics simulations revealed symp-
toms of two deficiencies of this classical model. First, an
interstitial-vacancy pair was created in a 64-atom super-
cell of the diamond structure. Simulated annealing of
this configuration did not lead back to the ideal crystal,
but resulted in a metastable interstitial site with energy
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FIG. 8. Comparison of the two-body potentials for the old
and new classical Si models. The new model has a deep pair
potential with a minimum just inside the bulk Si bond length.
The old model pair potential is much weaker and longer
ranged.

—1.2 eV interstitial above the ideal crystal. At this
metastable configuration this interstitial had six partial
bonds, and a position between the T-i and the ideal crys-
tal site.

Atomic Si clusters were also examined, and we found
metallic coordinations (simple cubic and fcc fragments)
to be favored over bulklike tetrahedral coordirration (by
—0.2 —0.3 eV per atom) for clusters as large as 256 and
384 atoms.

These molecular-dynamics studies led to further tests.
We first found that the classical potential did not test
well on the class of multilayer slabs of other bulk struc-
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C. Explorations of classical models

In an eftort to improve on deficiencies of the old mod-
el, we have explored alternative classical model poten-
tials by augmenting the previously used database with
our LDA calculations of 1, 2, and 3 layer slabs of simple
cubic and simple hexagonal, and for the T-i energy.

Initially, we first found that adding the layer energies
(Figs. 3 and 4) to the database adiabatically altered the
parameters of the old potential, making both two- and
three-body functions less sharply varying than previous-
ly, i.e., the exponential decays are smaller. A Fermi-like
function with a cutoff of 5.50 A and width 0.40 A could
also be incorporated into the model, illustrating the
redundancy of the longer-range contributions. The

TABLE II. Energies of vacancies and interstitials.

Energies (eV)
Old model New model

Unrelaxed Relaxed Unrelaxed Relaxed

Vacancy
T interstitial
H interstitial

4.803
0.699
4.905

4.266
= —0.33

1.278

3.828
4.989
9.469

3.828
3.612
5.090

tures, showing negative surface energies for simple cubic
and simple hexagonal layers (Figs. 3 and 4). The nega-
tive surface energies artificially favor metallic coordina-
tions for clusters which have a large fraction of surface
sites, which is the case for 256 and 384 atom clusters.
fcc(100) and fcc(111) slabs also display similar qualitative
behavior as shown in Figs. 3 and 4. Although not
shown in Fig. 4, the two-layer Si-hexagonal slab laterally
relaxes to an energy below the bulk diamond Si struc-
ture.

The old potential provided satisfactory formation en-
ergies for vacancies (4.8 eV unrelaxed and 4.3 eV re-
laxed), with the atoms relaxing outward from the vacan-
cy, similar to the relaxation of Si(111) surface atoms.
Self-interstitials, however, were described unphysically in
the old model —see Table II. The hexagonal self-
interstitial had a satisfactory unrelaxed energy but re-
laxed to a low value ( —1.2 eV). The tetrahedral inter-
stitial (T i) had -an unphysically low unrelaxed energy
(-0.7 eV) and became more stable than diamond when
relaxed ( ——0.33 eV).

The T-i is unstable because creating a relaxed T-i leads
to a large decrease of the two-body energy ( —7.76 eV),
which is not compensated by the increase of the three-
body part (7.43 eV). These energies are relative to add-
ing the extra atom in a perfectly bonded diamond crystal
site. The bond-bending repulsion on the four neighbors
of the interstitial is clearly not strong enough. This sug-
gests that a somewhat different balance of the two and
three-body energies would be more suitable. The bond-
breaking energies of the Si(111) slab as well as the Ti-
formation energy suggest a shorter range potential where
the three-body potential is dominated by the first two
neighbor shells, rather than the 8 —10-A range of the old
potential.

refitted potential displayed satisfactory positive surface
energies for the metallic slabs, and similar results for the
bulk structures and Si(111) slab as the old potential but
did not raise the energy of the T-i adequately.

The energy of a 9-atom supercell containing the T-i
was then added to the database. We found that to mod-
el the T-i energy required much shorter-range functions,
with parameter values very different from the old poten-
tial. It was not possible to fit the T-i and all the metallic
structures simultaneously. Typically, we used diamond,
/3-tin, s-cubic, the (111) four-layer slab, metallic layers,
and the T-i in the fitting database. The T-i was roughly
weighted as much as diamond, while the metallic phases
were given a weight of =25% of diamond. Exponential
as well as Gaussian decaying functional forms were ex-
amined. Fitting strategies consisted of initially dealing
with a few nonlinear parameters by imposing con-
straints, e.g. , having a Morse form for the two-body po-
tential, or having the same decay rates for all I's in the
three-body functions. If a stable and unique minimum
for the fits was reached, the constraints were gradually
relaxed using the values of the variables at the new
minimum as the starting point for further fits.

A class of potentials that modeled the T-i' energy well
had short-range exponential functions e ' with
X=2. 7—3.4. The resulting two-body potential had a
minimum at the diamond —Si bond length, with a depth
of —3.0 eV. The three-body potential exhibited a slight-
1y oscillatory angular form for angles 60'&0& 150, with
strong and weak repulsions for 0=0 and 0=180', re-
spectively. The bulk phases were fit less well. Although
P-tin was the lowest energy metallic phase, the close-
packed structures were too high in energy. Wurtzite
was modeled well. The metallic slabs had positive sur-
face energies, although the interpolation to the bulk was
not smooth. The T ihas effectiv-ely ten neighbors (four
at 2.35 A and six at 2.715 A), that generate bond angles
ranging from 35.3' to 180'. The repulsive three-body en-
ergy at small bond angles stabilized the T-i to be -3 eV
above diamond.

A deficiency of the derived potential was an unphysi-
cal energy lowering for metallic structures (Ii-tin, s-
cubic) for compressed volumes with nearest-neighbor
distances in the range of 2—2.25 A. Although all the C~
coefficients were positive, this behavior was due to the
negative l~0 piece of the three-body energy for these
structures, that increased in magnitude more rapidly
than the repulsive l =0 part. We found that the collapse
problem could be averted by saturating the three-body
potential at a bond length of -2.25 A. The resulting
model, however, displayed an unphysical stiffening of the
diamond-Si energy curve at volumes just smaller than
the equilibrium value and almost zero formation energy
for the hexagonal interstitial.

Another approach that we examined was to use a
combination of short- and long-range functions. This
was motivated by the observation that tetrahedral prop-
erties, such as the T-i formation energy or the cohesive
energies of Si(111) slabs, can be estimated from local
bond counting arguments. However, an accurate
description of the metallic phases required the old poten-
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TABLE III. rms energy errors for the best fits of classical
models with short- and long-range radial functions
exp[ —(r/r, ) ], exp[ —(r/rz) ] for the three-body part .Cor-
responding functions exp[ —(r/r, ) ] and exp[ —n (r/r, ) ]
were used for the attractive and repulsive two-body potential.
m characterizes the family of radial functions, whereas n

characterizes the two-body potential.

0.070
0.051
0.055
0.055

0.077
0.065
0.050
0.044
0.046
0.134

0.085
0.081
0.057
0.050

tial to be long ranged.
„m Ul

We examined functional forms of e " and e ~" for
the short- and long-range three-body functions with an-
gular momentum components up to I =4. The radial

m „m
functions e ' and e " " were used for the attractive
and repulsive two-body potential, values of m and n

were varied with n typically between 2 and 4. Con-
straining the attractive two-body potential to have the
same decay as the longer-ranged three-body part is, in
spirit, similar to Tersoff's ansatz that the effective two-
body potential becomes weaker with increasing coordina-
tion.

For chosen values of n and m, the model had two non-
linear parameters a,P and the fitting resulted in unique
minima. The rms error of the fits are displayed in Table
III together with the values of the effective ranges
r

&

——a' and r2 ——P'/ in Table IV. Both bulk and slab
energies were modeled well with rms errors of 0.04—0.06
ev. However, the 1 =0 part of one or both of the three-
body potentials were often negative. This is contrary to
the physical picture of a repulsive I =0 interaction that
increases for the higher coordinated structures, and bal-
ances the increased attraction of the two-body energy.
The three-body energy was attractive for both diamond
and the Si(111) four-layer slab, and was responsible for
equilibrium of both these structures. Potential models
with these properties were judged to be mathematically

0
TABLE IV. Values of r ] and r2 (in A) for optimized classi-

cal models with two radial functions exp[ —(r lr, ) ] and
exp[ (r/r2) ]. n chara—cterizes the two-body part (see Table
III caption). Each member of the family of potentials is
characterized by the two nonlinear parameters n and m.

well defined, but physically implausible. Explorations of
such classical models may be an aspect of this problem
for further study.

D. New Si-potential

A large part of the problems encountered with ex-
ploration of classical models arose from the ability of the
three-body potential energy to be attractive, and to be-
come unphysically large and attractive for certain
configurations. Even if all linear coefficients C~ are posi-
tive, the three-body energy [Eq. (3)] need not necessarily
be always repulsive.

An obvious solution is to make the ansatz that the
three-body energy should be purely repulsive, so that
cohesion is caused by the two-body potential. This an-
satz need not be true if terms higher than three-body are
included in the structural energy expansion. With a
view to globally stabilizing the diamond structure, we
examined constrained forms of the three-body potential
that had a minimum at the tetrahedral angle.

Physically appealing fits were obtained with the
three-body potential

+3(&12,r13,8)=[B,Q, (r,2)g, (r]3 )( cosg+ '
)

+B2 p2(r12 )f (2r/3 )( cosO+ —) ]

Xf, (r „)f,(r „) . (15)

This is a generalization of the separable form (3) to two
classes of radial functions. The angular variation in (13)
is a special case of the expansion in Lengendre polyno-
mials where the coefficients are constrained to be
Co ——( —', )B|, C| ——C2 ——( —', )B„ for the Keating-type
( cos8+ —,') part; and Co ——0.370370B2, CI ——0.9333B3,
Cz ——( —', )Bz, C3 ——( —', )B2, for the ( cos9+ —,

' )' term. Our
best fits were obtained with Gaussian functions

2—a,-r
|I(;=e ', together with the two-body potential

V2(r)=(A &e
' + A2e ' )f, (r),

and the cutoff function

TABLE V. Parameters for new potential model.

kl (A )

0.520 083 6
0.420 693 1

(eV)

0.142 292 2 & 10
—0.107 033 8)& 10

f, (r) =
I 1+ exp[(r r, )Ip]]—

Parameters for the new potential are shown in Table
V. This potential contains many fewer parameters (eight
or ten including the cutoff' function), than the old poten-

0.70
1.95
2.37
2.51

0.91
0.46
1.00
1.00

0.68
1.87
2.30
2.57
2.71
2.09

1.10
1.26
1.03
1.03
1.03
1.10

0.60
1.81
2.31
2.61

1.33
1.07
1.03
1.05

~, (A-')

0.303 437 3
0.319 190 3

3.952 735 7 A
0.312 058 0 A

8; (eV)

0.130299 0~ 10
0.672 073 9
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-3.75—
NEW POTENTIAL

E
O

CD

&- -4.25—
C9
CL
LLJ

hJ

AL-

-4.5—

tial. As in previous explorations, we initially started
with two nonlinear parameters —one describing a con-
strained two-body potential, and a ( cosO+ —,') angular
three-body term. Variational flexibility was increased in
the two-body part and by adding the ( cos0+ —,

' )' angular
term. This potential was not sensitive to the parameters
chosen for the cutoff function. The nonlinear parame-
ters were scaled for the equilibrium of diamond-Si to be
at the experimental value. Adding a further angular
variation term ( cos9+ —,') tended to be redundant. Al-

—a, r
lowing the exponent v in the radial functions e

e ' to vary produced very similar potentials for v in
the range 2 —2.20.

A success of the "new" Si potential is that it models
the formation energies of interstitials and vacancies well
(see Table II). The unrelaxed and relaxed energies are
4.9 and 3.6 eV for the T-i, and 9.5 and 5. 1 eV for the H-
i. The T-i effectively has ten near neighbors and the
very nontetrahedral bond angles (35.2, 180', etc. ) gen-
erate large repulsions.

Tests of the new potential were made on the slab
structures (Figs. 2 —5). The new potential has positive
surface energies for metallic slabs (Figs. 4 and 5) and
agrees much better with the LDA results for the slabs
than the old potential. The new potential models the
bond-breaking energy well. The value of the energy of
the Si(111) four-layer slab is very close to the LDA re-
sult (Fig. 2), although it is somewhat stiffer for distor-
tions of the outermost layer that compress the surface
bonds. The energy variation of the Si(111) slab is very
similar in form to the LDA result (Fig. 3), and the abso-
lute energy of the slab is about =0.2 eV higher than the
LDA result. In comparison, for the old potential, the
two-layer slab loses almost half of the bulk cohesive en-

ergy, due to the loss of neighbors for the long-ranged
model. The (111) slabs were not used in the fit for the
new potential.

As a necessary compromise, the bulk structures are
much less accurately fit than with the previous potential.

Physically plausible trends are obtained though for the
energy of the closer packed structures (Fig. 9).
Diamond-Si would be predicted to make a transition un-
der pressure to a six-coordinated structure (simple cu-
bic). Energy differences between diamond and the me-
tallic structures are smaller than in the LDA, and all
phases have somewhat higher bulk moduli than the
LDA results. Wurtzite is higher energy than diamond
by =0.02 eV.

While our models have not been developed to repro-
duce the energies of small distortions around the dia-
mond structure, it is of interest for some applications to
have a quantitative measure of their performance in this
respect ~ Although it is possible to calculate a full
dynamical matrix for these potentials, we confined our
investigation to the numerical evaluation of the curva-
ture of the energy surface for a few high-symmetry pho-
non distortions. The results are shown in Table VI for
the old and new models, LDA, ' and experiment. ' The
four modes considered are longitudinal-transverse optic
at I, the degenerate longitudinal optic and acoustic at
X, the transverse optic at X, and the transverse acoustic
at L. As noted in Sec. IV 8, the old model is consider-
ably too stiff, particularly for the optic models. The new
model, however, is remarkably good, especially consider-
ing that no small-distortion results entered the fit. This
suggest that the new model should give a reasonable ac-
count of the thermal properties and melting of Si.

The angular form of the new three-body potential is
similar to the Keating form and the Stillinger-Weber
model potential, and is shown in Fig. 10. Although
small in strength, the ( cosg+ —,

'
) provides additional

variational freedom for the angular function. The new
two-body potential (Fig. 8) is consistent with the proper-
ties of the Siz molecule. It would predict the Si2 bond
length to be —2. 34 A, somewhat smaller than the
diamond-Si bond length (2.35 A), with an energy of
—2. 5 eV, which is more strongly bound than half the
cohesive energy of diamond-Si. The new two-body po-
tential is stiffer, around the minimum, than the bond-
stretching Keating potential. The angular variation of
the new potential around the tetrahedral angle (Fig. 10)
is much softer than the Keating model. '

With a view to studying the global stability of the dia-
mond structure, we performed a few simple molecular
dynamics simulations of the new model on 8-atom super-
cells of diamond-Si and found satisfactory results. We
found that a vacancy —T-i pair relaxed to the crystal

TABLE VI. Comparison of Si phonon frequencies (in THz)
calculated from our old and new models with LDA (Ref. 18)
and experimental (Ref. 19) values.

-4.75— LTO (1 ) LOA (X) TO (X) TA (X)

0.6
VOLUME ( Vl Vo )

FIG. 9. Energies for bulk Si phases from the new classical
potential.

Old
New
LDA
Expt.

24.3
16.0
15.2
15.5

15.6
12.2
12.2
12.3

24.8
14.5
13.5
13.9

7.2
5.6
4.5
4.5
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FIG. 10. Angular variation of the three-body potential for
the new classical Si model. The two bond lengths were fixed at
the equilibrium Si bond length (2.35 A).

ground state. Simulated annealing of the diamond struc-
ture led back to diamond when cooled.

V. MINIMUM ENERGY STRUCTURES
OF Si-ATOM CLUSTERS

We have investigated minimum energy structures for
Si-atom clusters using both the new and old potentials.
These calculations were performed with a view to cali-
brating the classical models against recent quantum-
mechanical calculations for X atom Si clusters
(X =3—10). ' ' These calibrations are especially impor-
tant for estimating the accuracy, and feasibility, of fur-
ther investigations of the structures of large clusters with
the classical models. We have extensively discussed in
this paper the applicability of the classical models for ex-
tended structures. Here we examine the opposite ex-
treme of small clusters.

Energy minima were found with a combination of
steepest descents and simulated annealing methods' '

within the Langevin molecular-dynamics approach. For
the small clusters, there are only a few minima, and we
are confident that our methods found the absolute
minimum for each. With the old classical model we gen-
erally found compact symmetric structures to have the
lowest energies. These structures had the maximum
number of bonds for a given number of atoms. The oc-
tahedron and decahedron were more stable than the 6-
atom chair and 10-atom adamantane cage fragments of
the diamond structure (see Table VI). Generally the
structures were dominated by the two-body potential.
Bond-bending distortions and bond angles that were very
different from tetrahedral, were energetically less expen-
sive. The clusters are more weakly bound than in
quantum-mechanical calculations, since a sizable frac-
tion of the cohesion is lost with the reduced number of
neighbors. Bond lengths for the optimized geometries

varied between 2.60—2.75 A, a feature that resulted from
the minimum of the two-body potential at 2.77 A.

The new potential produced somewhat different opti-
mized configurations (Table VI). Generally, the stronger
and shorter-ranged three-body potential led to more sev-

er energy penalties for structures with bond angles that
were much different from tetrahedral. For the trimer,
an isosceles triangle with an apex angle of 79' and two
bond lengths of 2.29 A (shorter than the 2.35-A bulk di-

amond bond) had the lowest energy. This, in fact,
20 0

agrees well with the quantum-mechanical results of 77
and 2.23 A for the apex angle and bond lengths of the
trimer.

For both 4- and 5-atom clusters planar configurations
were preferred. These were the square (with bond length
2.34 A) and the pentagon with 2.29 A bonds and 108'
bond angles. Symmetry-reducing distortions of the
square were not energetically favored. The nearly
tetrahedral bond angles of the pentagon favored it over
more compact structures (pyramid, bipyramid) that have
more bonds (see Table VI).

For 6 atoms the new potential favors an asymmetric
structure in which 4 atoms have three bonds and the
other two have two bonds, with eight bonds in the struc-
ture with bond lengths 2.37 and 2.45 A. This is topolog-
ically equivalent to the optimized structure obtained by
Raghavachari. Although the symmetric octahedron
has more bonds (12) than this optimized structure, the
bonds of the octahedron are weaker (2.62 A) to compen-
sate for the larger three-body repulsions from non-
tetrahedral bond angles. The chair-fragment of the dia-
mond structure was significantly higher in energy.

For 10 atoms we find the decahedron to be the lowest
energy structure. The decahedron can be formed by a
relative rotation of the two opposite faces of a cube by
45, followed by adding two capping atoms to these
faces. Bond lengths within the cube were 2.47 and 2.92
A (for the square subunits) and 2.49 A for the capping
adatoms. The decahedron is also more stable than the
adamantine cage fragment of the diamond structure.
Other metastable minima found for 10 atoms are listed
in Table VII.

We note that the minimum energy structures for 3, 4,
and 6 atoms are similar to the quantum-mechanical re-
sults, although there are clearly differences for 5 and 10
atoms. A significant difference is that the four-capped
octahedron is not energetically favored with the classical
models, although it is the lowest energy structure found
from ab initio methods for 10 atoms. Although the
bonds inside the octahedron are weaker (2.86 A) than
those of the adatom caps (2.48 A), the large bond angle
distortions do not favor this structure. Quantum-
mechanical calculations ' ' indicate a greater flexibility
for the bonding to deviate from a tetrahedral environ-
ment than the new classical model. Generally, electron-
ic effects such as ~ bonding became increasingly impor-
tant for small clusters. Such effects are difficult to de-
scribe with a purely classical model.

With a view to studying the structures of larger Si
clusters with classical models, we found energy minima
of 32-atom clusters for both classical models with simu-
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TABLE VII. Ener gy minima of ¹tom silicon clusters with new n
structure for each X is th

s wi new and old potentials. The first
is e minimum-energy structure with the new potential. For

minimum-energy structure th th ldwi e o potential is listed.
i e new potential. For %=3—5 only the

36

Structure

Isosceles triangle
Equilateral triangle

Energy eV/atom
New potential

—1.70

Energy eV/atom
Old potential

—0.97

Square
Pyramid

—2.28
—2. 10 —1.31

Pentagon
Pyramid

Bipyr amid
Tetrahedron

—2.50
—2.44
—2.43
—2.06

—1.58

Assymetric structure
Octahedron

Chair (diamond fragment)

—2.70
—2.64
—2.55

—1.85
—1.43

10 Decahedron (twisted cube + two caps)
Cube + two caps
Adamanatine Cage

Octahedron + four caps
Body-centered cube + cap

—3.35
—3.20
—3.08
—2.92

—2.56
—2.45
—2.34
—2.29
—2.49

lated annealing. For these larger clusters, there are
many nearly equivalent minima, and our annealing runs
almost certainly did not find the absolute minimum. '

Typical annealed configurations are shown in Fig. 11 for
the old potential and Fig. 12 for the new potential. The
differences between the two classical models is visually
evident from these figures. The old potential led to
strongly metallic clusters with an average coordination

of =7, which internal atoms having 8 —9 bonds and sur-
face atoms with 4 —6 bonds. A shell-like structure
around the center of the cluster is present ( F' l l).see ig.

n e other hand, the new model generated onl weak-e onywea-

ess dense). Some of the interior atoms had 6 bonds, al-
t ough most of the surface atoms had 3 —4 bonds. The
resulting configuration has the appearance of a disor-

FICr. 11. SStructure of an annealed low-energy state for a 32
atom Si cluster, modeled with the old Si potential. The cluster
is strongly metallic with an average coordination of =9.
Bonds have been drawn for all atom pairs within the first peak
of the pair distribution function ( & 3.3 A).

FIG. 12. Structure of an annealed low-energy state of a 32
atom Si cluster with the new potential. Bonds have been
drawn for all atom pairs that lie within the first peak of the
pair distribution function ( ~ 3. 1 A).
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dered fragment.
While the small 3-10 atom Si clusters are clearly

strongly reconstructed with bonding very different from
the bulk, there must be a crossover to a microcrystalline
structure with increasing cluster size. We have made a
qualitative estimate of the cluster size required for this
crossover by comparing energies of an octahedron that
has diamond-like interior atoms and (111) faces, and a
metallic cube where the interior atoms have sixfold coor-
dination. The energies of the surface atoms were ap-
proximated by the surface energies from our LDA calcu-
lations (Figs. 3 and 4) for diamond and (100) s-cubic
slabs of —3.58 and —3.64 eV, whereas bulk energies
were simply those of the bulk phases. This approxima-
tion neglects energies of edge atoms and is justified only
for large clusters. With the LDA energies we find the
diamondlike octahedron to be favored over the cube for
clusters larger than -300 atoms. The lower surface en-
ergies of the simple cubic structure favor it at small clus-
ter sizes.

We have made the same estimate of the crossover with
the new model that yielded positive surface energies.
We find the diamondlike octahedron to be preferred only
for N above —5000 atoms. This estimate is unrealisti-
cally high due to the low energy difference AE of 0.15
eV between the diamond and s-cubic bulk phases, com-
pared to the LDA result of 0.28 eV. The crossover size
N varies as (b,E), indicating the sensitivity to details
of the classical model.

VI. SUMMARY AND CONCLUSIONS

An important ansatz in the present work is the restric-
tion to two- and three-body models. This restriction was
imposed to make the derivation of atomic forces tract-
able and consequently molecular dynamics feasible.
However, it is not a priori obvious whether or not four-
body or higher multibody contributions are large for co-

valent semiconductors. One direction for improvement
of the present classical models would be a selective in-
clusion of some higher-body terms. Clearly the present
classical models need improvement in being able to pro-
vide a more satisfactory global fit to quantum-
mechanical energies for a range of structures.

We caution that electronic effects are outside the
scope of any classical model. An example of such an
effect is the diffusion of self-interstitials in Si. The rapid
diffusivity, particularly under electron irradiation condi-
tions, is believed to be due to absorption and emission of
electrons from the interstitial connected with the motion
of defect electronic levels in the gap. ' ' Such diffusion
cannot be described classically. A similar difficulty for
the present classical models is the need to model both
sp and s p electronic configurations, as well as
configurations intermediate these two limits.

In summary, we have developed a general theory for
two- and three-body classical interatomic potentials for
describing the structural energy of a solid. We have ex-
plored the ability of these classical models to model a
range of quantum-mechanical calculations for bulk, sur-
face, and clusters of silicon. We have derived two
different potentials —one describes very well high-
pressure properties of Si and simple surface energies.
The deficiencies of this model for interstitial and layered
structures were improved upon and led to a new classi-
cal model that is more appropriate for properties of the
tetrahedral structure, at the expense of describing non-
tetrahedral configurations poorer. We expect that the
new potential will be useful in molecular-dynamics simu-
lations of amorphous-Si structures and crystal growth
processes such as molecular beam epitaxy or the solid
phase epitaxial growth of a crystal amorphous interface.
Finally, we believe that the discussion of the intermedi-
ate stages in the development of these fits will serve as a
useful guide to those undertaking similar research for
another material, or requiring a different set of criteria
to be satisfied for Si.
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State University, 1925 School Road, Ames, IA 50011.
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