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Surface plasmons in two-sided corrugated thin films
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Coupled surface plasmons in a thin free-standing metal film with both the interfaces periodically
corrugated are studied. Infinite Rayleigh expansions in terms of the spatial harmonics with proper
boundary conditions are used to obtain the infinite hierarchy of coupled amplitude equations. The
truncated system of equations is numerically solved to explain the experimental results of Inagaki
et al. [Phys. Rev. B 32, 6238 (1985)]. The theoretical investigation goes beyond the range of the
parameters used in the experiment and we reveal the nonperturbative character of the peak inten-

sities as a function of the corrugation amplitude.

I. INTRODUCTION

The coupling of surface plasmons in a thin metal film
has been the subject of considerable theoretical and ex-
perimental interest.’? For thin metal films the coupling
results in the bifurcation of the dispersion curve in two
distinct branches, one corresponding to the long-range
surface plasmons and the other to the short-range sur-
face plasmons. Compared to the short-range surface
plasmons, the long-range surface plasmons are charac-
terized by a larger propagation length. The excitation of
the surface plasmons and especially long-range surface
plasmons leads to very large local fields® which makes
them suitable candidates for low-threshold nonlinear op-
tical phenomena.*>

In a recent series of experiments®’ Inagaki et al. have
studied the dispersion characteristics of the coupled
modes in a free-standing corrugated Ag film using pho-
toacoustic techniques. For the chosen experimental pa-
rameters the results are strikingly close to the flat-
surface calculations. The major difference between the
experimental observations and the flat-surface calcula-
tions is in the decay length of the surface modes. Be-
sides, the experimental studies reveal a /d (where a is the
corrugation amplitude and d is half the width of the
film) as a crucial parameter for the total intensity.

In the experiment it was difficult to make films with
large a. Therefore it was not possible to observe the
effects of radiation damping on the surface modes. In
short, most of the experimental results on the dispersion
relations are rather close to what one would expect for a
corrugationless thin film. It is well known that for the
case of a single interface, small surface corrugation in-
troduces finite corrections to the flat-surface results. For
large corrugation amplitudes, the calculation of the
changes in the dispersion of the surface modes is beyond
the scope of a perturbative®~!° theory.

In this paper we present a general theory for a two-
sided corrugated metal film for p-polarized incident
waves. We express the fields in the three media (above,
in, and below the metal film) as a superposition of all the
spatial harmonics. Assuming the Rayleigh hypothesis to
be valid, we demand the continuity of the surface com-
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ponents of the electric and magnetic fields, which yields
the infinite set of coupled amplitude equations. We trun-
cate this system and solve it numerically using the exper-
imental parameters of Inagaki et al.” From the calcu-
lated data of the zero-order reflectivity we obtain the
dispersion curves for both the long-range and short-
range modes. We observe that the parameter a /d is also
an important parameter determining the applicability of
the Rayleigh hypothesis. Moreover, we study the system
for corrugation amplitudes larger than those used in the
experiment to reveal the effects due to radiation damp-
ing, i.e., due to the conversion of nonradiative surface
plasmons into radiative modes.

The organization of the paper is as follows: In Sec. II
we obtain the coupled amplitude equations. In Sec. III
we present the results of our numerical study of the
truncated system. In the same section we compare our
theoretical results with the experimental observations
and discuss them.

II. DERIVATION OF THE COUPLED
AMPLITUDE EQUATIONS

We consider the system shown in Fig. 1. Let a plane
monochromatic wave with frequency o be incident at an
angle 6 on the periodically corrugated thin metal film
with upper and lower surface profiles given by

y+=1=d +asin(Kx) , (2.1

where K =27 /A (A is the grating period) is the grating
vector. For p-polarized incident waves the magnetic
field in various domains can be written as

oo

i (yox —Bgy) i ( —B,»)
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FIG. 1. Schematic diagram of the two-sided corrugated thin
film with period A, corrugation amplitude a, and thickness 2d.

In (2.2)-(2.4) we have assumed the incident amplitude to
be unity, so that the other constant amplitudes
B,,, B,,, and A4,,, As, can directly give the amplitude
reflection and transmission coefficients of the nth spatial

harmonic, respectively. ' The other parameters in
(2.2)-(2.4) are given by
yo=koes*sinf ,
Yn=Yo+nK,
nre 2.5)

Br=kieo—77 »

Br=kie—vi .
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Here y, is the x component and S8, B, are the y com-
ponents of the wave vector for the nth spatial harmonic.
€ (€p=1) and € are the dielectric constants of vacuum
and metal, respectively. The corresponding electric field
components in each medium can be calculated by substi-
tuting (2.2)-(2.4) in Maxwell’s curl H equation. We now
assume that the Rayleigh hypothesis is valid, i.e., the
fields in the vicinity of the corrugated surface can be ex-

pressed by the Rayleigh expansions (2.2)-(2.4). The
boundary conditions can be written as

H,, iy=y+=H2z |y=y+: H,, ‘yzy_:Hk |y=y* ’
(Extx +E ) | y=v, =(E jt,+Expt,) |, =y, (2.6)

(EZXtJC +E2yty) 1y=y_ =(E3xtx +E3yty)’y:y7 .

Here ¢, and ¢, are the x and y components of the unit
vector t tangent to the surface with the form
t={1+4[aK cos(Kx)]*} ~1/%(1, aK cos(Kx), 0) . 2.7)
Substituting (2.2)-(2.4) and the calculated values of E,
and E, in (2.6) and using (2.7) we obtain the following

infinite set of coupled amplitude equations with respect
to the amplitudes of the spatial harmonics:

. " " i . B »
S [Bie™ Y, B0 = dge P, B, =Bye ™, L Ba)=(—1 e P By 2.8)
n=—ow
had Y }/m—kZE [ € VnVm —kze —1i P
S (B RP (B Ay, 2 Ty (B
n=-—o B” € Bn
€ Yn¥m—kie iz _ kiey— i
_B,, 0 Vn¥m TROE jibudy (B g) | =(—1yn 1 SO0V —ibody p gy (2.9)
€ B Bo
S [dse®, (Bua)+Bowe P, (Bra)— Ase T, (Bra)]=0, (2.10)
n=—cw
- €0 Vnym—k(%e iB,d =
S |4, 2l tm TR0 Py (Ba)
n=— o "€ B e
€ —kle _ip _ WYm—k3€
By, 2 YnVm TR —iBudy (B gy g, YrTm TR0 Bdy g oy =0, @.11)

where m takes all integer values between — « and + .
In deriving Egs. (2.8)—(2.11) we have used the following
expansion for terms like exp[if3,a sin(Kx)]:

iB,a sin(Kx)
e =

(2.12)

Note that the use of the expansion (2.12) is equivalent to
retaining all orders of the surface corrugation amplitude
a. Thus the infinite system of Egs. (2.8)-(2.11) represent
the exact character of coupling between the different
spatial harmonics. Hence the solution of (2.8)-(2.11)

B

[

will be quite different from any finite-order perturbative
results. It should be mentioned here that the validity of
the set of Egs. (2.8)—(2.11) will be determined by the va-
lidity of the Rayleigh hypothesis which was the only as-
sumption used in obtaining them.

In Sec. IIT we truncate the infinite system of Egs.
(2.8)—(2.11) retaining a finite number of harmonics.
Note that the truncated system includes the contribu-
tions from all orders by a virtue of the expansions (2.12)
and hence is quite distinct from any perturbation
method which retains only up to a finite order of a. We
present our numerical results in Sec. III.
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III. NUMERICAL RESULTS AND DISCUSSIONS

We truncate the system of Egs. (2.8)-(2.11) by retain-
ing the following harmonics:

Ly —Li+1, ... ,0,. . =L+, 3.1)

where /; and I, are positive integers. The truncated sys-
tem results in a matrix equation of the form DX =F
with the dimension of the coefficient matrix equal to
4L +1,+1)X4;+1,+1). We solve this system nu-
merically with the experimental parameters of Inagaki
et al.” We retain five harmonics (/;=1, I;=3) and
check the convergence by adding one more harmonic
both on the negative and the positive sides. For the ex-
perimental parameters convergence was fairly good and
we did not need a larger number of harmonics. Instead
of examining the total intensity due to all the spatial
harmonics we study separately the zero- and first-order
reflected intensities (R, and R ,;, respectively) for +1
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FIG. 2. (a) Ry as a function of the angle of incidence 6 for
+ 1 surface-plasmon resonance for different values of a and d:
(1) d =60.5 nm, a =12 nm; (2) d =30 nm, a =8 nm; (3) d =22
nm, a =8 nm. (b) R, as a function of the angle of incidence
6 for +1 surface-plasmon resonance. Different curves are for
the same sets of parameters g and d as in (a). a and b refer to
the long- and short-range components, respectively.
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surface-plasmon (SP) resonance and zero-, first-, and
second-order reflected intensities (Ry, R, R, ,, re-
spectively) for +2 surface-plasmon resonance. Note
that (+n)-order surface-plasmon resonance is defined by
the equation

ko Sin9+nK =ksp N (32)

where kgp is the SP wave vector for the corrugated sur-
face. We present the results of the angular scanning for
+1 SP resonance in Fig. 2. Figure 2(a) shows the
dependence of R, as a function of 6 whereas Fig. 2(b)
shows the field enhancement R | ; as a function of 6 for
three different sets of the values of d and a. It is evident
from these figures that for smaller film thickness, due to
the coupling of the two interface plasmons, the reso-
nance gets split into two, one corresponding to the long-
range surface plasmon and the other to the short-range
surface plasmon. It can be seen from Fig. 2(a) that some
“dispersion”-like dependence appears near the long-
range resonance dip (near 6=43°). This is because of the
existence!! of a complex pole and a complex zero in R,.
The separation of the poles and zeroes and their values
depend crucially on the system parameters. For the
given set of parameters, they are not widely separated
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FIG. 3. (a) Ry as a function of the angle of incidence 6 for
+2 surface-plasmon resonance. Different curves are for the
same sets of parameters a and d as in Fig. 2(a). a and b refer
to the long-range and short-range modes, respectively. (b) R ,,
as a function of the angle of incidence 6 for +2 surface-
plasmon resonance. Different curves are for the same sets of
parameters a and d as in Fig. 2(a). a and b refer to the long-
range and short-range components, respectively.
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and their contributions are significant, which explains
the observed behavior. Our theoretical calculations
agree well with the experimental results. However, an
insignificant deviation was observed in the angular reso-
nance positions. We ascribe this to the inaccuracy of the
value of the dielectric constant € (we take
€=—16.3+0.53;/ as in the work of Inagaki et al.) and
to the deviations from the strictly periodic variation of
the surface profile. Dependence of R | on 6 [Fig. 2(b)]
shows resonances at the same angular locations and the
maximum enhancement is achieved for the thinner film
(d =22 nm, a=8 nm). The +2 SP resonance curves
(Fig. 3, where we show only R, and R _,, respectively)
shows qualitatively the same behavior as + 1 resonance
curves with the difference that the coupling efficiency is
much less.

Next, we concentrate on the +1 SP resonance to ob-
tain the dispersion curves for the long-range and short-
range modes. For theoretical calculations we assume the
a /d ratio to be constant and we have taken these values
from the slope of the straight line in Fig. 1 of the work
of Inagaki et al.” The values of the wave vectors k _
and k, for the long-range and short-range modes, re-
spectively, were calculated by the positions of the mini-
ma of R, as a function of 8. It may be noted here that a
better way to calculate the dispersion curve would be to
use the peak positions of the local fields (R ;). This is
due to the fact that R, being the evanescent mode
with close to zero transverse component of the wave vec-
tor, reflects the surface excitation more accurately.
However, for the parameters used in the experiment the
position of minima for R, and maxima for R ;| were
identical. In Fig. 4 we present the results where we have
plotted (k , —k _)/(w/c) as a function of the film thick-
ness. In the same figure we have reproduced the experi-
mental and the flat-surface results for comparison. It
can be clearly seen from Fig. 4 that our theoretical cal-
culations are very close to the flat-surface results. Minor
deviations are there for larger d, when accordingly, the
corrugation amplitude a is comparatively large (recall
that a /d =const). For larger corrugation amplitudes,
one would expect different results for flat and corrugated
surfaces. Experimental observations are indeed very
close to the flat-surface results and thus do not see the
effects of the corrugation. We have not calculated the
imaginary part of the wave vectors because of the
difficulty in determining the resonance widths. Besides,
the question which of the resonances has to be used to
determine the imaginary part of the wave vectors is still
open. Nevertheless, we make a guess of the decay length
for the k_ mode by the resonance width of the R
curve [see Fig. 2(b)] for d =22 nm. It turns out to be
approximately 159.7 um. The experimental result is ap-
proximately 50.3 pum, whereas, the flat-surface calcula-
tions predict an approximate value 167.9 um. It is clear
from the above discussion that surface corrugation,
though it leaves almost unaffected the real part of the
propagation vector, to some extent affects the imaginary
part, thereby introducing an extra loss for the surface
modes. The deviations of the theoretical and experimen-
tal results are mostly due to the factors mentioned in the
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FIG. 4. (c/w)(k ., —k _) as a function of the film thickness
2d. The dashed curve gives the flat-surface results. Circular
dots are the theoretically caiculated values and the square dots
are the experimental observations.
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FIG. 5. (a) Ry as a function of 6 for + 1 surface-plasmon res-
onance for various corrugation amplitudes. The film thickness
is 102 nm. Different curves are labeled by the corresponding
values of the corrugation amplitude. (b) Minimal intensity
Ronmin for +1 surface-plasmon resonance as a function of the
square of the corrugation amplitude a? for a film with thick-
ness 102 nm.
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work of Inagaki et al.”

In what follows we study the effect of radiation damp-
ing, i.e., of the conversion of nonradiative surface
plasmons into radiative modes, on the surface modes.
For this we investigate a corrugated film with thickness
2d =102 nm for various corrugation amplitudes. The
results are shown in Fig. 5. In Fig. 5(a) we show the
dependence of R as a function of 0, whereas in Fig. 5(b)
we plot Rgnin [minimal zero-order reflectivity obtained
from Fig. 5(a)] as a function of the square of the corru-
gation amplitude a2. It is clear from Fig. 5(b) that for
a? values larger than 600 nm?, significant deviations
from perturbation theory, i.e., from R, xa’ take
place. For large a the curve bends and thus shows a
minimum for a?~ 1200 nm?. We could not study such
optimal behavior for thinner films for the following
reason. For the chosen wavelength and grating periodi-
city, the optimal coupling occurs near the region of
a =35 nm. This means that the a /d ratio will be very
close to or greater than unity for thin films where the
coupling of surface plasmons can take place. We ob-
served that for a /d R 1, no fixed pattern in the reflected
intensities could be obtained. This was tested retaining a
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large number of harmonics (as many as 13). It appears
that for a/d * 1 the Rayleigh hypothesis is not valid,
since along the plane y =0 one encounters media with
both the dielectric constants €, and €.

In conclusion we have presented a nonperturbative
theoretical model for coupled surface plasmons in a
periodically corrugated thin film. For actual calcula-
tions we have used the system parameters of the experi-
ment of Inagaki et al. The basic conclusions of the ex-
periment are supported by our theoretical calculations.
Moreover, we investigated the optimal behavior of the
extremal zero-order intensities as a function of the cor-
rugation amplitude to reveal the importance of the pa-
rameter a /d, which determines the validity of the Ray-
leigh hypothesis in theoretical calculations.
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