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Nonlinear travelling waves in ferroelectrics
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We investigate nonlinear travelling waves, solving the equations of motion of a diatomic chain
model in the continuum limit. The polarizability of one sublattice is assumed to be nonlinear, lead-

ing to a local on-site rtr potential. Besides periodic nonlinear waves, previously discovered in a
monatomic linear chain, we find kink solutions describing the static and dynamic properties of the
ferroelectric domain walls, and pulse solutions. In particular, travelling-pulse excitons are described
and seen to carry a large dipole moment.

I. INTRODUCTION

In previous papers' it has been shown that displacive-
type ferroelectric phase transitions can be described in
terms of a shell model with nonlinear polarizability at the
chalcogenide-ion lattice site. The most important dynami-
cal features of the three-dimensional model can be repro-
duced by a simple diatomic chain version. A fairly accu-
rate description of the temperature-dependent quantities,
such as the soft mode, the dielectric constant and the pho-
non dispersion, can be given in the self-consistent phonon
approximation (SPA) provided that the three-dimensional
character is taken into account in the phase-space integra-
tion. The advantage of the linear chain model is, besides
its physical transparency, the possibility of studying the
exact nonlinear solutions of the equations of motion.

The model Hamiltonian for the diatomic linear chain is

2+[m]u ln+m2tt 2n+meV]n

+f'(u in+1 —»n )'+f(V]n u2n —I
)'

+g2(V]n —u]n ) + 2g4(V]n —u]n ) ]

where u]„and uq, are the core displacements of ions 1

and 2 in the nth cell of the chain, m1 and mq are their
respective masses. The shell of ion 1, of mass m„has its
own displacement U1„. Here however it is convenient to
work with the shell-core relative displacement:

~1n —U ln &1n (1.2)

+f (uin+1+uln —1 2uln ) r

m2 2n =uf(ul„+u]„+1 —2u2„+w]„+w,„+,), (1.3)

0=(2f+g2)wl„+g4wl„—f(u2„+.u2„ i
—2u]rr )

f is the nearest-neighbor shell-core force constant, f' the
core-core interaction between ions 1 in two adjacent cells,

g2 and g4 are the harmonic and quartic anharmonic
shell-core force constants within ion 1, respectively.

The corresponding equations of motion in the adiabatic
approximation (m, =0) are

m]u]n =f(u2n +u2n —] —2uln 2W]n )

The SPA treatment of the above equations of motion
describes the ferroelectric transition in different regimes,
including the quantum regime with the logarithmic
corrections, and the saturation effects in the high-
temperature limit. It also provides T, as function of
physical parameters such as the ionic masses (isotope
effect) and shell-core force constants g2 and g4, i.e., the
nonlinear polarizability. '

With regard to the exact solvability of Eqs. (1.3) we

note that this kind of equations contains, even in the con-
tinuum limit, essential complications when compared to
the P model, and belongs in any case to the class of equa-
tions to which general methods like the spectral trans-
form ' or the Backlund transformations are not applic-
able.

Nevertheless certain special solutions besides kinks, of
the kind occurring in P models, have been found for the
lattice case in the form of nonlinear periodic waves and
have been called periodons. ' These nonlinear periodic
waves which exist also in the static limit, are shown to as-

sist the mode softening in antiferroelectric transitions,
such as in K2Se04. In this paper we show that, in the
continuum limit, Eqs. (1.3) admit exact travelling solu-

tions as they reduce to a single Bernoulli equation (Sec.
II). We find, in addition to nonlinear periodic waves and

a variety of kinks, also travelling pulses, which do not
occur in ]]]r models.

The present classification and analysis of travelling
wave solutions in the continuum limit is aimed at clarify-
ing the nature of solutions in the lattice case, even if the
question whether continuum nonperiodic solutions keep
stable in the lattice case remains open. The discretization
problem has recently been tackled by Pnevmatikos et al.
in the case of monoatomic and diatomic chains with inter-
site anharmonicity. Most of the periodic and nonperiodic
solutions, discussed in Secs. III and IV, respectively, have
a clear physical meaning, and are likely to exist also in the
lattice case, possibly with a modified form and a finite life-
time. For instance, the existence of nonlinear periodic
waves, proved for the lattice, can be inferred from the
set of oscillating solutions found in the continuum limit
(Sec. III).

Travelling pulses, found for both ferroelectric and
paraelectric phases (Sec. IV), are particularly intriguing

36 630 1987 The American Physical Society



NONLINEAR TRAVELLING WAVES IN FERROELECTRICS 631

because of their capability of carrying energy and large di-

pole moments associated with the local nonlinear polar-
ization (Sec. V).

II. SOLUTIONS IN THE CONTINUUM LIMIT

V(w ) —V(w p)U(w)=—
2 M (1+/3 —3pw /wg)

(2.9)

The right-hand side of (2.7) defines the effective potential
for the shell-core displacement:

In the continuum limit the nonlinear equations of
motion (1.3) for the model diatomic linear chain can be
given a wide class of exact solutions in the form of travel-
ling waves. The continuum limit allows in principle for a
classification of the solitary solutions which do not have
periodic character. However, also slowly varying periodic
solitary solutions can be inferred from the present
analysis. A rigorous treatment for the lattice case has
been given elsewhere. '

Here, we look for solutions in the travelling wave form:

Solving with respect to time, we have

1+P 3Px—IwF

[x (x —wp)R(x)]'
(2.10)

R (x)=[V(x)—V(wp)]/(x —wp)—=ax +bx+c
is a quadratic expression of x with coefficients

(2. 1 1)

where the lower integration limit is omitted due to the ar-
bitrariness of the time-scale zero; and

u („+)(t+2a Iv) =u )„(t),
u2„+ ~ (t+2a lv) =u2„(t),

w)„+)(t+2a/v)=w), (t),
(2. 1)

a =pg 4/g2
2

b = —,'g4(1+4P),

c=g2(1+p)+bwp .

(2.12)

(2. 13)

(2.14)

where a is the interionic distance and U the phase velocity.
In the continuum limit we use the expansion with respect
to r =2a /v

At the turning points, R (wp) is factorized as

R(wp) =-
dV(wp) 2 2=g2( 1 —w p/wF )( 1 +p —3pw p /wF )

dx
u ~„+~ (t) = u ~„(t)+ru ~„(t)+—,

' r u ~„(t), (2.2) (2.15)

and similarly for u 2„+~ (t) and w ~„+~
(t). By eliminating

u~„and u2„ from the equations of motion, we obtain a
single equation at the arbitrary site n for the internal
shell-core coordinate w i, =—w:

w(1+p —3pu /wF)+6pww lwF

+(g2/M)w(1 —w /wF)=0, (2.3)

where

III. PERIODIC SOLUTIONS

Physical solutions of periodic type can be obtained from
Eq. (2.10) in the domains where (x —wp)R(x) and —M
have the same sign. Slowly oscillating solutions are found
for small v and, should the limit v~0 exist, we have stat-
ic nonlinear oscillations (static periodic waves). If w t and
w2 are the roots of R (x), i.e. ,

WF =—+( —g2/g4) 1/2 (2.4) R (w ) =P(g4/g2)(w —w ~ )(w —w2), (3.1)

represent the minima of the double-well potential. Furth-
ermore,

1

2f 1 —v2/v
(2.5)

m)(1 —v )/v ) m2(1 —v2/v )
(2.5')

and

v
~

——a(4f'Im
~
)'~, v2 ——a(2f/m2)'~ (2.6)

are the two limiting acoustic velocities at the critical tem-
perature (i.e., for gr~0; see Ref. 2); Eq. (2.4) is of Ber-
noulli type; it can be integrated by setting q (w)—:w [and
hence q'(w):—2w]. The first integral of motion turns out
to be

one finds that at low velocity real solutions can only
occur, whatever the order of the three turning points w o,
w~, and w2, for either w (min(wp, w~, w2), or for w be-
tween the two larger values. Here we investigate only the
solutions obeying the first condition (oscillations across
the origin), since they form a continuous set with respect
to the parameter U, whereas the solutions coming from the
second condition may possibly have a physical meaning
only for exceptional values of v (see Sec. IVB). We also
assume w & wo & w ] & w2, since any permutation of the
turning points leaves the discussion unchanged. The
right-hand number of Eq. (2.10) can be expressed in terms
of elliptic integrals of first and third kind. For the present
discussion, however, a series representation of the integral
is more expedient. Setting w/wo ——cosy, performing the
expansion

V(w') —V(wp)—pw 2M (1+p—3pu 'IwF')'
(2.7)

where +wp are two turning points, /2—:m~m (2/&m+m2)
is the diatomic cell reduced mass and

1+P—3Pw /wF

R 1/2( 2)

1+P—3Pw p/wF 1+ g a sinmyR' (wp) m=[
(3.2)

V(w )=g2w [1+p——,'(1+4/3)w IwF+pw IwF] . (2.8) where a are certain coefficients, and using the factoriza-
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tion (2.15), we obtain from (2.10) smaller than the ferroelectric amplitude and larger than
the antiferroelectric one, namely w p 2 & w p„& & w p

LU
At = —arccos

Wp
pP

rn —1

(3.3)
IV. NONPERIODIC SOLUTIONS

where
1/2

g2 1 —w p/wF

1+P—3Pw o lwF
(3.4)

and

P (z):—1 —cos(m arccosz ) (3.5)

A~—:2ak =

where f*=2ff'l(f+2f') is an effective force constant.
These are travelling periodic waves of wave vector k, hav-
ing a k-dependent amplitude

are polynomials that vanish at z = 1. Slow travelling
periodic waves are found as asymptotic solutions for
u~0; in this case Eq. (3.4) transforms into the condition

1/2 2 1/2
2g2 wp1— (3.6)

LUF

Physical solutions of nonperiodic type can exist when
the integral (2.10) diverges for some value of w . In order
for a nonintegrable pole to occur, the quartic expression
w (w —wo)R(w ) at the denominator must have a pair
of coincident zeros. Single zeros correspond to ordinary
turning points at finite time.

There are two distinct classes of solutions correspond-
ing to the conditions R ( w o ) =0 and R (0)=0. Their
asymptotic extrema are w=+wF (ferroelectric solutions)
or w =0 (paraelectric solutions), respectively. Any other
choice of coincident zeros can be reduced to one of the
above cases.

A. Ferroeleetric solutions

If one of the roots of R (x) is wo, we have

2 2
Wp =LOF

2 w2 1+ J a2k2
g2

(3.7) or

wF'( I +p ) /3p .

(4. 1)

It is very interesting to note that one can recover the lat-
tice results for static periodic waves from the present con-
tinuum treatment by considering the factor 2a k in (3.7)
as the lowest order term in the expansion of 1 —cos(2ak).
From the substitution 2a k ~1—cos(2ak) and from the
commensurate periodic wave condition 2ak=2~/N for
integer N, we obtain the various wave amplitudes w p ~

dy 1+ =,
' /I F ( I —y )

AFt =
1/2[ 1 + g ( 1 )]1/2

(4.2)

Due to the factor 1+P—3PxlwF in (2.10), only the first
value of w p yields a divergence in time, and is here con-
sidered. Thus, Eq. (2.10) becomes

2 2 2LOp1=Wp ~ =LUF

LOp2= 1+ 2
LOF

where we have set

2P
1 —2P

and

U
2g2

f v2 —(1—g2/'f)u'
(4.3)

2 3f'
LUp 3 = 1+ LOF

2g2
(3.8)

2g2

M (1 —2P)

1/2

(4.4)

wp 4= 1+
g2

2
LUF )

p s = 1+ 2sin — wF2 2~ f*
5 g2

p6= 1+2

2g2
2

WF

etc. These solutions coincide with those obtained by
Buttner and Bilz for the monoatomic case, where the
effective force constant f„corresponds identically to ,

' f*. —

The first solution UV = 1, oo) gives the ferroelectric case,
for N = 2 we have the ordinary antiferroelectric case,
while for N) 3 we have commensurate periodic wave
solutions.

Clearly, for u =0 the asymptotic solutions (3.3)—(3.5)
exist as static periodic waves. Since g2 is negative and f
positive, the travelling periodic wave amplitude is always

Here the asymptotic extrema of the motion wp ——+wF are
maxima of the effective potential (Fig. 1, left). Also ordi-
nary turning points, occurring where dt/Bw has an integr-
able divergence, exist at

1
w =+wF 1+

AF

1/2
WF

2p )
1/2 (4.5)

provided that either AF ~ 0 or & —1.

1. Static and slowly propagating solutions

U & L) 2/(1 —2y), {4.6)

For static and slowly propagating solutions (small u),

AF is positive, so that no turning point is encountered in
the motion between the two asymptotic values +w F .
These solutions are travelling kinks (K) which do exist
also in the static limit, u~O (ferroelectric domain wall).
A necessary condition is



36 NONLINEAR TRAVELLING WAVES IN FERROELECTRICS 633

LL

hl lm
+ +

C)
II
lL

0
K

WF

AF~O

p

)t

0

Kf

F 3

0
0

2/ 2"2

FIG. 2. Existence domains for ferroelectric waves (white
areas) as functions of the mass ratio m1 /m~ and the relative ve-

locity v/v&.
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with y=gq/2f. Moreover, the existence of real turning
points w &mI: allows also for pulse solutions of ampli-
tude

~

w
~

—
~

mF ~, starting from and arriving to the
ground-state polarization. If the local shell motion far
beyond the ferroelectric equilibrium is conceived as being
associated with some electronic excitation, such pulse
solutions can be regarded as travelling excitons (pulse ex-
citons: E). However, the larger the excitation, the slower
the pu1se translation. For w ~oo, v~o, which means
that a local ionization process does not propagate at all.
The efFective potential and the existence domain for these
solutions, as well as for those discussed in the next para-
graphs, are shown in Figs. 1 and 2, respectively.

0

/0 / i

&1, p &2

= w
C)
A

CV

2. Large velocity solutions

For large values of the ratio m ~ /mq, i.e., for

m~/mq &(2f'/f)(1+yf)
with (4.7)

Ap&0, p &0

FIG. 1. Effective potentials for ferroelectric waves (above) and
paraelectric waves (below). K, slow kinks; E, pulse excitons; P,
pulses; Kf, fast kinks; Pf, fast pulses; pf, fast periodic waves; p,
slow periodic waves. The parameters A~ and Ap are defined in
the text.

and in the restricted region 0&2P & 1 (AF ~0), there are
solutions having either kink or pulse exciton character.
Here, however, their velocity is larger than v~ and there-
fore we speak of fast kinks and pulse excitons (Kf + Ef).
These solutions have formally the same expression as slow
kinks and pulse excitons (K+ E), the only diff'erence be-
ing in the value of the parameter O,F, namely in the veloc-
ity.
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3. Ferroelectric pulse solutions

For

v2/(1 —2y) & v & v 2(1+2f'If), (4.&)

we have 0 (w (wF. No kink is possible, but just a pulse
consisting in a frustrated attempt to reverse locally the po-
larization (ferroelectric pulse: P). These solutions, how-
ever, exist in a restricted domain of the mass ratio
m1/rn2, as illustrated in Fig. 2. It is, in any case, neces-
sary that

2f'If &ml/m2 &(2f'lf)(1+y/) . (4.9)

4. Fast kink solutions

with

1/2 2 AFy
arcsin 1—

1+ AF
(4. 10)

y—:w /wF, AF)0 . (4.11)

Slow solutions (v~0) take a simpler form since AF is in
this case a small quantity and the arcsin term can be
neglected. Slow kinks and pulse excitons for

i
AF

~

&&1
are, respectively, given by

LUF

—$)FI1+ AF —(1—AF)e

[(1—AF) (1+e ) +4AF]'

1+ AF+(1 —AF)e

[(1—AF )'(1 —e )'+4AF]'

(4.12)

(4.13)

The asymptotic pulse amplitude is correctly given by
wF(1+ AF ')' =wF/AF' . The above expressions give
the exact solutions in the static limit (AF =0), respective-
ly, expressed by the hyperbolic tangent and cotangent of
Q,Ft /2. Thus the slowly moving kink describing the
motion of the Bloch domain wall along the diatomic chain
is approximately given by

1/2
g2

W ln tanh [—,
' AF ( t —2an Iv )], (4. 14)

g4

For U) u2, and again in a restricted region of the mass
ratio m1/m2 (in any case m1/m2 &2f'If, where
—1 & AF & 0 and w is imaginary), we have exclusively fast
kinks Kf.

Ground-state kinks and pulse excitons are described by
the same implicit equation

1/2+ [1+A (1 )]1/2
AFt=2 ln

i
(1—AF)(1 —y)

we obtain, for AF ~0, the shape of the static domain wall

w 1„=( —g2 /gq )
' tanh( y/ n ),

u 1„=—w 1„/( 1+2f' /f ),
u2~ = —,(w 1~ +w 1„ 1 )/(1+f /2f') .

(4.18)

(4. 19)

(4.20)

The width of the static domain wall in cell size units is

2yf ' =2( f*/—g2)' =2(f*/gg)' wF . (4.21)

As U grows from zero to any finite value delimiting the
K+ E region (Fig. 2), namely either vl or v2(1 —2y)
the width I of the moving kink decreases from the static
value (4.21) to zero according to the expression

(1 / 2 )1/2[1 ( 1 2 ) 2/ 2]1/2
I =2

1/2( 1 2/ 2 )1/2—U Up

where

vo
—=a (2f +4f')' /(m 1 +m2 )'/2

(4.22)

(4.23)

is the ordinary transverse sound velocity. The hybridiza-
tion of TA with the soft TO branch at the transition has
the effect of depressing the sound velocity from vp to ei-
ther vl or v2, so that either vl or v2(l —2y) ' (or both)
are smaller than up. Thus the kink undergoes a sort of
relativistic contraction where the limiting velocity, howev-
er, is not vo, but v —=min[vl, v2(1 —2y) ' ].

Examples of exact kink solutions are shown in Fig. 3
for various values of AF. The contraction does not ap-
pear because the abscissa argument t —2an /U has been
conveniently multiplied by flF (which diverges with AF as
v~v ). Even in the exact case, however, there is no
significant distortion of the kink shape with respect to the
antisymmetric hyperbolic tangent valid in the static limit.

In Fig. 4 the pulse excitons for a few positive values of
AF are displayed. For decreasing velocity (AF~O), the
amplitude diverges, whereas the width tends slowly to
zero. Ferroelectric pulses restricted to the domain (4.8)
where AF ( —. 1, as well as fast kinks, are represented by
the two-logarithm form

2g2
&1n 2

W ln
1 F

g2
u2n 2 ( ln w+ win —1)

M2nF2

(4.15)

(4.16)

-1
-8 -2 0

QF (t-2an/v)

I

6

Using the asymptotic dispersion relation

f)F —(yf/a )v (4.17)

FICi. 3. Slow kinks in the ferroelectric phase for di5'erent
values of the parameter AF. AF increases with the velocity.
AI- =0 corresponds to the static kink.
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1/2+[1+ A (1 )]1/2
QFt =2ln

~(1 —AF)(1 —y)
~

'" ( —AFy)' +[1+AF(1 —y)]'/—3( —AF)'"ln
(1—AF)'/

(4.24)

The divergent part comes exclusively from the first loga-
rithm, so that there is always a choice of the model pa-
rameters such that the second logarithm is small. In this
case the ferroelectric pulse is also given by (4. 12) [not
(4.13)]: for AF & 1, w/wF can never change sign, but it
clearly takes a pulse form. Figure 5 shows a few exam-
ples of ground-state ferroelectric pulses. They are rather
flat and broad, their width diverging as AF~ —1. The
limit AF ———1 corresponds to an infinitely broad pulse
spanning w =0 to mF, whose descending half has gone to
infinity. En this way we enter the fast-kink domain: ex-
amples for AF ———0.5, —0.6, and —0.8 are shown in
Fig. 6.

Pulses of E and P type and fast kinks Kf for
1 ( 3F ( 3

show an interesting feature produced by
the negative divergence in their effective potentials (Fig.
1). They have pairs of points of vertical slope (indicated
by horizontal arrows in Figs. 4—6), where the shell rela-
tive velocity is divergent. This is the way these solutions
mimic the virtual electronic transitions involved in locally
large polarization waves.

B. Paraelectric solutions

R (x) has a vanishing root, namely R (0)=0. This re-
quires

V(wp)/tvp =0,
or equivalently that the third coefficient (2.14)

C ( lD p, 7. ) =0

(4.25)

(4.26)

2 —p
2 2 LUp

2

v2 2yp' —(1+4y)p'+2(1+y)
(4.27)

Slow (P) and fast (Pf) pulse solutions occur where the fre-
quency constant

4g2

M (1+P)

1/2

(4.28)

In this case we have a single asymptotic value w =0,
whereas wp (&0) is an ordinary turning point. Thus the
physical solutions of this class are pulses travelling across
the paraelectric phase (paraelectric pulses)

Inspection of the effective potentials associated with
paraelectric solutions (Fig. 1, at right) shows that under
certain conditions oscillating solutions do occur in addi-
tion to paraelectric pulses. These are just the periodic
solutions existing for special values of the velocity which
have been disregarded in the discussion of Sec. III. Fig-
ure 7 depicts the existence condition of paraelectric solu-
tions, for either g2 & 0 (above) or g2 ~ 0 (below), in the
form of a dispersion relation between the velocity and the
amplitude wp.

2

AF = 0. 1

O. 25

is real (heavy lines); periodic waves (p,pf), where Qp is

imaginary (broken lines). This plot corresponds to the
case v2 & v~, it is an easy matter to redraw it for the less
common case v ~ ~ v2.

For g2(0 real solutions occur for either v & v2 or
u &Uq/(1+8y) and correspond to slow, large-amplitude
waves and fast, small-amplitude waves, respectively. In
both domains we have either periodic waves or pulses.
From the effective potential we see that fast solutions are
centered around wF, where the shell displacement reaches
the maximum velocity. Also slow pulses are around mF.

1- -1
-2 0 2

AF (t -2an/v)

1.0

08-
LL 0.6—

y 04-
0.2-

t

-15
I

-10 0
AF (t-2on/v)

I

10 15

FIG. 4. Pulse excitons in the ferroelectric phase for different
values of the parameter AI-. At the limit AF =0 we have a stat-
ic, infinitely high and narrow peak, corresponding to the ioniza-
tion limit with its relaxation field. The arrows indicate isolated
points of vertical slope.

FIG. 5. Pulse waves in the ferroelectric phase. At the limit
AF = —1 the pulse becomes infinitely large and transforms into a
fast kink. Horizontal arrows indicate isolated points of vertical
slope.
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AF=

1/2
y —1

~
Q~

~

t=2arctan
1 —Apy

1/23p(y —1)
1 —Apy

6 arctan
P

1. Fast periodic waves

Fast periodic waves are described by the solutions

(4.30)

-2 0 2

AF (&- 2an/v)

I

6

FIG. 6. Fast kinks in the ferroelectric phase. For Az & —
3

there are two isolated points of vertical slope, at AF = ——', one in

the center, for —
—, & Az &0 the kink has a finite slope every-

where.

(4.29)

The effective potential for slow periodic waves is the oppo-
site of the one for slow pulses; slow periodic oscillations
occur between wp and mp Ap, where

—1/2

with y =w /mp, and the sign chosen on the basis of the
physical requirement of a monotonically increasing time.
The period is then given by

g 1/2

1+3
p'

(4.31)

(2f /my )
'~

W= k=.
(f/2m2)

6/~= 1/a
6/2~=1/(2a) ' (4.32)

Two examples of periodic waves, one for w p ( LUF

(tv& —0.38Lup, Ap =0.1) and one for tvp )wp (tvp = 1.2tv~,
Ap = 8) are given in Fig. 8.

Let us consider the limiting solution for mp~urF, the
amplitude tends to zero and we approach a harmonic os-
cillation of frequency and wave vector, respectively, given
by

and have divergent shell velocity when passing through
the singularity of the potential falling between the two ex-
trema. We note that such slow periodic waves would in
principle admit a static limit; here, however, Ap vanishes
and the amplitude is divergent. In any case, these solu-
tions, centered much above the shell-potential minimum
mF, are to be regarded as unstable, and no longer con-
sidered.

(3
V
(V

CJl

o 3
cv U

P.
rva 20

where G =w/a is the reciprocal lattice constant and upper
(lower) values are used according to the sign choice in
(4.30).

The phonon frequency (4.32) clearly belongs to the op-
tical branch at the critical temperature, which is degen-
erated into an acoustic branch of velocity v2. In the ab-
sence of dispersion, as required in the present continuum
limit, the respective wave vector deviates slightly from —,

or —,
' of the reduced Brillouin zone. For p ~ 1.5

[v /v2~(1 —
~

y' ) '] the period goes to infinity together
with A p and the travelling periodic wave degenerates into
an infinitely broad pulse. Then for v /v2~(1 — y ~

)

we have fast pulses of decreasing width, corresponding to
negative 3p.

1.0 ~&lllzii&llllllllllllllzi;. Wp

P

O
A

CV

PV Q

cv CL

Wp

Wp

A P

w F

10

Ap ( t - 2an/v)
20 30

Ap =0. 1

wp = 0.38 wF)
ii (t ~ 3AP w& /wp)

I i Wp=1.2'
Ap =8.0

FICx. 7. Existence condition for paraelectric waves with either
gz &0 (above) or gz ~ 0 (below): heavy lines for pulse solutions;
broken lines for periodic waves.

FIG. 8. Fast paraelectric periodic waves for wp~wp, the
periodic wave tends to the ferroelectric phonon at the critical
temperature.
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Wp

Pf

0

wp

-10

Ap=

v &v1, vo&v (v2, (4.35)

and have the character of pulse excitons (E) and ordinary
pulses (P), respectively. They have Ap &0 and are for-
mally expressed also by (4.33). For u &u~ we may consid-
er the static limit, v~0, Az~ —~, in which the ampli-
tude wp/mF diverges and the width vanishes. We may
regard this limit as an ionization limit, as for the case of
ferroelectric pulse excitons.

For vo &v (v2 we are in the small amplitude range,
where wp «wp and

~

Ap
~

&&1. In this case we can ap-
proximate the solution with the more familiar soliton
form:

W= wpsech'( —,
' Apt) . (4.36)

-10 0
Qp (t- 2an/v)

10

FICs. 9. Fast (above) and slow (below) paraelectric pulses.
For Ap~1 the slow pulse becomes infinitely wide and degen-
erates into a kink-antikink pair. The marks indicate the ampli-
tude mF. Pulses P and E for g2 ~ 0 are similar to P~.

2. Fast pulses

)
1/2

+6
p

1 —yarctan Ap
1 —Apy

' 1/2

(4.33)

Despite the complicated form, they have a fairly regular
shape (Fig. 9, above) and a width which contracts for in-
creasing velocity.

3. Slow pulses

Fast pulses (Pf) are expressed by a combination of in-
verse circular and hyperbolic tangents:

1/2
1 —yQ,pt =2 arctanh

1 —Apy

This pulse, however, travels in the paraelectric phase with
a velocity larger than the ordinary acoustic transverse ve-
locity vo, and is known in the literature to be unstable
(see, e.g. , Ref. 10).

V. CONCLUDING REMARKS

The diatomic layer model with nonlinear polarizabili-
ties besides providing a microscopic description of the fer-
roelectric phase transition in the self-consistent phonon
approximation, predicts some interesting nonlinear
features such as the existence of periodic waves, the statics
and dynamics of the Bloch walls in the ferroelectric
phase, and the possibility of pulse travelling waves.

In particular the so-called pulse excitons, which admit
as a static limit the local ionization, are seen to carry an
integrated dipole moment which increases with decreasing
velocity (in the ionization limit the dipole moment would
be infinite or the shell would be infinitely apart; of course
the theory based on an expansion in w breaks down for
overly large displacements). We can give an estimation
for the dipole moment per unit shell charge p, carried by
a pulse exciton in the ferroelectric phase in the case
v «v1, v2. This is obtained by integrating the E solutions
of Fig. 4:

Slow pulses (P) for g2 &0 have, unlike Pf, a positive Ap
and a double inverse hyperbolic tangent form given by

1/2
1 —yA~t =2 arctanh

1 —Apy

A 1/2
1 —y+6 arctanh A p

P 1 —Apy

' 1/2

(4.34)

4. Paraelectric solutions for g2 & 0

The paraelectric solutions are perhaps more interesting
in the case g2 ~ 0 (single-well anharmonic potential),
where they exist for either

A few solutions are illustrated in Fig. 9 (below) for values
of Ap approaching unity. The limit Ap ——1, correspond-
ing to wp =&3wp, is particularly interesting because the
pulse degenerates in a pair of infinitely apart kink and an
tr, kink, having a stepwise shape.

where g is the dimensionless abscissa variable. For small
velocities the integral is numerically found to be
=(43p) ', and therefore

p —( ff*/8gpg4)' (u2/u) .— (5.2)

For example in SrTi03, using the values of the parameters
which fit the experimental phonon branches in the SPA,
we find, for v/v2 ——0.3, the value p=6. 3 nm, which is a
fairly large value as compared to the polarization induced
by ordinary optical phonons.

Travelling pulse solutions might have applications in a
variety of systems. For example, polarization waves car-
rying large dipole moments, and consequently large
amounts of energy, have been considered to play a crucial
role in biomolecules. "



638 G. BENEDEK, A. BUSSMANN-HOLDER, AND H. BILZ 36

ACKNOWLEDGMENTS

We thank Professors H. Buttner, U. Schroder, and N.
Theodorakopoujos for several useful discussions. We also

thank N. Theodorakopoulos for a critical reading of the
manuscript. One of us (G.B.) acknowledges the hospitali-
ty enjoyed at the Max-Planck-Institut FKF, Stuttgart,
where this work was accomplished.

Permanent address: Dipartimento di Fisica dell'Universita ancl

Gruppo Nationale di Struttura della Materia del CNR, Via
Celoria 16, 20133 Milano, Italy.

R. Migoni, H. Bilz, and D. Bauerle, Phys. Rev. Lett. 37, 1155
(1976).

2H. Bilz, A. Bussmann, G. Benedek, H. Buttner, and D.
Strauch, Ferroelectrics 25, 339 (1980); A. Bussmann-Holder,
H. Bilz, and P. Vogl, Dynamical Properties of IV VI Com-

pounds (Springer, Berlin, 1983), p. 51. A systematic account
of the theory in the self-consistent phonon approximation is to
be given in two forthcoming papers.

3F. Calogero and A. Degasperis, Spectral Transform and Soli
tons: Tools to Solve and Investigate Nonlinear Evolution Equa-
tions (North-Holland, Amsterdam, 1982, 1986), Vols. 1 and 2.

4F. Calogero, in Statics and Dynamics of Nonlinear Systems,
edited by G. Benedek, H. Bilz, and R. Zeyher (Springer,

Heidelbeg, 1983), p. 7.
sC. Rogers and W. F. Shadwich, Backlund Transformations and

Their Applications (Academic, New York, 1982).
H. Buttner and H. Bilz, J. Phys. (Paris) Colloq. C6, C6-111

(1981).
7H. Biittner and H. Bilz, in Recent Developments in Condensed

Matter Physics, edited by J. T. Devreese (Plenum, New York,
1981), Vol. 1.

~H. Bilz, H. Buttner, A. Bussmann-Holder, W. Kress, and U.
Schroder, Phys. Rev. Lett. 48, 264 (1982).

S. Pnevmatikos, N. Flytzanis, and M. Remoissenet, Phys. Rev.
B 33, 2308 (1986).
S. Aubry, J. Chem. Phys. 64, 3392 (1976).

"H. Bilz, H. Buttner, and H. Frohlich, Z. Naturforschung 366,
208 (1981).


