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Optical response of nonlinear multilayer structures: Bilayers and superlattices
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We discuss the normal-incidence reflectivity and transmissivity of a multilayer structure which

contains N films, each of which has a dielectric constant dependent on light intensity, through a

term proportional to the local intensity. We show the method introduced in a previous paper for
the isolated film [Wei Chen and D. L. Mills, Phys. Rev. B 35, 524 (1987)] may be generalized to
the present case, retaining the feature that a numerical solution may be achieved by means of a
search for a single real number bounded between zero and unity. Explicit calculations for a bi-

layer show that such a structure exhibits bistability with nonreciprocal character: The threshold
for the onset of bistability with light incident from the left may differ substantially from that with

light incident from the right. We also apply the theory to finite superlattices. For frequencies
close to the edge of a stop gap of the structure, for rather low power, we find the system may
switch from a state where the transmissivity is unity to a state where it is exponentially small. Sol-
itons play a key role as mediators of the switching in extended superlattices.

I. INTRODUCTION

The nonlinear optical response of matter has been
studied theoretically and experimentally for a number of
years. The presence of high-power laser sources raises
questions about the nature of the response of materials
well beyond the regime where a perturbation theoretic
treatment is valid. One finds a variety of instabilities at
such high power levels, one of which is bistability in
which the material may switch from a state of low
transmissivity to high, as laser power increases.

Phenomena such as bistability occur because the
dielectric constant of the material depends on the ampli-
tude or intensity of the electromagnetic wave. In ma-
terials with a center of inversion, symmetry forbids the
appearance of terms linear in the field amplitude, so the
lowest-order contributions are quadratic in this quantity.
In the simplest picture, we may suppose the index of re-
fraction depends on the intensity of the optical wave.

There is a considerable current literature devoted to
another aspect of electromagnetic propagation in dielec-
tric media, under conditions when nonlinear response is
important. This is the theoretical analysis of surface po-
lariton propagation, on the interface between a semi-
infinite material with quadratic nonlinearities such as
those just described, and a linear dielectric. ' For such
waves, of course, the fields vanish far from the interface.
This condition, when exploited mathematically, leads to
simplifications that allows the solution to the nonlinear
problem to be expressed in terms of elementary func-
tions, for a number of models of interest.

If there is a finite rate of energy transport normal to
the interface between a linear and nonlinear medium, as
is the case in the analysis of the reAection of light off a
film or interface, it is no longer possible to obtain solu-
tions in such a form even for the simplest models of the
nonlinear response. This greatly complicates the

rigorous analysis of bistability in dielectric films. For
plane polarized light normally incident on the film, the
general solution may be expressed in terms of the Jacobi
elliptic functions.

A practical difficulty arises because the general solu-
tion involves four parameters whose value must be such
that the relevant boundary conditions are satisfied, and
these are buried within the Jacobi elliptic function in a
nontrivial manner. A numerical search within the ap-
propriate four-dimensional space is formidable.
Through a series of identities derived from the boundary
conditions, in a previous paper, we were able to express
three of the parameters in terms of a fourth, known to
be bounded between zero and unity. The problem of cal-
culating the transmissivity of the nonlinear film then be-
comes straightforward, from a numerical point of view.

This paper is devoted to the analysis of a multilayer
structure which consists of N nonlinear films, of thick-
ness d&, d2, . . . , dz. We address the problem of calcu-
lating the transmission of radiation through the struc-
ture, at normal incidence. Within each film, the general
solution to the wave equation once again involves four
parameters constrained by the boundary conditions, and
so we have 4X in total for the whole structure. We
show here how these may be interrelated through use of
arguments similar to those used earlier, so in the end
we may achieve a solution once again by searching for a
single parameter which lies between zero and unity.

We use this formalism to analyze bistability in a two
layer structure, to find nonreciprocal behavior. The
threshold for the onset of bistability as laser power is ei-
ther increased or decreased is different when the laser
beam strikes the structure incident from the left, com-
pared to the values found with the beam incident from
the right.

We have also studied the power dependence of the
transmissivity of a superlattice structure which contains
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II. GENERAL DISCUSSION

We consider a plane-polarized electromagnetic wave
which propagates parallel to the z direction; the surface
of the multilayer structure will be normal to the z axis.
The wave vector of the electromagnetic wave in vacuum
is kQ ——co/c, and if n is the index of refraction of a medi-
um at low power, the wave vector in the medium is
k =neo/c. The basic wave equation in the media of in-
terest then has the form

, +k'(1+k
~

F.
~

')E =0, (2. 1)

where A, is a nonlinear coefficient that may be either pos-
itive or negative. Each film in our multilayer structure
is described by an equation such as Eq. (2.1), and the
linear index of refraction and nonlinear coefficient may
differ from film to film.

If EQ is the magnitude of the incident electric field

outside the structure, we measure field in units of FQ
everywhere by writing

a finite number of unit cells. The infinitely extended su-
perlat tice has stop gaps when described by linear
response theory, and electromagnetic waves with fre-
quency within such a stop gap have amplitude which de-
cays exponentially as they propagate down the structure.
Our calculations show that if a finite superlattice with
nonlinear response is illuminated with radiation whose
frequency lies within a stop gap, under suitable condi-
tions the system may switch between a state where the
transmissivity is unity, to a state of very low transmis-
sivity, as the laser power is decreased. This switching
occurs for rather low laser powers, as we shall see. The
numerical calculations, supplemented by a recent ap-
proxirnate analytic treatment of the optical response of
nonlinear superlattices, " establish that solitons excited
by the incident electromagnetic wave play a central role
in such systems. The reader should note that a brief
description of the superlattice calculations has appeared
elsewhere. The present paper presents a full discussion
of the formalism used in the earlier calculations, along
with new results.

Before we proceed with our discussion, we note that
Delyon et al. have studied the nonlinear response of
finite superlattices illuminated by radiation with frequen-
cy outside the stop gaps of linear response theory. They
also find rich structure in the power dependence of the
transmissivity, in such a spectra1 regime. Our studies
combined with theirs show this to be a field with great
potential for future experiments.

2

+k'(1+X'')@=0
dz~ dz

(2.3a)

dD dP 1@d'P
dz dz 2 dz 2 (2.3b)

with A, =it
~
ED

~

. The incident field may now be taken
to have unit amplitude, and the intensity dependence of
the response of the structure is explored by scaling the
values of the various nonlinear coefficients k, with A,

the nonlinear coefficient of the mth film.
One may integrate Eq. (2.3b) to give

dP W
dz

(2.4)

where 8' is the rate of energy How parallel to the z direc-
tion. In the theory of nonlinear surface polaritons one
has W=O. Notice upon substituting Eq. (2.4) into Eq
(2.3a) we have

dD 8'
+k 8+—'k A8 =A

dz 2
(2.5)

(2.6)

where either sign is allowed on the right-hand side.
Also,

P(z)=P(d)+ W 1 dz'
d I (z') (2.7)

The general solution just outlined contains the four pa-
rameters W, 3, I(d), and P(d) which are constrained by
the relevant boundary conditions, as we shall see.

The relations just given apply within each film of our
multilayer structure, with the various parameters re-
placed by values appropriate to the relevant film. If ei-
ther X=O, or as in the theory of surface polaritons
W=O, the integral on the left-hand side of Eq. (2.6) may
be evaluated in terms of elementary functions. In gen-
eral, as we have seen, the integral is expressed in terms
of Jacobi elliptic functions. We consider first the linear
case X=0, then A. ~0 and A. &0 separately.

with 3 a constant of integration. Let the material of in-
terest terminate at z =d, and let I (z) = 6 (z). Then
upon integrating Eq. (2.5), we have

"'dI =+2k (z —d),
(AI k I 'k XI —W—)'—/—

2

F. (z) =ED 6 (z)exp[i/(z) ],
where substitution into Eq. (2. 1) gives

(2.2) A. The case X=O

Upon integrating Eq. (2.6) we have

sin
2k I(z) —3

( g 2 4k2W2)l/2
—sin

—i 2k I(d) c4 +2k ( d)
( g 2 4k2W2)1/2

(2.&)

which yields



36 OPTICAL RESPONSE OF NONLINEAR MULTILAYER. . . 6271

I(z)= A +(A —4k W )' sin +2k(z —d)+sin1

2

2k I(d) —A

(/I —4k W )'
(2.9)

The boundary conditions between adjacent media re-
quire both I(z) and its normal derivative to the continu-
ous, as we shall see. We shall discuss the means of
choosing the ambiguous sign below.

B. The case X)0

intensity I (z) is bounded inside the film. The only phys-
ically reliable solution requires the coe%cients p and q to
satisfy 27q (4p for any nonzero A. . We shall always be
able to find a solution consistent with this constraint. If
we define an angle 8 such that

cos(38)=(27q /4p )'

(I') pI'+q—=0, (2.10)

Consider the roots of the polynomial which appears in
the denominator of Eq. (2.6). If we let I =I' —

—,'X, then
these roots are found from 4p

3

2'
cos 0+ nI( n)

3A.

then we have three roots given by
' 1/2

(2.12)

where we have

4 2A
3/2 / 2gp = + (2.11a)

where n=1, 2, and 3. We refer to the roots as I'", I' ',
and I' ', and we shall always arrange the roots so that
I(1) 1(2) I(3)

The integral in Eq. (2.6) may then be written

and

16 4A 28'
27/ 3 3g 2g 2 k 2g

+ + (2.11b)

I(z)
dI 1

I(d) [(I(1) I)(I(2) I)(I(3) I)]1/2

=+(2X)' k (z —d) . (2.13)

Obviously, for A, )0, p, and q are positive. It is known
that there are three real and unequal roots if 27q (4p,
but there is one real root and two complex conjugate
roots if 27q &4p . We shall see soon that the optical

I

The integral on the left-hand side can be expressed in
terms of the inverse of a Jacobi elliptic function. We
suppose I' '&I(z) &I('), and then one has

[I(z)—I' ]' I"' I' ' —
1 [I(d)—I ]' I" I' '

+[
—
—'k(I("—I(3))]1/2k (d(I(1) I(2))1/2 I(1) I(3) (I(1) I(2))1/2 I(1) I(3) (2.14)

This may be rearranged to read

I(1) I(2)I(z)=I' '+(I"' I' ')cn 1)'j(z)—I(1) I(3) (2.15a)

where

I(2) 1/2 I(1) I(2)
q(z) =+[,X(I")—I"')]'"k(d —z)+cn-' (2.15b)

Once again, we comment below on the choice of sign on the right-hand side of Eq. (2.15a).

C. The case A, (0
We now let I =I'+ —',

~

X
~

to convert the denominator of Eq. (2.6) to the form in Eq. (2.10), with

and

p=p = 4
3

/

X.
/

2

2A

k iX,
i

(2.16a)

16 4A 28'
27 X/3 3k ill k iX

/

When the condition 27(q') &4(p') is satisfied, we again have three real roots of the cubic, given by
[/2

(2.16b)

4p'

3/X,
/

cos L9 — (n —1)
2~
3

(2.17)
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with

cos(38)=[27(q') /4(p') ]'/

and we always arrange the roots so that I"' & I' ' & I' '. We then have

(2.18)Ejj =+2( X ' )k (z —d) .
I(d) [(I I('—')(I —I(2) )(I —I( ) ))1/2

We shall find the calculated intensities lie in the range I' ' &I(z) &I' ' and then once more the integral on the left-
hand side of Eq. (2.18) may be expressed in terms of Jacobi elliptic functions. We have now

cn
(I(1) I(2))[I(z) I(3)] I(2) I(3)1/2

(I(2) I(3) )[I(1) I (z)] I(1) I(3)
(I(1) I(2))[I(d) I(3)] I(2) I(3)
(I(2) I(3))[I(1) I(d)] I(1) I(3)

1/2

+ (I(1) I(3))1/2
2

k (z —d) . (2.19)

Inverting this relation gives, with

Q(z) = + (I(') —I ( ) )1/2
2

I N(z)
D (z)

where

1/2

k (z —d)+cn
(I(1) I(2))[I(d) I(3)]1/2 I(2) I(3)1/2

(I(2) I(3))[I(1) I(d)] I(1) I(3) (2.20)

(2.21)

I(2) I(3)
N(z)=I' '(I"' I' )+I'"—(I' ' —I ')cn t()(z) I(1) I(3) (2.22a)

and

I(2) I(3)
D ( ) (I(1) I(2))+(I(2) I(3)) 2 q( ) I(1) I(3) (2.22b)

D. The boundary conditions

In the preceding subsections, we have outlined the
general solution of the nonlinear wave equation in the
medium. The solution requires four parameters be
determined. One is I (d ), the second is W, there is the
integration constant A which appears in Eq. (2.5), and
finally P(d) in Eq. (2.7). Of course, the number of free
parameters is the same as for the linear dielectric, where
the most general solution of the wave equation consists
of a superposition of two plane waves, one running from
left to right and one from right to left. Each plane wave
has a complex amplitude which consists of a modulus
and a phase.

In the multilayer structure, we have four parameters
in each film, so if there are X films in the multilayer
structure, the general solution within the medium con-
tains 4% parameters. If we consider the reflectivity of
the multilayer medium (at normal incidence), then we
encounter 4N+4 parameters, since an amplitude and
phase are required for both the reflected and the
transmitted wave.

In our earlier paper, where transmission through a and

1+R =@)(0)e (2.23a)

single film was considered, we found that a sequence of
identities can be derived from the boundary conditions
which interrelate enough parameters that a solution may
be achieved for searching for only one. This is 8' a pos-
itive real number bounded by the condition the transmis-
sivity be less than unity always. We now turn to this
question once again, for the multilayer structure.

We consider a multilayer structure which consists of
N layers, each designated with the index
m = 1,2, 3, . . . , X. The boundary conditions are that
both the electric field and its first derivative must be
continuous at z=O, where the incident wave encounters
the structure, and z =d, the boundary between the mth
and (m + l)st film.

With R the complex amplitude of the reflected wave,
at z=0 the boundary conditions read (recall ko ——co/c),
with 6 (z) and )t (z) the amplitude and phase of the
electric field in the mth film
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1 —R=.1

iko

d @) ip)(p)
e

dz z 0

ikod~
Te

iko

d( iv

dZ z d+

'~N(6' )

e

1 ((,(p)
e '

( )(0)
0 Z z=0

(2.23b) +
i/~(d~ )

e dAN
&)v(dx)

dZ z =d&
(2.24b)

At z =dz, where we match the solution inside the struc-
ture to the transmitted wave, we have

At the boundary between two films in the structure, we
have

(2.24a)
(d )

(2.25a)

and and

d(
dz z =d.

imam (dm ) . Wm i$ (d )

e +i d e
dz z=d

dD

dz m

e +' +iiP (d ) dd ~+ g (d )
~m+) m

m+& m e
m

(2.25b)

As in our previous paper, we may combine Eq. (2.23a)
and Eq. (2.23b) to give the constraint

Upon combining Eqs. (2.28a) with Eq. (2.29b) and Eq.
(2.4), we find

4ko = d

dz z =0

2

+6)(0) k()+
Z z=0

d6~
dz

=0

and

while from Eqs. (2.24) we have

(2.26)

(2.27a)

8 =8 +) ——8', (2.31)

so the solution in each film of the structure is character-
ized by the same value of 8' a requirement in fact which
must be satisfied to insure energy conservation. Howev-
er, from the point of view of a numerical search for a
solution, Eq. (2.31) eliminates (N —1) parameters from
the initial set of 4N +4.

The relations given above also lead to the constraint

A =A +, +k()(n —n ~) )I +,(d )

1

ko

d()))v

dZ z =d~
(2.27b)

and also

d(
dz

d(
dz z =d

m

(2.29a)

dP
dZ z=d

+i
dz z=d

(2.29b)

Since ( (z) is always positive, by definition, Eq. (2.28a)
also implies ( (d ) = ( + i(d ), a condition which
when combined with Eq. (2.29a) gives

dIm

dZ z =d

dI
dz z=d m

(2.30)

We now turn to constraints one may obtain from Eqs.
(2.25). Upon separating the real and imaginary parts of
Eqs. (2.25a) and (2.25b), squaring these, and adding, we
have

(d )=8 +i(d ) . (2.28)

We may divide Eq. (2.24b) into Eq. (2.24a), and separate
the real and imaginary parts to find

(2.32)

Within the outermost film, we have the special relations
in Eqs. (2.27a) and (2.27b) which apply at z =d)v. This
allows us to obtain a relation between 8'and A~:

A)v ——kp( 1+niv ) W+ ,' ni((X)v W— (2.33)

A solution to the multilayer problem now proceeds as
follows. In our units, W is a real number bounded be-
tween zero and ko. We begin by guessing a value of 8'.
This gives us Iiv(d„) through the relation W =kpI(de ),
and from Eq. (2.33) we may find Aiv. We may then cal-
culate I~(z) throughout the Nth film using Eq. (2.21).
(The sign ambiguities must be resolved before this can be
done uniquely. We comment on this issue below). From
Iz(z), we may calculate Iz(de i), which must equal
Iiv )(d~ ) ) by virtue of Eq. (2.30). We know that
Wiv )

——Wiv
——W, and we may use Eq. (2 32) to find

Az &, with this information. Now we know enough to
calculate Iiv i(z) everywhere within the (N —1)st film.
We may continue this procedure to calculate I (z)
throughout each film in the multilayer structure. This
may be done without requiring input information on the
phase tt(z), notice. If desired, phase information may be
obtained from Eq. (2.7), once I(z) is known.
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Thus, given a guess for the single real number W we
can construct the solution everywhere in the multilayer
structure. We need a criterion from which we may de-
cide when we have chosen a correct value of this param-
eter. We do this as in our earlier paper. We may add
Eq. (2.23a) from Eq. (2.23b) to find

since we have a plane wave in the vacuum, the second
derivative on the right-hand side of Eq. (2.37) vanishes,
and A, + &

may be set to zero. Satisfaction of the identi-
ty at the boundary then allows the ambiguous sign to be
determined. We now turn to the results of our numeri-
cal studies of multilayer structures which incorporate
films that exhibit a nonlinear optical response.

d@) 1 W+dz, o ko 8,(0)
(2.34)

III. RESULTS AND DISCUSSION

which when separated into real and imaginary parts
yields

2 cos[P(0)]=A, (0)+ 1 W

ko ei 0
(2.35a)

and

2 sin[/(0) ]= 1

ko

dD)
dz =0

(2.35b)

We may square both sides of Eq. (2.35a), add them to
Eq. (2.35b) after squaring each side in a similar manner,
then use Eq. (2.5) to eliminate [(d6, /dz), o] . When
written in terms of I&(z), we find

,'n &A, ,I, ( 0) +(n—&—1)I&(0)+4—2
ko

=0
ko

(2.36)

If this equation is satisfied after a value of W is selected,
then we have a solution to the multilayer problem.

We may scan the parameter W through the range
0& W &ko, and search for the particular values which
yield a solution consistent with the boundary conditions.
The problem of calculating the transmissivity or
reflectivity of the multilayer structure thus reduces to a
search for the allowed values of W.

There remains the question of the choice of sign in the
arguments of the Jacobi elliptic functions which appear
in Eq. (2.15a) and Eqs. (2.18). These are determined by
noting that at each interface, the derivatives dI/dz are
continuous [Eq. (2.30)]. Thus, one computes
(dI +&/dz), z, and notes that the choice of sign in

rn

I (z) must be such that the derivatives match at the
boundary. This will be the case only for one choice of
sign.

There are instances where the slope vanishes at the in-
terface, so this criterion is inapplicable. This is always
the case at the outer interface, as we see from Eq.
(2.27a). One then uses the following identity:

In Fig. 1 we show the transmissivity of a bilayer in
which the second of the two films is endowed with a
nonlinear index of refraction; the first film is the film ex-
posed to the incident radiation. In the linear theory, the
value of the transmissivity is left unchanged if the bi-
layer is replaced by its mirror image, or if it is illuminat-
ed from the right instead of from the left. The dashed
curves in Fig. 1, and the solid curve are calculated for
the bilayer and its mirror image, for the case where one
of the two films is endowed with a power-dependent in-
dex of refraction, modeled as in Sec. II. We see the
transmissivity is now highly nonreciprocal ~ Such bi-
layers will thus have the property that in a given power
range, they will exhibit bistability when illuminated from
the left, but not from the right.

As discussed in a brief publication and mentioned
earlier, we also have applied the formalism to the study
of power dependent transmission through superlattice
structures with a finite length. We turn next to a more
complete description of this sequence of calculations,
and their implication.

Within the framework of linear theory, an infinitely
extended superlattice provides an example of the classic
Kronig-Penny model used to illustrate wave propagation
in periodic structures. The normal modes have the
character of Bloch waves which propagate down the
structure, and the associated dispersion relation
possesses stop gaps at the Brillouin-zone boundaries.
For the particular structure studied here, in the reduced

I .0—

0.8—

0.6—

0.4—

dz

d I
dz2 z=d

0.2—

O. O
0.0 0.8 l.6 2.4

+2(k +, —k' )I +, (d )

, —k' k )I'+, (d„) .

(2.37)

At the interface between the outermost film and vacuum,

FICz. 1. The transmissivity as a function of power of two bi-
layers, one the mirror image of the other. The solid curve is a
calculation of the transrnissivity for d& ——0.13K, [ and dq ——0.2' 2,
where A. 1 2 ——A,o ln 1 2 and n 1

——6, n 2 ——4, with A, o the vacuum
wavelength of the incident radiation. Also, for the solid curve,
A. l ——A, and X2 ——0. The dashed curve is the calculation for the
mirror image of the bilayer just described.
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zone scheme, we show the two lowest branches in the
dispersion relation in Fig. 2.

In Fig. 3 we show the transmissivity of a finite length
of the model superlattice used to generate the dispersion
curves in Fig. 2; the calculations are for a superlattice
which contains twenty unit cells. The frequency lies in
the stop gap of Fig. 2, just a bit above the lower band
edge at co=0.74m. Film 1 is a linear dielectric film
(A, , =O), while film 2 has a nonlinear coefficient A. & &0.
The curve in Fig. 3 is identical to that displayed in Fig.
1(a) of Ref. 5, though we have chosen here to rearrange
the material a bit.

At low powers, for frequencies within the stop gap,
the transmissivity is very small, since the amplitude of
the wave in the superlattice has an envelope which de-
cays exponentially, in linear theory. For this example, at
low power the transmissivity

l

T
l

is in the 10 range.
Thus, on the graph in Fig. 3, we cannot resolve its value
from zero. As the power is increased, we see the folding
back of

i

T 1, plotted as a function of laser power, in a
manner familiar from discussions of optical bistability.
The transrnissivity becomes a multivalued function of
power (or Xz) above

l
Xz

l

&0.0035. The system will
thus "switch" at rather low values of power.

4
I.O

0.8—

0.2—

0.0
O.00 0.02 0.04 0.06 0.08

FICz. 3. For the superlattice described in Fig. 2, we plot the
transmissivity

i
T

i
as a function of power, for a finite super-

lattice with twenty unit cells. The frequency 0, in units used
in Fig. 2, is 0.75~, and lies in the stop gap, just above the bot-
tom edge at 0.74~. Film 1 is a linear dielectric film (X& ——0),
while for film 2, k2 is negative.

So far as we can tell from our numerical work, the
transmissivity at both point 4 and point 8, the peaks in
the two distorted "resonance curves, " assumes the value
of unity. Thus, if the superlattice is illuminated with ra-
diation of the appropriate power, and with frequency in
the stop gap, it becomes quite transparent. We have car-
ried out calculations for a number of frequencies near
the lower gap edge, and superlattices of various length
(see below) and with different choice of index of refrac-
tion, and we always find such behavior, though the
power required to reach threshold varies from case to
case. Near the lower gap edge, we find such behavior
only when X2 & 0, and for frequencies near the upper gap
edge, we must choose k&~0. We have not been able to
integrate the equations accurately, for frequencies which
are very far removed from either gap edge. Thus, our
attention here is necessarily confined to the near gap
edge region.

Insight into the physical origin of the transmission

1.6
(a)

1.2-
POINT I

4.0
(b)

I

POINT 2

0 m/2
K

(gt 08-

0.4 .

FIG. 2. The two lowest branches of the dispersion curve for
electromagnetic wave propagation down the model superlattice
studied in the present paper, in linear theory. The two films in
each unit cell have equal thickness, dl ——d~. A dimensionless
measure of frequency is O, =conI(d, +d&)/c, with ~ the actual
frequency of the wave. A dimensionless measure of wave vec-
tor is K =k(dI+dz), with k the actual wave vector. We have
chosen dI =d2=0. 125K.o, where A.o is the vacuum wavelength
of a photon with frequency vrc/(di+dI ). We choose n I

——1 ~ 5,
and n2 ——2.12, corresponding to dielectric constants eI ——2.25
and e&

——4.50.

0.0
0.0 2.0 4.0 6.0 8.0 I 0.0 0.0 2.0 4.0 6.0 8.0 I 0.0

FIG. 4. The square of the electric field
i
(z) within the

finite superlattice, at (a) point 1 and (b) point 2 in the curve in
Fig. 3. The amplitude of the incident field is unity. The coor-
dinate g is a dimensionless measure of length in the superlat-
tice. Within film 1, length is measured in units of A.o/nl and
within film 2, length is measured units of A,o/n2. In these
units, d 1

——0.1875 and dq ——0.2652.
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FIG. 5. The same as Fig. 4, but now the field intensity is
calculated (a) at point 3 and (b) at point 4 of Fig. 3.

FIG. 7. The same as Fig. 4, but now the field is calculated
at (a) point 7, and (b) point 8 of Fig. 3.

resonances displayed in Fig. 3 may be obtained by plot-
ting the intensity of the field within the superlat tice

~

6'(z)
~

at various points on the curve of transmissivity
versus power, given in Fig. 3. This is done for the nine
points labeled in Fig. 3 as shown in Figs. 4—8.

Figure 4(a) shows the variation of
~

6'(z)
~

' at point 1

of Fig. 3, which lies on the reentrant portion of the
transmissivity curve, above the lowest curve which coin-
cides with the

~

T
~

=0 axis to within graphical accura-
cy. The envelope of

~

6(z)
~

decays monotonically, in a
manner similar to one's expectations from linear theory,
which provides a pure exponentially decaying envelope.
As we move to point 2, the envelope initially increases,
rather than decreases, a behavior that difFers qualitative-
ly from that provided by linear theory, when the period-
ic structure is illuminated by a frequency within a stop
gap. This tendency is more pronounced and dramatic at
point 3, as illustrated in Fig. 5.

Point 4 is the field distribution at resonance, so to
speak, where the finite superlattice has become perfectly
transparent to the radiation whose frequency lies within
the stop gap. The envelope, to the eye, reminds one of
the envelope of a sine-Gordon soliton. Indeed, we find
the envelope is fitted rather nicely by the function
cosh (ag), with an appropriate choice of a. This is the
case, save near the two surfaces of the superlattice. At
point 5 the soliton center has shifted to the right, it has
shrunk a bit in width, and we see the "tail" of a second
solitonlike structure entering the film from the left-hand
side, which is the side illuminated by the incident pho-
ton.

For all these calculations, the amplitude of the in-

4.0
POINT 9

cident field has been taken equal to unity. Notice as one
progresses from point 2 to point 4, the maximum value
of

~

6
~

in the structure increases quite dramatically,
and then drops as one moves from point 4 to point 5.

In our earlier numerical work, we demonstrated that
for an infinitely extended superlat tice, the nonlinear
equations admit a soliton solution in the limit W=O.
The field associated with such a soliton is displayed in
Fig. 2 of Ref. 5. More recently, it has been possible to
demonstrate by analytic methods that the phase P(z)
obeys a double sine-Gordon equation when W=O, and
the soliton states may be described analytically, in
terms of elementary functions, at least in certain limits.

The previous paragraph refers to soliton solutions of
the nonlinear equations in the limit of a superlattice of
infinite spatial extent. If the superlattice is finite, and
one sets up a soliton at time t=0, it will have a finite
lifetime because it may radiate its energy into the vacu-
um on either side of the structure. It thus becomes a
resonance level of the structure, similar to Friedel's vir-
tual state in alloy theory, or resonance levels in quantum
mechanical potential wells surrounded by potential bar-
riers of finite width. If the soliton may decay by emit-
ting radiation, it follows that it may also be excited by
an incoming electromagnetic wave. The transmission
resonance at point (4) of Fig. 3 is thus viewed as a conse-
quence of resonant excitation of a soliton by the incom-
ing wave. At one particular incoming field strength, the
incoming wave matches into the soliton perfectly, the
amplitude of the reflected wave is zero, and all the ener-

12.0 I

POINT 5
3.0

(b) POINT 6

8.0—

)zl

2.0-

I 0- I.O-

0.0 2.0 4.0 6.0 8.0 I 0.0 0.0 2.0 4.0 6.0 8.0 I 0.0 0.0 2.0 4.0 6.0 8.0 I 0.0

FIG. 6. The same as Fig. 4, but now the field intensity is

calculated (a) at point 5, and (b) at point 6 of Fig. 3.
FIG. 8. The same as Fig. 4, but now the field is calculated

at (a) point 9 of Fig. 3.
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gy flows out the backside of the finite superlattice.
As we continue to progress to point 6 and point 7 of

the transmissivity curve of Fig. 3, we see the second soli-
tonlike structure progressively move into the superlattice
from the left. At point 8, where we again realize a
transmission resonance, we see resonant excitation of a
soliton pair by the incident field. Note that the max-
imum field strength at point 8 is larger than that of ei-
ther point 7 of point 9, so the two-soliton state is indeed
a resonance of the superlattice structure.

As we move to point 9, we see a third soliton moving
in from the left, while the remaining two compress and
provide room for the new entity. There will be a third
transmission resonance, we assume, though we have not
carried our calculations further.

It remains for us to discuss how a physical system will
behave in practice, when it is described by the transmis-
sivity curve displayed in Fig. 3. To see this best, the in-
formation should be rearranged a bit. The abscissa in
Fig. 3 is, to within a multiplicative constant, the input
power. The quantity

~

T
~

Eo is the output power, so a
graph of the output of the superlattice, as a function of
its input, proves useful in deducing the behavior of such
a structure in practice. This is done in Fig. 9, where the
information in Fig. 3 is rearranged into an input-output
plot. In the theory of nonlinear devices, portions of the
input-output curve with negative slope are unstable;
thus, the segments of the curve from B to 3, and E to D
are unstable.

If we illuminate the system at very low power, the
transmissivity is very small, as given by linear theory.
As power is increased, we will move out along the hor-
izontal axis from the origin to point A. A further in-
crease in power will cause the system to switch to a new
stable state. There are two possibilities, on either seg-
ment BC or onto segment EF. We know of no simple
criterion for deciding which state the system will choose.
If the calculation were continued to higher powers, seg-
ments ED and BC merge, to form a hairpin that is a

0.8—

0.4—

O. O

0.8—
b)

RS

mirror image of, say FED. Thus, if the system locks
onto an operating point on BC upon increasing power
beyond point A, when it reaches the end of the hairpin,
a further increase will induce a transition to the exten-
sion of curve EF. Consider decreasing powers, and sup-
pose the system is on curve EF. The operating point
will move down EF to point E, where the superlattice
has perfect transparency (

~

T
~

=1). A further decrease
in power will cause it to jump down to curve BC, where,
according to Fig. 3,

~

T
~

=0.3. Then continued de-
creases of power will move the operating point to B,
where again

~

T ~:—1. Decreasing the power further
will induce a transition to the point where the transmis-
sivity is exponentially small. Thus, by choosing the
operating point suitably, decreasing power can switch
the system from a state where it is perfectly transmit-
ting, to a state where the reflectivity is very close to uni-
ty.

The above calculations are for a finite superlattice,
with twenty unit cells, each of which consists of a pair of
films. As the length of the finite superlattice is de-

0.0
(c)

5.0—

C:

4.0—
O
L
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2.0—

LL+ I.O-
D0

0.0
0.00 0.02

I

0.04
A

0.06
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FICx. 9. The information in Fig. 3 is replotted, to provide
the input-output relation of the superlattice. Recall

~
X2

~

is
proportional to Eo, and thus the incident power, and this is
plotted as a function of

~

T
~

'Eo, the intensity of the output
beam. The transmissivity is unity at point B, and point E.

0.8—
RS

0.4—

0.0
0.0 —0.02 —0.04 —0.06

FIG. 10. For a set of finite superlat tices each with a
different number of unit cells (film pairs), we show the behavior
of

~

T
~

near the first resonance. We have, for the indices of
refraction, n& ——2.0 and ni ——1.5, and we have chosen k& ——0.
The superlattices are illuminated with radiation in the stop gap
analogous to that shown in Fig. 2, with frequency just above
the bottom gap edge. The film thicknesses are di ——0.23k.O/n1
and d& ——0.23k,O/n~, with A,o the vacuum wave length of the ra-
diation. In (a), the superlattice has twelve unit cells, it has six-
teen in (b), and twenty in (c).
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creased, the power threshold for the onset of mul-
tivalued character in the transmission coeScient in-
creases. We show this in Fig. 10, where for a finite su-
perlattice with 12, 16, and 20 unit cells, we display the
behavior of the transmissivity as a function of power, in
the vicinity of the first nonlinear resonance.

It follows that as the superlattice is lengthened, the
threshold drops. In practice, absorption is present, and
on physical grounds it is clear that this will limit the
length of the superlattice structures that will exhibit the
behavior studied here. It is a nontrivial extension of the
present analysis to incorporate absorption, unfortunate-
ly.

In this paper, we have shown how our earlier method

for the study of the nonlinear optical response of a film
may be extended to the case of a multilayer structure,
with optically nonlinear films as constituents. The calcu-
lations we have carried out show how dielectric bilayers
may be used as nonreciprocal elements, in regard to
their bistability, and we find also that finite superlattices
display soliton mediated optical switching, when il-
luminated by radiation in a stop gap.
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