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New path-integral solution for the density of states of two-dimensional
electrons in high magnetic fields
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A new method for calculating the density of states of the two-dimensional electron gas in high
magnetic fields with random scatterers is presented. Within the path-integral formalism we go
beyond the short-time approximation and introduce a nonlocal harmonic-oscillator correction.
Since the path integral of the nonlocal harmonic oscillator in a magnetic field can be solved ex-
actly, a new solution of the density of states is obtained.

I. INTRODUCTION

The density of states (DOS) of the two-dimensional
electron gas (2D EG) in high magnetic fields is of central
interest for the understanding of many quantum phenom-
ena discovered in these systems. Extensive calculations of
the DOS have been performed by Ando and co-
workers. ' The result from the self-consistent Born ap-
proximation (SCBA) gives an elliptical shape of the DOS.
By taking into account the multiple-scattering eff'ect,
Ando obtained an asymmetrical shape of the DOS.
Gerhardts and Gevorkyan used the path-integral tech-
nique by employing cumulant expansions, resulting in a
Gaussian DOS. An exact result was obtained by Brezin,
Gross, and Itzykson for a short-range correlated impuri-
ty distribution. A systematical study of the Landau-level
width including screening efI'ects was performed by
Lassnig and Gornik.

In this Communication we present a new method for
the calculation of the DOS of the 2D EG in high magnetic
fields by using the path-integral formalism. The eA'ect of
the random scatterers is introduced into the path integral
in terms of a potential-correlation function. This is
equivalent to including contributions from coherent multi-
ple scattering by clusters of impurities.

The short-time approximation (STA), which corre-

sponds to a constant potential-correlation function, gives
an analytical solution for the DOS. In the present calcu-
lation we go for the first time beyond the STA by includ-
ing the first-order correction term. This term is a nonlocal
harmonic oscillator. In order to do this, the Gaussian
real-space potential-correlation function is expanded up to
the nonlocal harmonic-oscillator term; the constant term
in this expansion corresponds to the STA. Since the path
integral of the nonlocal harmonic oscillator in a magnetic
field can be solved exactly, we obtain a new analytical
form of the DOS as a product of a Gaussian function
times a weighted infinite series of Hermite polynomials.

Depending on system parameters, a Gaussian or an
asymmetrical shape of the DOS can be obtained. The
critical parameter for the shape of the DOS is the
coefticient of the infinite Hermite series. When this
coefficient approaches zero, the DOS has a Gaussian
shape; when this coefficient approaches one, the DOS be-
comes asymmetric.

II. THE CALCULATION OF THE DOS

We consider a two-dimensional electron system in a
high magnetic field with random scatterers. The path in-
tegral of this system for one configuration [R] of the
scatterers can be written as

~ pt ~ I t

K(rl, r2, t, [R])- D[r(r)] exp — drL0 ——„dr+V(r(r) —RJ)
J

where Lo=m/2(x +y ) eB/2(xy —yx) is the—Lagrangian of the free particle in a magnetic field, and V(r(r) —RJ)
is the potential of a single scatterer at position RJ. For completely randomly distributed scatterers, the distribution of the
scatterers can be expressed probabilistically as

P [R]d[R]= dRi, . . . , dR~
(2)

N, A gN

where N is the number of the scatterers, and A is the area of the system. Edwards and Gulyaev showed that an average
over all configurations of the scatters can be performed exactly resulting in

K(r~, r2.,t) = „d[R]P[R]K(ri,r2, t, [R])
r

~ I t ~ pt
D[r(r)] exp — dzLO+ pdR exp —— dr V(r(r) —R) —Idp p

(3)

where p is the density of the scatterers per unit area. In the limits of high density p~ and weak scatterers V 0 so
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that pV remains finite, Eq. (3) can be simplified to
r ft

1
~t

K(r~, r2, t) = D[r(z)]exp —J dzLo—
0 2g2 JP J0dz da W(r(z) —r(a) )

where

W(r(z) —r(a) ) = p „dRV(r(z) —R) V(r(o ) —R)

is the correlation function.
In Eq. (4) the perturbation due to the random scatter-

ers has been reformulated in the path integral through the
potential-correlation function. This potential-correlation
function is the measure of the fluctuating potential at
different points in the system. Since this function is intro-
duced in the path integral as a potential term, it causes
problems for solving the path integral because it is a non-
local potential. This nonlocal potential corresponds to a
non-Markov process and has a self-attracting eAect on the
electrons.

One way to solve this path integral analytically is to ap-
proximate the potential-correlation function by a constant
(STA). However, since the potential-correlation function

I

I

usually decays, one should go beyond the STA. In order
to do this, we assume the correlation function to have a
Gaussian form

W(r(z) —r(a) ) =pri'exp — [r(z) —r(a) ] '1

L 2

where p is the density of the scatterers per unit area, g
determines the scatterers strength, and L is a correlation
length. Then we expand the Gaussian correlation func-
tion to be

W'(r(z) —r(a)) = prl 1 — [r(z) —r(a)] +1

L 2

The first two terms in this expansion correspond to the
STA and the nonlocal harmonic oscillator, respectively.
For convenience, we rewrite Eq. (4) in the form

K(r~, r2, t) =exp — D[r(z)]exp — dzLp dz da[r(z) —r(a)]2crt l lplv

2A ft ~o 4ht ~o ~o

where v 2ipq t/mhL is the frequency of the nonlocal
harmonic oscillator.

For the path integral of the nonlocal harmonic oscilla-
tor in a magnetic field, Sa-yakanit et aI. ' already ob-
tained the exact solution. The density matrix from this
solution has the form

Thus, the DOS can be calculated by using
~ OO

N(E) = dt K(t) exp(iEt/6) . (10)

By analytical calculation, the solution of Eq. (10) has the
form

' 2
2t 2

K(t) exp
26

mv t
4tri 6 [cos(cot/2) —cos(A t ) ]

N(E) = g exp
1

2&l2I Jz n o

E —(n+ —,
' )h, ro

(g)
where A =(zo/2)(1+4v /ro ) '/, and ro =e8/ ims the cy-
clotron frequency. From this equation one can see that
the density matrix damps down very fast when the time t

approaches infinity. In order to understand this behavior
of the density matrix one has to keep in mind that its ab-
solute square is the probability to find the electron at the
starting point after a period of time t For a long pe. riod of
time the chance that the particle will come back to the
starting point is very low because the particle can wander
randomly in the system. Therefore, the density-matrix
approaches zero for the long-time propagation.

The cyclotron frequency co is perturbed by the frequen-

cy v of the nonlocal harmonic oscillator. Keeping only the
lowest-order perturbation, we take the limit v/ro~ 0, and

the density matrix in Eq. (8) becomes

I.O-

0.8-

0.6

~ 0 4-
C3

x g g"Hk
k 0

(n+ —,
' )hco E—

I

I

I
'

I

K(t) =

Vl CO
'i'

2xh. (1 —v'/ro') „-og exp— —i(n+ —,
' )rot .

771co 1 PV t
exp

4+i h (I —v /ro ) sin(rot/2) 2h
5 l0 15 20

ENERGY (rneV)

FIG. 1. Density of states for m 0.07m 0, B 4.61 T
(atro 7.64 meV), and 1/its=0. 1. The dash-dotted line
represents the result for 1/L 0.1, the solid line corresponds to
1/L 3, and the dashed line to 1/L =6.
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where

rl' « I, I 2 2pri2, l2 h,/eB, co eB/m,
A coL

Hi, (X) is the Hermite polynomial of order k. The
coefficient of the infinite series g determines the asymme-
trical shape of the DOS. From this calculation the
broadening parameter I depends only on the strength and
the density of the scatterers. Therefore, every Landau
level has the same behavior.

III. DISCUSSION

The DOS is plotted for various parameters in Fig. 1,
evaluating Eq. (10) numerically. The quantity I /I'tco is

kept constant while I/L is varied. The critical parameter
determining the shape of the DOS is the coefficient of the
infinite Hermite series g. For g 0 the DOS has a
Gaussian shape; for (~ 1 the DOS becomes asymmetric
and the maximum shifts to lower energies. In comparison
to Ando's work, we have found that both results have a
similar behavior. However, our result has no problems

with singularities and can be expressed in closed form.
In summary, we have presented a, new method for the

calculation of the DOS of the 2D EG in high magnetic
fields with random scatterers by using the path integral
formalism. For the first time, we have performed the cal-
culation by going beyond the STA to the first-order
correction term of the real-space potential-correlation
function. This correction term is a nonlocal harmonic os-
cillator. Since the path integral of the nonlocal harmonic
oscillator in a magnetic field can be solved exactly, we
have obtained a new analytical form of the DOS as the
product of the Gaussian DOS times an infinite Hermite
series.
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