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Semimagnetic semiconductors with frustration are modeled by Ising spins populating a fcc lattice
and coupled by nearest-neighbor antiferromagnetic interactions. The system is endowed with
Glauber dynamics. At small concentrations the system is a collection of various n-spin clusters. We
obtain statistical weights of these clusters at different compositions. We calculate equilibrium and
dynamic susceptibilities. Clusters containing up to seven spins were included. The dynamics of each
cluster are solved exactly. Each cluster contributes as many long relaxation times as it has nontrivial
ordinary and extended energy minima. The barriers against inversion of the clusters take only three
values: 0, 2 J, and 4 J . At low temperatures this results, via the Arrhenius law, in a three-
peaked distribution of the relaxation times on a logarithmic scale. Such a structured spectrum yields
a g' with three plateaus and a 7" with three maxima when plotted against logan.

I. INTRODUCTION

The most noticeable features of spin-glass dynamics are
the slow decay of fluctuations and the existence of a broad
spectrum of relaxation times as shown, e.g. , by Chamber-
lin et al. ,

' Mezei and Murani, and Lundgren et al. A
sensible way to try to understand these phenomena would
seem to be the study of the dynamics of small clusters, in
order to examine effects of the incipient multiminima
physics. This approach has been taken by Kinzel, Bana-
var et al. , Reger and Binder, and Cieplak and
Fusakowski. The first and third of these papers con-
sidered ensembles of rings with spins. On the other hand,
the other two papers dealt with a single six-spin cluster
characterized by a coordination number of 4. All of these
papers discussed Ising spins with single-spin Glauber'
dynamics. This yields a linear equation of motions for
(S;) in the case of rings and nonlinear ones in the other
cases.

The focus of Banavar et al. and Cieplak and
F.usakowski (henceforth referred to as BCM and CE) was
on finding links between properties of the local energy
minima and the resulting spectra of relaxation times.
These in turn have been used to explain the frequency-
dependent susceptibility. The findings, in the absence of a
static field, can be summarized as follows.

The decay of a remanent magnetization is governed by
a sum of 2" ' exponential terms, where n denotes the
number of spins in a cluster. Most of the corresponding
relaxation times are short —of the order of the microscop-
ic Glauber time ~o. There are some relaxation processes,
however, which become infinitely long in the limit of
T~O. The number of such diverging relaxation times is
equal to the number of nontrivial local energy minima
which are stable against single-spin reversals. (By non-

trivial, we mean that we do not consider a state obtained
by reversing all of the spins as a diff erent energy
minimum. ) The diverging relaxation times follow an Ar-
rhenius law,

c/kp T
7 OC

where c is the energy barrier against inverting the
minimum upside down. The prefactor ~o is of the order
of ro. (Strictly speaking, the reversals of the true ground
states have been studied in CK, but the same property is
expected for excited minima as well. ) Depending on T
and on the exchange couplings, the diverging relaxation
times can either be close to each other, on a logarithmic
scale, or be noticeably separated. In the latter case the
real part of frequency-dependent susceptibility, 7'(T, to),
reveals a sequence of plateaus as a function of log&a,
whereas the imaginary part, X"(T,co), displays maxima.

Experimental results for +" are usually plotted versus
and not versus logan'. However, the experiments of

Lundgren et al. on metallic spin glasses tend to indi-
cate the absence of maxima in 7". This may serve as a
partial justification of the phenomenological model pro-
posed by Lundgren et al. in which one postulates that the
relevant relaxation times are distributed uniformly on a
logarithmic scale.

The relaxation times are related to barriers against re-
versals of the minima. One expects, therefore, that the
spectrum of these times will be uniform on a log scale
provided the exchange couplings come from a set which is
effectively continuous, e.g. , Gaussian numbers. If the
couplings are two valued as in the case of Eu Sr~ S (see,
e.g. , Eiselt et al. "), then the possibility exists for a struc-
tured distribution of the relaxation times.

A similar situation, but in an even more pure form, can
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be found in the so-called semimagnetic semiconductors re-
viewed by Mycielski' and Gal'azka. ' Examples of these
are Cd

&
Mn Te studied by GaIazka et al. ' and

Hg ~
Mn„Te studied by Nagata et al. ' In both these

compounds the 5= —,
' manganese ions occupy sites of a fcc

lattice and the neighboring ions are coupled by an antifer-
romagnetic interaction J of the order of —13.8+0.3 K in
the case of Cd& Mn Te and —14.3+0.5 K in the other
semiconductor. ' It is possible to include antiferromag-
netic next-nearest-neighbor couplings in any theoretical
account of the magnetic properties of the two systems.
These, however, do not alter the essentials of the physics
involved: the peculiarities of the fcc geometry can make
the systems behave like spin glasses even with only
nearest-neighbor antiferromagnetic couplings. A Monte
Carlo study which demonstrates this, at least for Ising
spins, is that of Drest and Gabl. '

With the next-nearest-neighbor couplings excluded a
spin-glass behavior is expected above the percolation
threshold, i.e., for x &x, =0.195 (at sufficiently large x an
antiferromagnetic order sets in). Below the threshold the
spins form finite clusters and nothing but a paramagnetic
phase is possible.

Recently, however, evidence for spin-glass behavior
significantly below x„e.g. , at x=0.01 and T &1 K, has
been presented. This suggests the inhuence of longer-
ranged forces. In the case of Hg &

Mn Te the evidence
is due to Brandt et al. ' and in the case of Cd~ Mn, Te
and Cd& Mn Se to Novak et al. ' Similar conclusions
have been reached for Zn& Mn Se and Zn& Mn Te by
Twardowski et al. In the latter paper an ac susceptibili-
ty (cu & 100 Hz) is measured to get a freezing temperature
Tf. Novak et al'. made measurements of the magnetiza-
tion at H=1 Oe and attempted to locate an equilibrium
Tf by waiting for 2 h or so after any change in T. At the
lowest temperatures studied by the two groups, of the or-
der of 0.01 K, both experiments seem to occur too fast for
the study of equilibrium. As we shall see, the highest bar-
riers c of independent clusters involved here should be of
the order of 4

~

J ~. In translating the Glauber dynamics
into real life the time ~o is typically assumed to be about
10 ' sec. Thus Eq. (1) yields the longest relaxation time
to be roughly equal to 10 ' e sec. For T=1 and 2 K
this gives ~ of the order of 10' and 1.4 sec, respectively.
Any interactions between clusters should extend relaxa-
tion times even further. Above T=2 K and much below
the threshold x, the two experiments are probably on the
safe side. Above the threshold, at x=0.4, Ferre et at. '

report processes lasting for 100 sec in Cd& Mn Te.
The nature of the longer-ranged forces is a matter of a

dispute. Novak et al. explain their data in terms of
dipole-dipole interactions. In the two known cases in
which a purely dipolar ordering is found to exist the or-
dering temperatures are equal to 0.136 and 0.02 K (after
Ref. 22). Thus at several degrees Kelvin these interac-
tions are not expected to matter. Twardowski et al., on
the other hand, invoke unknown R forces between
spins.

Either way, it seems proper to assume that at not too
low temperatures, say T& 1 K, and not too large concen-
trations, say x & 0.08, an independent-cluster picture

should work well. Studying the dynamic susceptibility of
such clusters is an object of the present studies. The ma-
jor simplification adopted here consists of replacing the
manganese spins by the Ising ones which take values of
+ and —1. It is hoped that the essential physics is still

retained in this way. Note that there can probably be no
spin glass with purely Heisenberg-like spins in three di-
mensions (see Refs. 23 —26). In the case of Cd, Mn, Te,
the Isinglike anisotropies could perhaps originate in local
elastic stresses. Nevertheless, the role of the transverse-
spin interactions as well as the quantum effects in the spin
relaxation are hard problems to be still elucidated.

In the research we report on here we have generated all
of clusters that are relevant at small concentrations. We
then studied their magnetic properties and found a gen-
eralized rule that associates the number of diverging relax-
ation times to energy minima. At low temperatures the
distribution of the logarithms of these times is not uni-

form. Instead, it has been found to be confined to three
different regions. This is because there are only three pos-
sible energy barriers e in these clusters: 0, 2

~

J ~, and
4

~

J
~

. This structure of the spectrum results, at low tem-
peratures, in a three-peaked 7" and a three-plateaued 7'
when plotted against logco. It remains as an interesting
question whether the peaks could be seen experimentally
before the long-ranged interactions begin to alter relaxa-
tion patterns. And the way in which these forces affect
the dynamics is still another interesting question to
ponder.

II. GEOMETRY OF CLUSTERS

mg(c)
P(k, , n )=—gC Nc

(2)

The statistics of the relevant clusters has been obtained
numerically. We considered a fcc lattice consisting of
four cubic sublattices, 12)& 12)& 12 sites each. The period-
ic boundary conditions were used. The sites were popu-
lated with spins with a probability x. For each x, C=40
samples have been taken into account. We have con-
sidered x between 0.01 and 0.18 and identified two
different three-spin clusters, six clusters with n =4, 15
with n =5, 40 with n =6, 72 with n =7, 116 with n =8,
and 134 with n =9. Clearly a proper account of the n =8
and 9 clusters needs a significant improvement in the
sample statistics. In calculations of the susceptibility we
considered clusters consisting of up to seven spins which
restricts the physical relevance of our studies to concen-
trations not exceeding about 0.08. We estimate that at
this concentration the contribution of clusters with n ~ 8
to the total number of available clusters is about 10%%uo.

Figures 1 —3 show all of our n (6 clusters. We have di-
vided them into three different types for reasons which
will become clear later. The pictures of the clusters are
merely schematic since the only geometrical features that
matter in calculations of the susceptibility are local coor-
dination numbers and the pattern of the links. We have
tabulated the statistical weights with which particular
clusters appear at a given concentration. These weights
were calculated according to the following formula:
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TYPE T TYPE Z[

0/0 0/0 0/3 0/3

3/0 1 I'2 0/3 0/0

3/0
Gj'2

0/2

2/0
0/3

0/0
0/3 1/3

g
2/0

FIG. 1. Clusters of type I which consist of n & 6 spins. These
clusters have the static susceptibility approaching 0 in the limit
of T~O. The significance of the numbers shown is explained in
the text.

where c enumerates samples, 2V, denotes the number of
occupied sites, and mq(c) counts clusters of kind A, . In
other words, P(A. , n ) gives a probability that a lattice site,
if taken, belongs to an n-spin cluster of shape A, . The
weights P(k, , n) are available upon request. We just men-

i~
iv

0/9
0/4

0/5

0/3

0/3

0/6

0/2

1/4

0/2+2 0/Q

0/0~

FIG. 3. Clusters of type III which consist of n &6 spins.
These clusters have a diverging static susceptibility and have
ground states which are either extended or allow for their rever-
sals without any energy cost.

TYPE X

3/0

Z)
3/0

FICx. 2. Clusters of type II which consist of n &6 spins.
These clusters have a diverging static susceptibility and have
ground states which are not extended.

tion here that for a given n most probable are those clus-
ters which are "linear" or are simple "one-leg" or one-
triangle additions to the linear objects. Compact and
highly coordinates clusters are less probable. There is no
truly overwhelming type of cluster though.

Figure 4 shows a probability P„ for a cluster to consist
of n spins. P, is derived by adding weights of all the n-
spin clusters. We see that no matter what x &x, , single-
spin clusters are invariably the most probable clusters
around. In general, P, monotonically decreases with n.
The authors of Refs. 14 and 15 make fits to experimental
susceptibility and specific heat at x =0.027 and 0.06 based
on up to n =3 clusters. They conclude that somehow sin-
gle spins are less abundant, by 30% or so, than a perfectly
random distribution would yield. This propensity for
correlated clustering can be explained more simply by in-
voking a necessity to include higher n clusters as Fig. 4
suggests. Our calculations show also that the n &3 clus-
ters exhaust 84.70% of possibilities for an occupied site at
x =0.06. Novak et ai. ' argue similarly that the spin dis-
tribution is, in fact, random, but single spins, or for that
matter any clusters, disappear as such due to couplings
via the dipolar interactions.
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FIG. 4. Probability P„ for a cluster to consist of n spins,

n =1—9, as a function of the concentration x. The scale for

n =1 and 2 is shown on the right. The scale for other values of
n is shown on the left.

Note that P„has a maximum when plotted against x.
The maximum shifts towards higher x upon increasing n.
The value of x =0.08 adopted in most of our calculations
of the susceptibility is halfway between the maxima for
n =3 and 4. The n ) 8 clusters clearly make a contribu-
tion then. Our aim, however, is not strict accuracy, but
rather to show the role of the clusters with n )4.

III. ENERGY MINIMA

For any of the n-spin clusters we can scan through
their 2" states and observe energy changes upon reversing
individual spins. It is convenient to distinguish between
the following categories of states:

(a) ordinary energy minima, i.e. , states which are stable
against single-spin reversals;

(b) extended minima, i.e., states in which it costs no en-

ergy to turn some of the spins but a positive energy to
move the remaining ones; the system, so to speak, can
Boat freely within several of such states; their number will
be referred to as an extension of the minimum;

(c) totally frustrated states, i.e., those which are extend-
ed so much that their inverted image contributes to the
extension of the state.

The totally frustrated states appear, e.g. , on the last
cluster of Fig. 3 studied in BCM and CF. For Jj ——J~0
it costs no energy to invert the ground-state spin

configuration on this cluster and this yields merely a finite
relaxation time. By extended minima we do not mean the
totally frustrated states.

We now classify clusters according to the properties of
their extended and ordinary energy minima. It is con-
venient to describe an energetic structure of a cluster by a
symbol I/m where l denotes a number of nontrivial ordi-
nary energy minima and m specifies extension of a non-
trivial extended minimum. These symbols are used in
Figs. 1 —3. If no symbol is displayed the cluster is meant
to have just a single energy minimum, i.e., it yields a 1/0
structure. An overbar indicates a minimum which is not
a ground state. Thus 1+4/0 denotes a system in which
the ground state is not degenerate (other than the trivial
degeneracy of a mirror reversal) and in which there are
four degenerate excited minima. There are no extended
states here. In particular, this means that there is no
cost-free path between the four minima. The symbol 0/3
means that there is one extended minimum whose exten-
sion is 3. All extended minima shown in the figures cor-
respond to ground states. Thus 0/2+ 2 means that the
ground state consists of two groups of doubly extended
states (plus the inverted images). All of these states are
identical in energy. Otherwise an overbar would distin-
guish the states which are excited. The symbol 1/4 indi-
cates that the ordinary and a fourfold extended minimum
coexist at the same energy. An example of a 1/4 cluster
is shown in Fig. 5 together with its nontrivial ordinary
and extended energy minima. The classification of the
clusters is as follows.

(a) Type I: clusters in which the ground state or states
are ordinary energy minima and in which an overall mag-
netization vanishes. This can happen only for even n
since only then it is possible to have as many spins up as
down.

(b) Type II: same as above except for a demand that
the ground-state magnetization is nonzero.

(c) Type III: at least one of the ground states is extend-
ed.

The physical relevance of this classification will be ex-
plained shortly. Let us now characterize statistical
weights of the particular types. At x=0.04 there are
26.25% of taken sites which belong to n (6 clusters of
type I, 9.55% of sites with n (6 clusters of type II, and

ordinary minimum:

tJtjtJ
ext ended minimum:

ttlttI = Jtl/tI

FIG. 5. The 1/4 six-spin cluster of type III. It is the next to
the last cluster of Fig. 4. The "bowls" indicate cost-free single-
spin reversals. A barrier against complete reversal of each of the
five states shown is equal to 2

~

J
~

.



624 K CIEPLAK , MA&TA Z C LAK, AND J

the corres

SAKO~S K

64.00% of type III
bers read 2

. A

ese nu
6.04%%u'8.75

umbers add u
o and 45 90%%u

g num

ters c
p to 70%%u,

% resp

cle
of seven

o and the r

arly domj
and mor

e remaining

inates at th
re spins.

e occupied
y make 23.82%

o-spin ones.

lmear th
s, respectivel

o and 21 59%%u

%%u& corres o
ers predom

o d type

cluster
Pondingly) F

inate (7 74'

rs are sin 1

&nail

o

g e splns (6p 4p
y. most. Of the

% and 36 84
type-

o).

36

%%u'

. STATIC SUSCEPTIBILITg

Th
c" clust

g «& (g )

cluster of h
lows that th

' equal to
er. It fol
s ape y

e statjc
zero for

0k» equa
suscept b' '»liiy of

1
n

k, T gS, (3)

order to de
we m

o etermine th
it&ply y b

e susceptjbj& t

that; b
y (X, g ) Th. .

' ' ' y 7 Per latt.

summatio
p bab jl jty to

ult jpl jed

jgure 6 shows g
invest jgate th

performed.

spat T
the~de

=p. 2 (in u
.

Pendence f y
umts of

~

J ~
o X.

B ) togeth

/
/

/
/

/
I

I
I

/
30—

1.0

er wit
vel

contr jbu
y

clus lo
ster yields

om clusters

A
clusters with

clusters. At
ere are the „

At T p4
a eabout 82~

see Ref. lg)

ce tib
they cou

o ofthe n
the

P ibihty bend
unt about th

net susce tib

n
.

ove th
.

1. .
e n

w]1] m
at ~ —0 1

e same T}

]
II

o note that th
ore to the

ger clusters

sjmj&ar ma
'

the experjme t
nght It .

s

Th
7 shows 1 ~

»ty of x =0
d'sp»ys a

figure 7
e vic jn

p &lji

e slope f ~

+ versus T .
'15 «so '5

The Curie
gj es an ino

at variious cog c

teexer
constantn grows w'

t e Curie
s.

inverse f
centrat jo

perlmental f,
.

with x in t
rie constant.

relevance of
ndjngs. ' —~6

e way that

duct
our model t

js a]so
™cs

ors.
o describ

o testifies

We now

esemjm .
«a

magnetic se

etai1. A1. A typical g
T dependen

ype I yje]d
e preced

e major

ponentially T
susceptjbjl jt

' g sect jon.

and

corresp d
p -I cluster

' lusters. If

on jn
s, are n

. thes

balusters of t
ppear in th 1

then

st yteld
'm

a ftnite ((g z~'

20

o.8

o.e

O.i.

o.2

I

0.0c,
I

0.08
I

0.12
I

0.1 6

eshow s th
"' ptlb111ty at T

xceedjn 0
suit, as d

= - vsx. Th
e net re

a

g .08. Th' .
Oes its d

e bold. ,

an ind1cated
lines show

uation to ~

e number of
ow contrjbut

spjns.
ons from FI~

nd h1gher
-

f the statj
'n 1nCrem ents of 0 0

p 1bil jty vc susce t for ~=o.02



36 DYNAMIC SPIN SUSCEPTIBILITY OF SEMIMAGNETIC. . . 625

tanh(13h;)= g 'y, . S,. + g f', ,k(S,'SkS(
j jkl

j&k~l

+ g r; p, ) . „SIST,SiS S, .
jklmr

(5)

eq

FIG. 8. Static susceptibility at x =0.08 vs T. The bold solid
line shows the net result. The thin solid lines indicate contribu-
tions from the three types of clusters.

and thus a divergent 7. In the case of the third type of
cluster the ground states are either (totally or partially)
extended or totally frustrated. The "How" across these
states must necessarily go through states which are mag-
netized and thus yield a finite ((S;) ). We shall see that
the type-II and type-III clusters display an entirely
different dynamic behavior though.

The coefficients y, I, and I depend on T and the ex-
change couplings. They can be found by using the repre-
sentation (5) for all configurations of spins surrounding
site i.

Clearly, Eq. (4) couples (S;) to higher-order odd-spin
correlations for which analogous equations of motion can
be written. For a cluster of n spins there can be all to-
gether 2' ' odd-spin correlations which are all coupled
within themselves in a linear fashion. Similarly, the
2" ' —1 even-spin correlations are also coupled linearly
within themselves. These, however, would not affect the
decay of a magnetization.

As explained in more detail in CE and BCM, the relax-
ation times ~„are equal to —1/A, „, where A,„are the ei-
genvalues of the equations of motion for the correlations.
There are thus both odd- and even-spin relaxation times.
The longest relaxation time is always "odd." The *'even"
times approach the remaining odd times at low T.

We have studied all of the 137 clusters with n &7 at
various temperatures. Figure 9 shows a distribution of
the odd relaxation times at T=0.2. Each cluster here is
considered on an equal footing, regardless of how prob-
able it may be. The figure shows cumulative distributions
for clusters corresponding to a specified number of spins.
The immediate observation is that the spectrum is triply
partitioned and this property does not depend on n. This
refiects —through Eq. (1)—the existence of only three
possible energy barriers in the clusters. One can easily

2000—

V. SPECTRUM OF RELAXATION TIMES
'888--

T=0.2

Suppose the system is kept in a magnetic field which is
then turned off. With what relaxation times will the mag-
netization disappears According to C'rlauber the anwser to
this question reduces to solving the equations of motion as

E 88':

o 25-

I

L~
I

I
I

I
I

1+so—(S;(t))=(tanh(Ph;)),d
(4)

where h;=g JJS& is the exchange field acting on S;. By
a symmetry argument, the right-hand side of Eq. (4) can
be expressed as a polynomial containing products of odd
numbers of spins. The order of this polynomial p, de-
pends on the local coordination number z. For odd z, p is
equal to z and for even z it is equal to z —1. In the case
of clusters containing not more than seven spins the
highest z available is 6 and then

- ~ .
L~

1

0
og ~o~zt+o)

FI~G. 9. Distribution of relaxation times at T=0.2 (in units of
~

J
~
kq) on the logarithmic scale. The solid line shows numbers

of relaxation times found in the n =7 clusters, the dashed line in
the six-spin clusters, the dotted line in the five-spin clusters, and
finally the shaded region corresponds to n (4. Each cluster
comes with a weight of 1 here. Note that the scale on the verti-
cal axis is broken.
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FIG. 10. Same as in Fig. 9, except that each cluster comes
with a weight as found at the concentration x =0.08.

demonstrate that these are equal to 0, 2
~

J ~, and 4
~

J
~

.
The degeneracy in the barriers is due to identical ex-
change couplings adopted. The prefactors ~o of the Ar-
rhenius law differ somewhat between clusters, giving rise
to the finite widths in the distribution of the relaxation
times.

The short relaxation times, of the order of ~o, are most
ubiquitous. The longest times, of the order of
roexp(4

~

J
~

ikT), are the rarest. These conclusions are
not altered if the statistical weights are attached to the
clusters. This is demonstrated in Fig. 10, where the
characteristic probabilities for x =0.08 are taken into ac-
count. The low-n clusters fill most of the "intensity" in
the spectrum. Even though the larger-n clusters are more
likely to possess more than one long relaxation time than
the smaller clusters, their combined weight is not enough
to dominate the spectrum.

The combined spectrum, across all n (7, is shown in
Fig. 11, again at x=0.08. The separation between the
three regions of the relaxation times shrinks with T. At
T=0.4 the peaks start to overlap and then they merge
into the region of a rapid relaxation. The various relaxa-
tion mechanisms separate only at very low T.

Now, how many diverging relaxation times a single
cluster can produce? Our studies have brought us to a
conclusion that the rules specified in BCM and CK, need a
generalization to cases in which degeneracy in the energy
eigenstates is possible. The proper rule is as follows:

The number of the diverging relaxation times in the
odd part of the spectrum is equal to the number of non-
trivial ordinary energy minima plus the number of non-
trivial extended energy minima.

In this rule a k-fold extended minimum is meant to
contribute only one diverging time, no matter what the
value of k. Thus a cluster of kind 2/0 yields two long re-
laxation times, but a cluster 0/2 yields only one such
time. On the other hand, a cluster corresponding to the
symbol 0/2+ 2 contributes two long times since the two
"basins" are not connected. The cluster of Fig. 5 gives
rise to two diverging relaxation times and both of them

4

109]p ( z/zpj

FIG. 11. Distribution of relaxation times for x =0.08. The
top panel corresponds to T=0.2 (in units of

~

J
~

/kg ), the lower
to T=0.3. The arrows indicate positions of average relaxation
time within each region.

correspond to the same barrier, c, =2
~

J
~

. The two times
appear different because the ~o factors are not the same.

Our rule specifically excludes the totally frustrated
states since such states offer no hindrance to up-down glo-
bal rotations. Thus the 0/0 clusters participate only in
rapid processes. On the other hand, if a system is found
in an extended minimum, it can "Goat" in restricted
directions, but no full relaxation is possible without mak-
ing a coupling to a heat bath.

The number of clusters that produce multiple long re-
laxation times grows with n. For n =4, 5, 6, and 7 there
are 1, 2, 11, and 36 such clusters, respectively. Out of
about 200 different relaxation times identified in the 137
clusters with n (7, there were 130 which were due to or-
dinary energy minima. The role of extended minima in
producing a long relaxation, relative to that of the ordi-
nary minima, seems to increase with n. A static magnetic
field invalidates the rule linking minima to the relaxation
times, similar to what has been found in CE.

VI. DYNAMIC SUSCEPTIBILITY

Finding 7' and P" requires knowledge of the eigenvec-
tors of the matrix representing the equations of motion.
Both odd and even parts are needed since the oscillatory

magnetic field couples the two submatrices to each other.
The procedure of calculating the dynamic susceptibility of
a cluster has been fully described in CK.

Consider first the T dependence of 7'. Figure 12 shows
the real part of the dynamic susceptibility for two
different frequencies and at x=0.08. It also shows how
each of the three major types of clusters contributes to the
net susceptibility. Generally, 7' is expected to follow the
equilibrium susceptibility at higher temperatures when the
relaxation processes are fast. Upon lowering T, Auctua-
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interactions and is thus not recommended. However, at
T=0.4 and 0.5 there are still two (and not three) time
scales which are separated well enough to produce pla-
teaued 7'. Even a negative result would be interesting.
An absence of the structures would probably point to re-
laxation processes which are dominated by the transverse
components of the exchange couplings. At the same time
the critical properties would be dominated by Ising-like
couplings arising via some anisotropies.

In a recent paper Rigaux et al. report on measure-
ments of the dynamical susceptibility of Hg& Mn Te at
x =0.30. They interpret the data in terms of a wide dis-
tribution of relaxation times and get b -=trl2 [see Eq. (6)]
as in metallic spin glasses. Certainly at this composition
the cluster picture should not be applied and the time
scales are much longer. The physics of discrete energy

barriers should still be valid though. It would be interest-
ing to find out whether there is a frequency range in
which the dynamic susceptibility looks structured in this
system.
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