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Enhancement of nonparabolicity effects in a quantum well
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The eAects of conduction-band nonparabolicity on the confinement energy and energy dispersion
parallel to the layers for a GaAs quantum well are investigated with the use of an expression for
the bulk conduction-band dispersion expanded to fourth order in k. The anisotropy of the con-
duction band is included. We derive some accurate analytical expressions for the perpendicular
mass, which gives the confinement energy, and the parallel mass, which is relevant for motion
along the quantum well. These masses explicitly depend on the confinement energy. We find that
the nonparabolicity enhancement for the parallel mass is about three times stronger than for the
perpendicular mass. We finally compare with some recent experimental results.

I. INTRODUCTION

The energy of the bottom of an electron subband in a
quantum well can often be determined to a reasonable
accuracy by a simple particle-in-a-box calculation with
the kinetic energy given by R k /2m. For subbands fair-
ly far from the bulk conduction-band edge, corrections
due to the nonparabolicity of the conduction band can
be important. Several schemes' have been proposed
to take these nonparabolicity effects into account.
Rossler has shown that it is necessary to include the
second ( I s+ r 7) conduction band in addition to the
lowest conduction band, the heavy- and light-hole bands,
and the split-off band for an accurate description of the
dispersion of the conduction band more than 50 meV
above the band edge.

While the nonparabolicity effects on the confinement
energies have been considered by several authors, the
dispersion parallel to the layers E(k~) of the electron
subbands has received less attention. For hole subbands
it has been shown that the combination of confinement
and coupling between the heavy-hole and light-hole
bands causes a highly nonparabolic E(k~ ) dispersion,
which is very different from that in the bulk. The E(k~~)
dispersion of the electron subbands is roughly parabolic,
but it is conceivable that the degree of nonparabolicity
can be different in quantum wells compared to the bulk.

In this Brief Report we derive expressions for the
confinement energies and the E(k~~~~) dispersion in a GaAs
quantum well starting from an accurate expression of
the bulk conduction band. We include the anisotropy of
the conduction band but neglect the spin splitting. The
main result is that the nonparabolicity correction to the
curvature at the bottom of a subband with a certain
confinement energy is more than 3 times stronger than
the corresponding correction to the confinement energy.

E(k) =R k /2ml+aok +Ilo(k k» +k»k, +k, k„)
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where m, =0.0665 (in units of the free-electron mass,
which we henceforth set equal to 1) is the effective elec-
tron mass, ao ———l. 969 X 10 eV cm, Po = —2.306
&( 10 eV cm, and yo ———2. 8 & 10 eV cm for
GaAs. The term proportional to Po describes the anisot-
ropy of the conduction band while the last term gives
the spin splitting which is due to the violation of inver-
sion symmetry in GaAs.

If we neglect the spin splitting and collect the
terms separately, we can write

E(k) aok + +(2ao+Po)(k +k» ) k
2m $

(k +k» )+(2ao+Po)k k»+ao(k +k» )
2m (

(2)
We assume that the layered structure is grown along

the [001] direction, replace k, by —id Idz, and add the
potential V(z) of the quantum well. S'nce we have
translational invariance parallel to the quantum well, k
and k remain good quantum numbers. We first deter-

3'

mine the confinement energies [k~~
—=(k„+k )' =0].

It is easily verified that the solutions of the
Schrodinger equation in the nonparabolic case are still of
the form cos(Kz) or sin(Kz) (in the well) and

exp( —k
~

z
~

) (in the barriers) but now we have the fol-
lowing relation between the confinement energy
e—:E(k~~~ ——0) and the parameter K:

E=at»K +Pi K !2m) (3)

II. THEORY

Using a 14-band k p theory Braun and Rossler have
shown that the bulk conduction-band dispersion expand-
ed to fourth order in k is given by the expression

For the Al Ga& „As barriers it would be appropriate
to extract the decay constant A, as a function of energy
below the bulk conduction-band edge from a calculation
of the complex band structure of Al„Ga, As. (See,
e.g. , Refs. 2 and 4.) Since the energy levels for a quan-
tum well are fairly insensitive to the properties of the
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barrier material (unless the quantum well is very nar-
row) we have neglected the nonparabolicity effects in
Al„Gai „As. Here we thus set ao and po equal to zero
and find

62E= ~ 6) 1 — 1—
G2

where

I /2 i /2

(12)

k= [2m'( VQ —E)]' /i?i . (4)

Vo is the conduction-band discontinuity between
GaAs and Al„Ga& „As and mz is the effective mass in
Al„Ga& As. We use boundary conditions with con-
tinuity of the envelope wave function and its derivative
divided by the effective mass in the bulk. This leads to
the transcendental equations

and

m&
6) ——
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(13b)

tan(Kb) = 1

(even parity)
mzE

(Sa)
A, is now given by

k=[2m2( Vo E)/ir—i +k~~ ]'~ (14)

and

m&A,
cot(Kb) = — (odd parity),

m2K
(5b)

a'= —(2mi/iri ) ao (6a)

where b is half the well width. To solve Eqs. (Sa) and
(Sb) we must invert Eq. (3) and express K in terms of E.
It is sometimes convenient to express the results in terms
of two constants, a' and p' defined by

The transcendental equations [(Sa) and (Sb)] can be
solved numerically for different values of k and k~ and
in this way we can determine the energy dispersion
E(kii).

Although this procedure is straightforward, it is not
very illuminating, and a reasonable approximation,
which gives the curvature at the bottom of a subband in
analytical form, is desirable. One such approximation is
to determine the confinement energies (for k~~

——0) nu-
merically from Eqs. (5a) and (Sb) with the use of (4) and
(7) and then treat the other terms in Eq. (2)

P'—:—(2mi/R ) Po . (6b)
(2ao+po)k~~k +A k

~

/2m+aok
~~

+pok k (15)

[1—(1 —4a'E)' ]a'4 (7)

For most energies of interest a'c. ~& 1 and we obtain

K = [2m is(1+a'e)]'~ /A' . (8)

From this relation it is reasonable to define an
energy-dependent perpendicular mass

They have the values a'=0. 600 eV ' and p'=0. 702
eV '. %'e find

1/2
b + t sin(2Kb)/2K

b+t sin(2Kb)/2K+[1+t cos(2Kb)]/2A,

[1+t cos(2Kb))/2X
b + t sin(2Kb)/2K + [1+t cos(2Kb)]/2A,

(16a)

(16b)

where t = + 1 ( —1 ) for states with even (odd) parity.
The expectation value of expression (15) becomes

in first-order perturbation theory. It is convenient to ex-
press the results in terms of the probability P (P„) that
the electron is in the well (barrier) given by

mi =mi(1+a'E) (9) (2ao+Po)K P + P + Pt, k
~~2m ] 2m2

or, more accurately,

mi ——
, [1—(1—4a'e)'~ ],2' c,

(10)

where E is in eV. To lowest order this corresponds to
a'=0. 656 eV '. This mass is thus close to the perpen-
dicular mass m i given by Eq. (9).

The expressions above can be generalized to the case
when k and k~ are different from zero. If we replace k,
by K in Eq. (2) and invert this expression we can express
K in terms of E, k, and k:

using Eq. (7). It is easy to verify that it is the same as
the similarly defined energy-dependent bulk mass in the
[001] direction. A commonly used expression for an
energy-dependent effective mass was derived by Kol-
bas"
m (E)=0.0665+0 0436E+.0.236E —0. 147E

2m )

mi
P~+ Pb —(2a'+p') P

m? 2m i
(18)

It is reasonable to define an energy-dependent parallel
mass m,

~

(E) by identifying (18) with A' /2m
~~

(E). It can
be shown' that m

~~

is equal to the cyclotron mass in the
limit when the magnetic field goes to zero. The cyclo-
tron mass is also found to increase with magnetic field.
However, to include this effect properly one needs an ex-
pression for the bulk dispersion up to sixth order in k.
It would contain terms proportional to k, k

~~,
which

+~&„k'„+P&.k„'k

The terms (A' /2m i )P +(A' /2m&)Pt, describe the
mass enhancement which is due to the penetration of the
wave function into the barrier and occurs even in the ab-
sence of nonparabolicity. " The coefficient in front of k

~~

becomes
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could give a sizable correction to the B term for the
Landau levels.

We can find simpler approximations from Eq. (18),
which we first rewrite

AK
1 —(2a'+P')

2P?l i

100)
E

m2 —I] AE—PI, —(2a'+P')
m& 201 i

(19)

The first two terms correspond to the approximation
of replacing k, in Eq. (2) by K given by Eq. (7). It is

seen that the correction is the probability that the parti-
cle is in the barriers (which usually is a few percent)
multiplied by the difference between two terms of similar
order of magnitude. Neglecting this correction and ex-
panding K to the lowest order in E, we obtain

(vari /2m i )[1—(2a'+p')e] . (20)

By equating this to A /2m
~~

we thus obtain a remark-
ably simple expression for 1/m

~t

where the nonparaboli-
city correction is proportional to the confinement ener-

gy. Comparison with Eq. (9) shows that in this approxi-
mation the ratio of the nonparabolicity corrections for
1/m

~~

and for I/m i becomes about (2a'+p')/a'=3. 2.

III. RESULTS AND CDNCLUSIONS

We consider GaAs quantum wells between
Alp 4Gap 6As barriers, take the conduction-band discon-
tinuity to be 324 meV [65% of the energy-gap difference
between Ale 4Gao 6As and GaAs (Ref. 13)], and use

mz ——0.0999 for the mass in the barrier. '

In Fig. 1 we show the E(k~~) dispersion for the lowest

subband in a 50-A quantum well in the [100] direction
for three different cases: (a) a numerical solution of Eqs.
(Sa) and (5b) together with Eqs. (12)—(14), (b) nonpara-
bolic bands with the approximate first-order perturba-
tion expression (20), and (c) parabolic bands. We see

that the perturbation expression (b) is a quite good ap-

proximation to the exact curve (a). It is found that ex-

pression (18) gives a curve which on the scale of Fig. 1 is

indistinguishable from the exact result (a).
In Fig. 2 we show the parallel mass m

~~

and the per-

pendicular mass m z for the lowest subband as a function

of well width in comparable approximations. Both the
masses increase when the well width is decreased, but

the ratio between their enhancements remains almost

constant, somewhat larger than 3 ~

Recent interband magneto-optical experiments with

an 80-A quantum well, ' for which this calculation gives
m

~~

——0.073, could indeed be quantitatively explained

only if an 11% higher electron mass were used as input
for a six-band model. Since this model (including con-
duction, heavy-hole and light-hole bands, and spin) to
some extent includes nonparabolicity effects, the com-

parison with our calculation is, however, not straightfor-
ward. Recent cyclotron-resonance experiments with a
22-A quantum well' will be discussed in a future arti-
cle' where nonparabolicity effects in the barriers are es-

timated. When these effects are neglected the results are

80

K (10 A 2)

FIG. 1. Energy vs k in the [100] direction for the ground

state in a 50-A-wide GaAs quantum well between Alo 4Gao 6As

barriers. The solid line (a) shows the result of a numerical cal-

culation while the dashed line (b) shows the result with the ap-

proximate first-order perturbation theory expression Eq. (20) ~

For comparison we show the result when nonparabolicity

effects are ignored [dotted line, (c)].
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FICs. 2. Well-width dependence of the parallel effective mass

defined by Eq. (18) (solid line) and the perpendicular mass

defined by Eq. (10) (dashed line) (in units of the free-electron
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not expected to be accurate for well widths below 50 A.
In conclusion, we have calculated the dispersion paral-

lel to the layers of the electron subbands in a GaAs
quantum well. Nonparabolicity effects have been taken
into account using an expression with the bulk
conduction-band dispersion expanded to fourth order in
k. The anisotropy of the conduction band has been in-
cluded but the spin splitting has been neglected. We find
that the parallel mass, which is of importance for trans-
port properties along the quantum well and for the den-
sity of states, is enhanced over the band-edge mass
0.0665 at least 3 times more than the perpendicular
mass, which determines how the nonparabolicity
influences the confinement energies. We have given
some simple but accurate analytical expressions for the
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two masses. They explicitly depend on the confinement
energy, which is experimentally accessible.
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