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Interpolative solution for the Anderson model of an impurity
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We present calculations for the occupation number, the specific heat, and the density of states of
the Anderson model of an impurity using an interpolative approach. The results are compared
with the exact solution, showing that the interpolative method can be advantageously used for a
periodic Hamiltonian.
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is solved by using a Green's-function method and by in-
troducing an appropriate self-energy Xff (o)).

As discussed in Ref. 4, Xff (co) is obtained by means
of an interpolative scheme; in one limit, we calculate
Xff (o) ), the second-order perturbation self-energy of
the effective Hamiltonian:
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where Eo is introduced in order to have self-consistency
between the charges (nf ) as calculated from the final
solution and as obtained from Hamiltonian (2).

In a second limit, we calculate the self-energy for the
atomic case, with V~O in Eq. (1). The interpolative
scheme yields

Xff (o) ) =
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Although the problem of a magnetic impurity in a
metal has been exhaustively discussed, ' the case of a
periodic Anderson Hamiltonian is not so well known. '

In this paper we are concerned with a new approach re-
cently proposed to analyze both the case of an impurity
and the periodic Anderson Hamiltonian. In this paper
we address the single-impurity problem to discuss the
validity and the accuracy of the proposed solution. To
this end, we analyze different cases and compare our
solution with the exact results of Tsvelick and Wieg-
mann and other approximate solutions.

In our approach the Anderson Hamiltonian of an im-
purity,

fnf +g Ednd; +t g cd; cd j
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Notice that Zlatic and co-workers ' have solved the
Anderson Hamiltonian considering only the lowest per-
turbative solution Xff (o))=X' 'ff (co). Our solution
reduces to this one for the symmetric case: here
Ef+U/2=Ed, and EQ Ed (fro——m now on Ed ——0). In
other cases Eq. (3) can represent a significant improve-
ment over X' 'ff (to) (see below).

Once Xff (o)) is known, different properties of the
Anderson Hamiltonian, density of states, specific heat,
etc. , can be obtained using well-known Green's-function
techniques. We present here different results for the im-
purity valence (nf ), the specific heat at zero tempera-
ture, and the density of states.

In Fig. 1, (nf ) is displayed as a function of Ef for
three different cases: (a) U=0. 2, U/I =4; (b) U=0. 2,
U/I =10; (c) U=0. 2, U/I =40. I" is defined in the
usual way: I =mV p(0), p(0) being the d-band density
of states at the Fermi level [we take the Fermi level as 0
and p(0) as 1/2m]. Notice that for increasing values of
U/I, electron-correlation effects in the impurity become
dominant. This is easily seen in Fig. 1: For U/I"=4,
( nf ) is a smooth function of Ef not far from the
Hartree-Fock solution. For U/I =10, (nf ) tends to
bend around Ef ———U/2, and the process is practically
completed for U/I =40; in this case, (nf ) =1 in a re-
gion extending approximately from Ef = —U to Ef =0.

In the same Figs. 1(a)—1(c) we display the results for
( nf ) as obtained using the exact solution of Tsvelick
and Wiegmann, and for the approximate one of Zlatic
and Horvatic. From the results shown in these figures,
we conclude that a substantial improvement is obtained
by using Eq. (3) for the self-energy instead of X' ff (Co)
for U/I » 1; moreover, the results obtained with Eq. (3)
for (nf ) are in fair agreement with the ones given by
the exact solution.

We have also analyzed the specific heat at zero tem-
perature: This is a measure of the impurity density of
states at the Fermi level, pff(0). At very low tempera-
ture, C, is given by
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It is a common practice to define a parameter y such
that (for a nonmagnetic solution)

Bluff (a) )

Bco clap= T =0

In Fig. 2(a) we represent y as a function of U/I for
the symmetric case; as mentioned above, in this case the
self-energy of Eq. (2) reduces to X' ', and our analysis
coincides with Horvatic Zlatic's results. Notice that for
the symmetric case, y is only well approximated by X' '

for U/I & 7; for larger values, the exact results show an
exponential increase with U/I while X' ' yields only a
square growth. As discussed by Horvatic and Zlatic,
this is related to the scaling behavior appearing in the
exact solution for large U/I ( U/I )2~).

In Fig. 2(b) we show the results we have obtained for
y' [=mI pff (0)y] as a function of Ef for U=0. 2 and
I =0.05. In the same figure we display the exact results
and the ones obtained approximating the self-energy by

Notice that for Ef ———U/2, our results coincide
with the ones calculated using 2( ', for

~
Ef + U/2

~

larger than zero, our results approach the exact values of
y', showing a significant improvement over the results
given by X' '. In Fig. 2(c) we show similar results for
U=0. 2 and I =0.02; in this figure we clearly see how
the results obtained for the specific heat using Eq. (3) are
much better than the ones given by X' '. Still, the
specific heat for the symmetric case shows the same
discrepancy with the exact solution given by Fig. 2(a).

These results can be better understood by analyzing
the density of states obtained from Eq. (3). In Figs.
3(a) —3(d) we show that density for U=0. 2, I =0.02,
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FIG. 1. (n&) is displayed as a function of Ef (a) U=0. 2, ..
in arbitrary units, U/I =4; (b) U=0. 2, U/I =10; (c) U=0. 2,
U/1 =40 [p(01 is taken 1/(2~) in all the cases]. Solid line, ex-
act solution; dashed line, second-order perturbation solution '
for X; dotted line, present solution. Ef is in arbitrary units,
too.

FICz. 2. (a) shows y as a function of (U/I ) for the sym-
metric case. (b) shows y* a function of Ef, for U =0.2 and
U/I =10. Solid line, exact results; dashed line, second-order
perturbative solution for X; dotted line, present solution. (c),
same as (b), for U =0.2 and U/I =4.
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and Ef ———0. 10, —0. 15, —0.20, and —0.25. For
Ef ———0. 1 we have the symmetric case and a narrow
peak appears at the Fermi level [Fig. 3(a)]; our results
for the specific heat suggest that the peak is not narrow
enough: According to Fig. 2(b) we expect the exact
solution to have a narrow Kondo-like peak at the Fermi
level, twice as narrow as Fig. 3(a) shows. For
Ef ———0. 15 we find the results of Fig. 3(b); for this value

F&G. 3. Local density of states in the f orbital for U =0.2,
U/r= 10, and (a) Ef ———0. 10, (b) Ef = —0. 15, (c) Ef ———0.20,
and (d) Ef ———0.25. Solid line, solution obtained using

Xff (co ). Dashed line, solution of the one-electron Hamiltoni-
an given by Eq. (2). co is in arbitrary units.

of Ef the peak is broader than in the symmetric case
and, according to Fig. 2(b), we expect the exact solution
not to differ very much from the results shown in Fig.
3(b). Figures 3(c) and 3(d) show the cases Ef ———0.2
and —0.25, respectively; here, our solution must be
quite close to the exact one.

The comparison of Figs. 1(b), 2(b), and 3 suggests that
the solution given by Xff (co) [Eq. (3)] yields a very sa-
tisfactory solution of the Anderson Hamiltonian, except
for the narrow Kondo-like peak appearing at the Fermi
level. For U/I very large, that peak presents an ex-
ponential narrowing in the symmetric case, while our
solution only shows a (I /U) narrowing behavior. For
an unsymmetric case, our solution reproduces much
better the Kondo-like peak and, in general, we can ex-
pect that any other structure appearing in the density of
states is well reproduced by our approximate solution.

In conclusion, our results for the impurity show that
the approximate solution of the Anderson model, as dis-
cussed in this paper, yields a fair description of the exact
solution. In particular, occupation numbers and density
of states seem to be well reproduced except for the nar-
row Kondo-like resonance appearing at the Fermi level.
The approximate solution analyzed here does not repro-
duce adequately the scaling behavior of this peak; this
limitation does not seem, however, to be important for
the rest of the spectrum as the Kondo-like peak has a
very small weight. Accordingly, we think that the
method given in Ref. 4 is a fair solution to the Anderson
model of an impurity and it can be used advantageously
for the periodic Hamiltonian.
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