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Interatomic Auger rates for the NaF crystal are calculated for initial ls, 2s, and 2p holes in the
Na+ ion. The crystal is simulated by a (NaF6)' cluster embedded in a large number of point
ions, and the one-electron orbitals are obtained from restricted Hartree-Fock calculations of the
initial state. The continuum-electron orbital is obtained from the Coulomb potential for a spheri-
cally averaged superposition of atomic charge densities for the initial state, and exchange is treated
by the method of Riley and Truhlar. The continuum orbital is orthogonalized to the occupied
molecular orbitals. The calculated Na(KLL) rate is about 20% greater than the experimental
value. The calculated interatomic Auger widths for the transitions Na( ls) Na(2p) F(2p),
Na(2s)Na(2p)F(2p), and Na(2p)F(2p)F{2p)' [following the notation of J. A. D. Matthew and Y.
Komninos, Surf. Sci. 53, 716 (1975)] are 0.001 73, 0.641, and 0.153 eV, respectively. For compar-
ison, the width of the Na(ALL) Auger transition is close to 0.26 eV. All three interatomic transi-
tions have been identified by Citrin, Rowe, and Christman. Widths for the transitions
Na(ls)Na(2p)F(2p) and Na(2p)F(2p)F(2p)' can be inferred from experimental data. Theory and ex-
periment agree to within 50%. This represents a considerable improvement over previous theoret-
ical treatments.

I. INTRODUCTION

Interatomic Auger transitions were first identified in
the Auger electron spectrum of LiF by Gallon and
Matthew. ' In LiF a 1s hole in the Li+ ion must be filled
from the valence band, which is localized predominantly
on the F ions of the crystal. The fastest deexcitation
mechanism is interatomic Auger decay involving two
electrons from neighboring fluorine ions. Analogous in-
teratomic Auger processes occur in the other alka1i
halides and ionic solids. The identification of the inter-
atomic processes can frequently be made on the basis of
the measured Auger electron energies. The correspond-
ing rates, however, are not measured. Citrin pointed
out that interatomic Auger processes could provide an
environment-dependent source of broadening which
needed to be taken into account in the interpretation of
x-ray photoemission (XPS) linewidths. Subsequently it
was shown that broadening by coupling to lattice vibra-
tions could account for most of the broadening of core-
hole states in XPS. From Refs. 3 and 4 it appears
that approximately 0.1 eV of core-hole linewidth could
be attributed to interatomic processes in the alkali
halides. The size of this potential contribution to core-
hole widths, compared to experimental uncertainties of
about +0.05 eV, makes the experimental determination
of interatomic Auger rates difficult. For this reason the
development of reliable theoretical means to evaluate in-
teratomic Auger rates is important.

Interest in the experimental consequences of inter-
atomic Auger decay led Matthew and Komninos to un-
dertake the first quantitative estimates of rates for the
process. They introduced a two-atom model and con-
sidered transitions of the form A (x) A (y)B (z) and

A (x)B (y)B (z). Here A and B designate neighboring
atoms and x,y, z designate one-electron orbitals in which
holes occur. A hole occurs in x in the initial state and
holes occur in y and z in the final state. The first type of
transition is called an intra-inter (intra-
atomic —interatomic) transition and the second type is
called an inter-inter (interatomic-interatomic) transition.
An Auger transition within a given atom can be called
an intra-intra (intra-atomic —intra-atomic) transition.
Matthew and Komninos assumed that the orbitals on
neighboring atoms were essentially nonoverlapping. On
this basis they then showed that the Auger matrix ele-
ment for the intra-inter process reduces approximately
to the product of the dipole matrix elements for the al-
lowed optical transition A (x) A (y) and the photoioniza-
tion of B. Thus they expressed the intra-inter Auger
rate in terms of known quantities, obtaining rates of the
order of 10 a u. or smaller. A rate of 1 a u. is
equivalent to 4. 134/10' sec ' and to a linewidth con-
tribution of 27.212 eV. For comparison, the KLL Auger
rate in Na is about 0.0108 a.u. , corresponding to a width
of 0.29 eV; the Ka radiative rate is 2.46' 10 a.u. or
1.02 )& 10' sec '. The inter-inter transitions were not
discussed in detail in Ref. 6, but were estimated by re-
placing the dipole matrix element for the A (x) A (y)
transition with that for the crossover radiative transition
A (x)B (y). On this basis it was concluded that such ma-
trix elements are very much less than the corresponding
intra-inter matrix elements and play no important role in
interatomic Auger processes.

Yafet and Watson reconsidered the intra-inter process
and introduced a new approach which is conceptually
very similar to the one we have adopted. For the NaC1
crystal they envisaged a (NaC16) cluster of a central

36 6112 1987 The American Physical Society



36 INTERATOMIC AUGER RATES FOR THE SODIUM FLUORIDE. . . 6113

Na+ and six Cl neighbor ions. From the Na+ and Cl
atomic orbitals (AO's), approximate cluster molecular
orbitals (MO's) were constructed by using the Na AO's
directly and by generating MO's of 0~ group symmetry
from the Cl AO's. These MO's were then orthogonal-
ized to the ones on Na. For the continuum orbital, a
plane wave was orthogonalized to the occupied MO's.
Partial waves of angular momentum less than or equal to
four were included and led to a lower bound of 0.788 eV
for the width associated with the intra-inter transition
Na(2s)Na(2p)C1(31). The experimental width of the 2s
core hole in NaC1 was reported to be of the order of 0.5
eV. The inter-inter processes were not calculated in
Ref. 8, but it was estimated that the width for the transi-
tion Na(2s)C1(3s)C1(31) would be between 1 and 2 orders
of magnitude less than that of the intra-inter process and
that the width of the transition Na(2p)C1(3p)C1(3p)
should be of the order of magnitude of -0.02 eV.

Clearly the rates from this more complete theory are
much larger than those estimated by Matthew and Kom-
ninos. The main cause of the discrepancy is not dificult
to identify. The orthogonalization technique of Yafet
and Watson leads to cluster Cl(n =3) MO's which have
non-negligible components of the Na AO's, allowing the
valence electron to spend some of its time near the Na
ion. As a result, close-in contributions to the interatom-
ic Auger matrix element are included by Yafet and Wat-
son which are completely missing in the treatment of
Matthew and Komninos. For the intra-inter process,
the results of Matthew and Komninos represent an esti-
mate of the distant contributions to the interatomic
Auger matrix element.

The importance of close-in contributions to the inter-
atomic Auger matrix element makes it essential to ob-
tain accurate charge distributions for the valence orbitals
in the presence of the initial core hole. For this reason
we have chosen to extend the work of Yafet and Watson
by using Hartree-Fock theory to obtain the MO's of the
(NaF6) cluster, which we embed in a cubic array of
point ions to simulate the NaF crystal. This should pro-
vide an adequate description of the shift in electronic
charge occasioned by the creation of the Na+ hole. As
described in more detail later, we will also depart from
the approach of Ref. 8 by introducing a better continu-
um orbital and by summing the continuum-electron par-
tial wave expansion to convergence.

In 1978 a new motivation for studying interatomic
Auger processes in ionic solids was provided by Knotek
and Feibelman. It was observed that in maximal valen-
cy oxides the yield of desorbed positive oxygen ions in-
creased substantially at the lowest-energy threshold for
core-hole production in the metal ions. The desorption
could be initiated either by electrons or photo ns.
Knotek and Feibelman proposed that the inter-inter pro-
cess, possibly accompanied by shakeoff, could convert
the negative oxygen ions into positive ones. The reversal
of the Madelung potential seen by the ion could then
lead to its desorption from the surface. The
phenomenon of Auger-induced positive ion desorption
has since been observed in a variety of circumstances,
and the Knotek-Feibelman mechanism described above

is generally accepted, despite some problems with the
ion desorption mechanism for alkali halides. ' Accord-
ing to Knotek and Feibelman, the inter-inter process
must not have to compete at too much of a disadvantage
with other more probable deexcitation mechanisms such
as regular intra-atomic Auger decay. This competition
is their explanation for the general lack of positive oxy-
gen ion desorption in the nonmaximal-valency oxides. "
Cation core holes in these latter oxides can decay by reg-
ular intra-intra Auger processes. The maximal valency
oxides, however, resemble the alkali halides in which a
core hole in the highest occupied cation level is expected
to decay in interaction with the valence-band electrons,
localized primarily on the anions.

Thus far, in ion desorption experiments concerning
the Knotek-Feibelman mechanism, it has usually not
been possible to observe the accompanying interatomic
Auger electrons. ' For this reason reliable theoretical
values of rates for the inter-inter process are of particu-
lar importance. There are two types of inter-inter pro-
cesses which need to be considered. ' In process 1, the
final holes occur in different anion neighbors of the ini-
tial hole-containing cation. These Auger decays do not
contribute directly to the production of positive ions. In
process 2, both final holes occur on the same neighbor.
These are the ones of significance to the Knotek-
Feibelman mechanism. Because there is of the order of
10-eV difference in the energies of the corresponding
Auger electrons, ' the two processes can be distinguished
in principle. In the context of the Knotek-Feibelman
mechanism, the rate for process 2 needs to be suf5ciently
large compared to those of potentially competing radia-
tive and charge exchange processes. ' In the NaF crys-
tal, energy conservation requirements prevent the decay
of a 2p hole in the Na+ cation by process 2. ' Thus this
work will not be directly concerned with the Knotek-
Feibelman mechanism.

The selection of NaF for the initial test of our theory
was made because the work of Citrin, Rowe, and Christ-
man' provides a comprehensive experimental study of
the Auger spectrum from the creation of 1s, 2s, and 2p
holes in the Na+ ion in the NaF crystal. In addition, a
quantitative value of the ratio of the Na(ls)Na(2p)F(2p)
transition rate to that of the Na( KL z3L z3 ) rate can be
obtained from their data. Finally, a second check on the
theory can be obtained from the lifetime of the Na(2p)
hole state in NaF. To summarize the results briefly, the
agreement between theory and experiment is satisfacto-
ry, even for the inter-inter process which we have evalu-
ated for the first time. Our results for the 2s hole intra-
inter process are compatible with those of Yafet and
Watson for NaC1.

The necessary theory is presented in Sec. II. The re-
sults of the calculations are presented in Sec. III and
summarized in Sec. IV.

II. THEORY

The theory described below is a theory of Auger pro-
cesses in molecules, using the fixed-nucleus approxima-
tion. A molecular cluster embedded in point ions is used
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to simulate the solid. The theory of Auger processes in
molecules follows that for atoms, ' and has been the ob-
ject of considerable theoretical development. ' ' We
restrict our attention to systems which have a closed-
shell structure before the creation of the initial core
hole. Since we are interested in obtaining reliable values
for the total Auger rate for a given initial core hole, we
compute the Auger matrix elements using the set of
orthonormal bound-state molecular orbitals from the
open-shell restricted Hartree-Fock solution for that ini-
tial core hole. For the NaF crystal we use an (NaF6)
cluster embedded in a cubic array of point ions of unit
charge with coordinates (+la, +ma, +na) and l, m, n (5.
Here the symbol a represents the cation-anion separation
of 2.31 A. The Hartree-Fock calculations are described
elsewhere. The continuum orbital is computed numeri-
cally by standard techniques from a spherical potential
centered on the Na+ ion. This spherical potential will
now be defined.

The Na+ ion is described by its atomic Hartree-Fock
charge density computed either with or without a core
hole, and the F ions are described by the atomic
Hartree-Fock charge density determined from the 1s, 2s,
and 2p orbitals of Huzinaga. The Gaussian-type basis
functions used by Huzinaga permit spherical averaging
of a F-atom charge density and Coulomb potential about
the central Na ion to be carried out analytically. The
number of F(2p) electrons (36 in the ground-state clus-
ter) can be reduced to produce continuum-orbital poten-

tials associated with final-state F(2p) holes. The poten-
tial from the rest of the solid is approximated by a shell
of positive charge + Se situated midway between the
(110) sphere and the (111) sphere. For the closed-shell
ground-state cluster, the Coulomb potential vanishes
outside this shell; in the case of an initial nl hole in the
Na+ ion, for example, this Coulomb potential becomes
that of a unit positive charge. Given this spherically
symmetric charge density and its potential, exchange is
treated by the method of Riley and Truhlar. The use
of a spherically averaged potential greatly simplifies the
calculation, at the expense of losing the inner-well reso-
nance effects associated with the nonspherical nature of
the crystal potential. In the calculation of the total
Auger rate, final states and continuum partial waves are
summed over. This should minimize the effect of any
resonances which may occur.

Once the continuum functions Y~ R ~ /r have been
computed for the partial wave (Im) as a function of the
radial distance r from the origin, these functions are or-
thogonalized to all the bound-state MO's to produce the
continuum functions P& which are used in the Auger
matrix elements. This orthogonalization procedure is
essential to simulate the solution of the frozen-core con-
tinuum Hartree-Fock equations, ' and because the for-
mula we use for the Auger matrix element assumes a set
of orthogonal orbitals. ' Let us denote the core MO by
P, and the valence MO's by P; and P, . In atomic units,
the Auger rate P can be expressed in the form

P =4ng g g Ifi j ~

A (clm;ij)
~

+(1—6&)[1.5
~

A (clm;ij) —A (clmji)
~

+0 5
~

A (clm;ij )+ A (clm; ji)
~ ])

Im j i ((j)

The factor 4n in Eq. (1) arises from the normalization
of R&(r) according to

RI(r) ~(km)'~ sin[ kr + (Z/k. )ln(2kr)

+ri&+5I (le)/2], — (3)

where q& is the Coulomb phase shift
arg[I (l+1 iZ/k)], Z is—the asymptotic charge of the
cluster, k is the asymptotic wave number of the electron,
and 6I is the phase shift relative to a Coulomb wave.
Equations (1)—(3) are equivalent to Eqs. (1)—(6) of Ref.
16.

The evaluation of the Auger matrix element
A (clm;ij) is accomplished by first making single-center
spherical harmonic expansions for each of the four orbit-
als in Eq. (2), the origin being the position of the Na ion.
The expansions of the two MO's which are functions of
rl are then multiplied together to make the spherical
harmonic expansion for a charge distribution for r&, fol-

Here 6;J is the Kronecker 6 function and the Auger ma-
trix element A (clm;ij ) is given by

A (cim;ij)= f d(1) f d(2) p;(1)p~~(2)(1/ &zr)

(2)

lowing the method described by Harris and Michels.
An analogous expansion is made for the product of the
functions of r2. Then the standard spherical harmonic
expansion of 1/rI2 is used to express A (clm;ij ) in terms
of a sum of numerical radial integrals, as shown in Eqs.
(98) and (99) of Ref. 26. In going from Eq. (98) to Eq.
(99) it is necessary to include the end-point terms of the
Harris-Michels integral transform. The upper limit on
the radial integrations was taken to be 15 a.u. A radial
mesh was constructed by first extending an exponential
mesh outward from the origin and then extending the
same exponential mesh both outward and inward from
the point r =a where the F ions are located. Between
the Na and F ions, and also at large r, where this mesh
is too coarse for a 1-keV electron continuum wave, the
mesh was replaced by a finer uniform mesh. Tests indi-
cated that the integrals were converged to better than
three parts in 10 .

Since the Na basis functions and continuum functions
are already located at the origin, it is only necessary to
expand the F basis functions in terms of spherical har-
monics for this origin. Consider a primitive Gaussian
basis function centered at (a, b, c) with respect to the ori-
gin. It is a function of the variables (x —a, y b, z —c)—
and is the product of a low-order polynomial in these
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variables and the exponential, exp [ —g[(x —a }
+(y b—) +(z —c) ]). This exponential factors into a
spherically symmetrical part and an exponential which
can be expanded about the origin of (x,y, z) according to
the formula

exp[2$(ax +by +cz)]
=4m. g Y'„(r)Y'„* (a)[m/(2p)]' I„+0,(p),

n, m

(4)

where a is the unit vector pointing to (a, b, c),
p=2gr(a +b +c )', and I„+0~(p) is the modified
spherical Bessel function. The low-order polynomial
mentioned above can be expressed in terms of factors
r Yzq(r) and multiplied into the expansion (4). Use of
the addition theorem for spherical harmonics then leads
directly to the required spherical harmonic expansion for
a primitive Gaussian basis function centered on (a, b, c)
The Hartree-Fock MO's are known in terms of linear
combinations of basis functions constructed from primi-
tive Gaussians. Thus the spherical harmonic expansion
of any MO can be obtained analytically from the
LCAO-MO coefficients and the basis set. This avoids
the use of numerical integrations in the application of
the Lowdin alpha expansion. The spherical harmonic
expansions are truncated at n =nmax, where nmax is
chosen separately for each contracted Gaussian basis
function. The values of nmax were 35 for the 1s, 2s, and
2p basis functions, 25 for the 3d basis functions, and 15
for the 3s, 3p, and 4p basis functions. With these values
of nmax, the norm of the 6 F(ls) MO's is only 0.80 and
the norm of the 6 F(2s) MO's is 0.984. The norm of the
18 F(2p) MO's in which we are primarily interested is
0.999. It would take n max-60 to describe the F(ls) or-
bitals accurately, with no significant improvement in the
precision of the Auger rates of experimental interest.
All the MO's were therefore described by spherical har-
monic expansions of length 35. The radial functions
which appear in the spherical harmonic expansions of
the MO's are complex even though the MO's are real.
Because of the 0& symmetry of our cluster, canonical
MO's based on polynomials in x, y, and z have radial
functions which are either real or pure imaginary. For
this reason the MO's obtained from the Hartree-Fock
program were converted to canonical MO's, and the ra-
dial functions were stored as one-dimensional arrays.
The calculations were carried out on a Cray Research
Cray-XMP computer.

It can be seen from Eq. (2) that the contribution to
3 (elm;ij) from the part of pi which arises from the
orthogonalization of Yi R&/r to the occupied MO Pz
can be expressed in terms of the electron repulsion in-
tegral 3'(cp;ij ) obtained by replacing Pi by P in Eq.
(2). The required electron repulsion integrals were eval-
uated using post-SCF subroutines (SCF denotes self-
consistent field) in the GAUSSIAN 82 program used to do
the Hartree-Fock calculations. As a check on the
Auger matrix element program, a version of it was writ-
ten to replace P& by P~ and calculate electron repulsion
integrals directly with the same spherical harmonic ex-
pansion of the F-ion Gaussian basis functions used for

the Auger matrix elements. The directly computed in-
tegrals generally agreed with those from GAUSSIAN 82 to
within a few parts in 10 . The largest discrepancy found
with two parts in 10 for the integral A'(1 18; 19 31)
whose small absolute value, 0.000 129 6, makes its contri-
bution to the Auger rates unimportant. Orbital 1 is the
Na(ls} orbital; the others are all F(2p) MO's.

This concludes the description of our method for cal-
culating Auger rates for molecules and we can now com-
pare it with other approaches. ' ' References 16
through 20 are based on the approximation of retaining
only those components of the valence MO's which corre-
spond to atomic orbitals on the atom which contained
the initial core hole. This is accomplished via the
LCAO-MO expansion of the MO's. Intra-atomic Auger
matrix elements are then used to estimate the molecular
Auger rates. We shall refer to this approximation as the
local approximation. The continuum orbital in these
calculations does not relate to the molecule but to the
atomic process for which the intra-atomic matrix ele-
ments were obtained. Since the shape of the Auger spec-
trum has been the focus of attention, and not the abso-
lute transition rate, final-state orbitals are generally used.
The method is not a quantitative one unless some a pos-
teriori adjustments are introduced. However, it has been
a very fruitful means to analyze and correlate experi-
mental data for a range of molecules.

The theory of Faegri and Kelly ' is a completely ab
initio theory, like the one presented here, and it employs
a better continuum orbital. In Ref. 21, both initial- and
final-state Hartree-Fock (and some configuration-
interaction) calculations are carried out and used in the
Auger matrix elements. ' The small nonorthonormality
effects arising from the use of both initial- and final-state
orbitals in the Auger matrix element are neglected.
This work suggests that ab initio approaches for mole-
cules can lead to results of similar accuracy to those ob-
tained for atoms. For total Auger rates this places the
accuracy in the range 20—40%. We believe this to
be true of the approach described here, because the
effects neglected in our treatment tend to redistribute
the Auger rates among the final states and have a small-
er influence on the total Auger rate.

In our present application to interatomic Auger rates
in ionic solids, an additional source of error is present.
We do not know how accurately our cluster calculation
approximates the results of the corresponding initial-
state hole calculation in the solid. As discussed in Ref.
22, such states are known to be quite localized in the al-
kali halides, and this suggests that a cluster approach
should be valid. The comparisons with experiment made
in the next section constitute a first step in exploring the
limits of the theory.

III. THE RESULTS

In Sec. II the theory and the main checks on its nu-
merical precision were described. In this section the
final results will be presented. Then a number of studies
undertaken to explore the validity of the final results will
be described. Some of these bear on the earlier theories
in an interesting way.
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A few additional words must be said about the contin-
uum orbitals Pi . In his work on atomic Auger process-
es, McGuire found that Hartree-Fock-Slater potentials
containing a core hole produced rates which agreed best
with experiment. The particular shell in which the hole
occurred was of secondary importance. A Latter correc-
tion to the potential caused the asymptotic charge Z
seen by the electron to be equal to two electronic
charges. For this reason, except where noted, our con-
tinuum calculations were carried out with a potential
corresponding to a 2p hole in the Na+ ion and one elec-
tron missing from the F(2p) band. This results in Z =2.
A "true" initial-state potential in our model would have
an nl hole in the Na+ ion, no electrons missing from the
F(2p) band, and Z =1. Calculations carried out with
this and other continuum potentials will also be de-
scribed. The results are not very sensitive to the precise
choice of potential within our basic approximation. Ex-
perimental values were used for the Auger electron ener-
gies.

Besides the potential sensitivity of the Auger rates to
the choice of continuum orbital, we were concerned
about the sensitivity of the results to our choice of
Gaussian basis set. For interatomic Auger processes, the
polarization of the F(2p) valence orbitals by the Na+
core hole will move valence charge closer to the cation,
with a concomitant increase in the Auger matrix ele-
ment. Therefore some transitions were calculated with
two basis sets, A and B. These are described in Ref. 22.
Briefly, basis A is expected to be an adequate basis and
basis B is expected to be a better one with more flexibili-
ty for possible shifts in the valence charge.

Naturally, our first calculations were for the intra-
atomic Na(ELL) transition. Both basis sets A and B
yielded a total rate of 121&(10 a.u. This is larger than
the values, 97.1 and 106.2)&10 a.u. , obtained using
Hartree-Fock-Slater orbitals in Refs. 29 and 30, respec-
tively. In the related case of neon, Hartree-Fock orbitals
also lead to rates about 20% higher than Hartree-Fock-
Slater orbitals. The experimental rate is close to
101&10 a.u. The use of a 1s core hole for the contin-
uum potential or the removal of the F(2p) hole to make
Z =1 changed the rate by at most 2%.

Table I exhibits the results for the interatomic Auger
rates in NaF. The pattern of relative intensities is con-

sistent with the lines observed by Citrin, Rowe, and
Christman. In Table I, the notation F(2p)F(2p)' indi-
cates that the Anal-state holes are located on two
different neighboring F ions, and not on the same ion. A
transition leaving both holes on the same F ion would
require about 10 eV more energy, and is energetically
forbidden. To describe these final states correctly, a
configuration-interaction treatment of our independent-
particle two-hole states would be necessary. In calculat-
ing the Na(2p)F(2p)F(2p)' rate, we summed over all 630
independent-particle two-hole final space and spin states.
Thus we included contributions from the 90 states which
correspond to two holes on the same fluorine ion.
Therefore, in the crudest approximation of just counting
states, our sum is about 17% too high. Experimental
rates for two of the transitions can be obtained from the
literature. The good agreement should lend credence to
theoretical predictions for the more typical systems
where no experimental data are available. Our rate for
the transition Na(2s)Na(2p)F(2p) is in harmony with
that of Yafet and Watson for the analogous transition in
NaCl.

Tables II—IV allow the rates to be analyzed in more
interesting detail. The first row of Table II shows that
24 continuum partial waves were required for the F(ls)
final state. In principle, the partial wave contributions
need to be summed until the continuum wave function's
classical turning point passes the outer boundary radius,
R„of the fluorine orbitals in the matrix element. Then,
for a continuum electron wave number k, the maximum
value of l is about equal to kR, . The next four rows
show, however, that only two partial waves are required
for the F(2s) and F(2p) final states. The contributions
from the larger l' values are extremely small. These re-
sults show that if an F(nl) MO has a small component
on the Na ion in the LCAO-MO sense, an Auger rate in-
volving this orbital and an initial Na+ hole can be great-
ly enhanced. The Na s and p orbital require l (2 in the
Auger matrix element, and the second and fourth rows
of Table II contain the contributions from these small
components of the F(2s) and F(2p) MO's. The contribu-
tions from larger l in the third and fifth rows are of the
same order of magnitude as the F(ls) rate in the first
row. These rates are representative of the distant in-
teractions discussed by Matthew and Komninos and

TABLE I. Interatomic Auger rates for the NaF crystal. Numbers enclosed in square brackets
denote powers of ten by which rates are to be multiplied.

Transition

Na( ls)Na(2p) F(1s)
Na(1s )Na(2p )F(2s )

Na( ls )Na(2p) F(2p )'
Na(2s )Na(2p) F(2p )'
Na(2s )F(2p )F(2p) '

Na(2p )F(2p )F(2p )"

Energy (eV)

347
1003
1023

16
40

7

Theory
rate (a.u. )

0.59[—7]
0.71[—5]
0.637[—4]
2.36[—2]
0.141[—3]
0.557[—2]

Experiment
rate (a.u. )

0.82[—4]

(0.37[—2]'

'Observed by Citrin, Rowe, and Christman.
From ratio of areas of line P& and Na(KL2 3L2 3) line in Fig. 8 of Ref. 14 (ratio equals 0.012), togeth-

er with KL2 3L2 3 rate from Ref. 31.
'Based on an upper bound of 0.1 eV as inferred from Table I of Ref. 4.



36 INTERATOMIC AUGER RATES FOR THE SODIUM FLUORIDE. . . 6117

TABLE II. Interatomic Auger rates for a Na(ls) core hole.

Transition

Na(ls) Na(2p)F(ls)
Na( 1s )Na(2p )F(2s )

Na( ls )Na(2p )F(2s )

Na( 1s )Na(2p )F(2p )

Na( 1s )Na(2p )F(2p )

Na( ls) Na(2p )F(2p)
Na( ls )Na(2p )F(2p )

Na( 1s )Na(2p )F(2p )'
Na(1s )F(2s )F(2p )'

Energy
(eV)

347
1003

1024

Basis'

A

A

A

A

A

B
B
A

Range of
partial wave 1

0—24
0—2

3—55
0—2

3 —56
0—2
0—2
0—2
0—2

Theory
rate (a.u. )

0.59[—7]
0.71[—5]
0.84[—7]
0.668[—4]
0.73[—7]
0.637[—4]
0.637[—4]
0.092[—4]
0.434[—4]

'See the text and Ref. 22.
Rate summed only over valence MO's of A ]g and T[„symmetry.

'Orbitals from ground-state Hartree-Fock solution. Na(2p) and F(25) orbitals degenerate and hybri-
dized.

agree in order of magnitude with their theory. The
sixth row of Table II shows that the use of basis B leads
to a slightly smaller rate. This is consistent with the
somewhat more diffuse character of the valence MO's
from basis B. The next row of Table II considers the
effect of valence orbital components on the central Na
ion by summing the rate only over those valence MO's
which can mix with the Na AO's, namely those of 3 &g

and T,„symmetry. The contributions of the other F(2p)
MO's, which have Eg, T,g, T2„, and T2g symmetry, are
omitted. It is seen that the contributions of the nonmix-
ing MO s are indeed negligible, in agreement with the
idea that the Auger process is localized around the atom
with the initial core hole. '

The last two rows of Table II were obtained using
ground-state MO's. As described in Ref. 22, the Na(2p)
and F(2s) MO's are hybridized in the ground state. By
summing over all these nearly degenerate final states, we
obtain a total rate of O. S26&(10 a.u. This smaller
value compared to that in the fourth row is consistent

with the shift in valence charge produced by the pres-
ence of the Na+ core hole.

Table III concerns transitions from an initial Na+(2s)
hole. The first two rows show that l (2 no longer ex-
hausts the Auger rate. Rows 3 —6 exhibit the nature of
the convergence of the sum over partial waves. The
F(2p) MO's contain the Oh group representations T2„
and T&~, whose spherical harmonic expansions in Y„
begin with n =3 and n =4, respectively. These MO's
cannot mix with the Na+ A&g and T&„AO's. Thus, for
larger l, we expect contributions which involve only the
distant interactions. The seventh row gives the rate
summed only over the valence orbitals of 2

&~ and T&„
symmetry. Of the tabulated rate, l. 769 )& 10 a.u.
comes from l & 2. Since the Na MO's contain com-
ponents on the F ions, all the MO's in the Auger matrix
element have terms from Eq. (4) with large n This.
makes it impossible to equate exactly the contributions
to the rate from l & 2 with those from MO's of 3 &~ and
T

~ „symmetry.

TABLE III. Interatomic Auger rates for a Na(2s) core hole.

Transition

Na(2s )Na(2p )F(2p )

Na(2s) Na(2p) F(2p )

Na(2s) Na(2p) F(2p)
Na(2s )Na(2p )F(2p )

Na(2s )Na(2p )F(2p)
Na(2s )Na(2p )F(2p )

Na(2s) Na(2p )F(2p )

Na(2s)F(2p)F{2p )'

Na(2s) F(2p )F(2p )'

Na(2s )F(2p )F(2p )
'

Na(2s )F(2p )F(2p )"

Energy
{eV)

16

40

Basis'

A

A

A

A

A

A

A

Range of
partial wave I

0—2

3 —9
0—4
0—6
0—8
0—9
0—9
0—2
0—13
0—13
0—13

Theory
rate (a.u. )

1.853[—2]
0.504[—2]
2.142[—2]
2.306[—2]
2.355[—2]
2.357[—2]
1.936[—2]
0.716[—4]
0.141[—3]
0.892[—4]
0.435[—4]

'See the text and Ref. 22.
Rate summed only over valence MO's of A Ig and Tl„symmetry.

'Orbitals from ground-state Hartree-Fock solution.
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TABLE IV. Interatomic Auger rates for a Na(2p) core hole.

Transition

Na(2p) F(2p )F(2p )
'

Na(2p) F(2p) F(2p )'

Na(2p )F(2p )F(2p )'

Na(2p )F(2p )F(2p )'

Na(2p) F(2p)F(2p)'
Na(2p) F(2p )F(2p )"
Na(2p) F(2p) F(2p)'

Energy
(eV) Basis'

A

B
B
B
B

Range of
partial wave l

0—7
0—2
0—7
0—7
0—2
0—7
0—7

Theory
rate (a.u. )

0.648[—2]
0.444[—2]
0.408[—2]
0.564[—2]
0.418[—2]
0.557[—2]
0.440[—2]

'See the text and Ref. 22.
Rate summed only over valence MO's of 3 &g and T]„symmetry.

'Initial-state continuum function, Z = 1.
Final-state continuum function, no core hole, two valence holes.

The first four rows concern an inter-inter transition
not observed by Citrin„ lowe, and Christman. Only half
the rate is included in l (2. The third row for this tran-
sition gives the rate summed only over the 2 Ig and T&„
valence orbitals. Distant interactions are clearly impor-
tant here. The last line gives the rate computed with
ground-state orbitals. The rate is only one-third of that
computed from the Na+(2s) initial-state orbitals.

Table IV concerns an initial 2p hole. It can be seen
that approximately 65% of the converged rate (at I =7)
comes from l &2, or from the valence orbitals of 3 &~

and T&„symmetry. The rates from basis 8 are 1ower
than those from basis A. The last two rows show a
lowering of the rate when successively less attractive
continuum-orbital potentials are used. The rate from
the initial-state potential was used as our final result in
Table I. The last row is included because the use of
initial-state valence MO's and final-state core and con-
tinuum MO's would occur in a ASCF approach to the
Auger rate. ' However, as mentioned earlier, the proper
treatment of the final states should also involve the sepa-
ration of the state with holes on different neighbors from
those with the two holes on the same neighbor. In view
of the experimentally determined upper bound of about
0.37&(10 given in Table I, the lowering of the rate
through the use of a final-state continuum function is
worth noting.

IV. SUMMARY AND DISCUSSION

The preceding sections have shown that the standard
quantitative theory of Auger decay can be successfully
applied to the intra-atomic and interatomic transitions in
the NaF crystal, when the crystal is simulated by a
(NaF6) cluster embedded in point ions. The use of
initial-state molecular orbitals and an approximate, but
carefully constructed continuum orbital, leads to rather
good agreement with the available experimental data.
The new features of the work reported here are the use
of Hartree-Fock molecular orbitals for interatomic cal-
culations, the use of an improved continuum function,
and an essentially exact evaluation of the matrix ele-

ments and rates. The inter-inter process was treated for
the first time. It should now be possible to apply the
theory to other systems with some confidence.

The material presented in Sec. III has shown that the
current view of the Auger process in solids and mole-
cules' as being localized on the atom with the initial
core hole has to be amended if the initial level is not
suSciently deep. Naturally, shallow initial holes go with
interatomic transitions. From Tables III and IV it can
be seen that the contributions to the rates of the 16- and
7-eV transitions from "distant" interactions are
0.421 & 10 a.u. and 0.240 & 10 a.u. , respectively.
These rates correspond to linewidth contributions of
about 0.1 eV, which should be observable. In the con-
text of the general theory of molecular Auger decay, our
work provides a warning to the effect that a quantitative
treatment of the relative strengths of the lines in a spec-
trum may require the inclusion of the distant contribu-
tions to the Auger matrix elements as well as the use of
accurate fina1-state' ' and initial-state configuration-
interaction wave functions.

An important finding of our work is that the distant
contributions to the interatomic rate, while quantitative-
ly significant, are not dominant. Indeed, it appears that
the local approximation can be used even on interatomic
transitions for the purpose of obtaining correct order-
of-magnitude rates. The local approximation was
developed in the context of E-shell holes, where its va-
lidity is not difFicult to believe, especially since the work
of Mathew and Komninos. Our study of the shallow 2s
and 2p holes shows that the local approximation can also
be used for estimates in these and similar cases.

In conclusion, we return to the Knotek-Feibelman
mechanism. In this context our most important result is
that the inter-inter rate for the initial Na*(2p) hole is not
extremely small, but is of the size of the upper bound
found experimentally. A rate of 0.557)& 10 a.u. corre-
sponds to 2. 3&10' transitions/sec. This is fast com-
pared to the rates to be expected for competing radiative
transitions and to the longitudinal-optical frequency
1.3 &( 10' vibrations/sec. As mentioned earlier, the pro-
duction of positive ions by this mechanism is energetical-
ly forbidden in NaF. However, the size of the rate sug-
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gests that in other ionic systems the inter-inter step in
the Knotek-Feibelman mechanism can occur with
sufficient probability to make the mechanism competi-
tive with alternative channels for energy transfer.
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