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Kxcitons and biexcitons in semiconductor quantum wires
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The exciton and biexciton ground-state binding energies are calculated for semiconductor quan-
tum wires of radius R smaller than the bulk exciton radius ap assuming an infinite confining poten-
tial. Both the excitonic and biexcitonic (molecular) binding energies are enhanced by a factor
greater than 5 for GaAs/Ga& Al As quantum wires of radius approximately ap/2. The simul-
taneous shrinking of the exciton size with the wire radius is shown to reduce the contribution
(when compared with the quasi-two-dimensional case) of dielectric polarization eftects which arise
when the wire is embedded in a cladding with a lower dielectric constant.

I. INTRODUCTION

Following the success of semiconductor quantum-well
structures in permitting the study of quasi-two-
dimensional phenomena there is a growing experimen-
tal and theoretical ' interest in similar quasi-one-
dimensional structures. The Coulomb potential in one
dimension has some pathological features (e.g. , the
ground-state energy becomes infinite) so it is interesting
to see how this aff'ects the spectra of states in very
slender semiconductor wires —so-called "quantum-well
wires" (QWW's). Recently, Bryant published a
thorough study of the shallow impurity states in such
QWW s, showing the strong increase of the ionization
energy for small radii. Simple variational approaches for
the excitonic binding energies in QWW s have been re-
ported recently by several authors.

In this paper we study the exciton and biexciton
ground-state binding energies in such QWW's. We shall
consider the electrons and holes to be confined within
the wire for wire radii smaller than the bulk excitonic
radius, a0. The problem is reduced to a one-dimensional
Schrodinger equation with an eff'ective interaction be-
tween the charged particles which depends on the wire
radius. The second section is devoted to the derivation
of this effective one-dimensional potential accounting for
the dielectric boundary conditions. In the next section
we present a good analytic approximation to this poten-
tial (amounting to a simple regularization of the
Coulomb interaction) which simplifies the calculation in
the biexcitonic case. Finally, in the fourth section the
biexciton (excitonic molecule) is treated in the Heitler-
London scheme for the hole-hole potential and the re-
sulting Schrodinger equation is solved numerically. To-
gether with the large exciton binding energies for small
radii we find relatively high molecular binding energies.
However, unlike the exciton binding energy the biexci-
ton energy does not blow up as the wire radius decreases
to zero.

II. THE ONE-DIMENSIONAL EFFECTIVE
COULOMB POTENTIAL

We shall consider here the ideal quantum confinement
of a particle within an infinite circular potential of radius
R. The ground-state wave function in such a well is

Jo(a(p/R )

$0(p) =
&irRJi(ao)

~here o.0
——2.405 is the first zero of the Bessel function

Jo and p the radial coordinate. The corresponding
ground-state energy is E0 ——+0' /2pR, where p is the
appropriate particle mass.

In the QWW's considered here we have charged elec-
trons and holes which will interact via Coulomb forces.
If the cladding medium outside the wire has a diferent
dielectric constant ez than that within the wire e&, the
Coulomb interaction will be distorted. To compute this
dielectric polarization eff'ect we must find the associated
variation in the electrostatic energy. As the first step to-
wards this goal, we first calculate the potential V(r, r') at
a point r in such a wire due to a charge e at r'. This is
achieved by solving the appropriate Poisson equations,
i.e.,

—4~e5(r —r') for
I p I

&R,
e ' 0 for IpI&R (2)

together with the boundary conditions

av Bv

p=R — ~ p=R+

v
I p=~ —= v

I p=~+

VI 0 and VI 0&Do .

with cylindrical coordinates (p, O, z). These equations
may be solved using a partial-wave expansion yielding
the potential inside the wire as

e 1V(r, r') = ——
E~ r —r' 1 dk cos[k(z —z')]e' ' 'C (kR)I (kp)I (kp'),

7T E2 Ei 0

where
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K (kR)K' (kR)
C (kR)= I (kR)K' (kR) —(e, /ei)I' (kR)K (kR)

Here I,K are the modified Bessel functions.
The electrostatic energy W for an electron-hole pair at positions r, =(z„p„8,) and rh ——(zh, ph, 8h ) is defined as

W= —,
' pr V rr& —Vrr, dr,

where

p(r)=e6(r —r, ) —e6(r —r„) .

Due to the electrostatic self-energy this quantity is not well defined (i.e., infinite); however, the variation 5W between
the R = ~ value and that for finite R is finite and gives the change in the energy due to the introduction of the dielec-
tric boundaries. Hence,

2 1 1 00

5W'= ——— g f dk C (kR)II (kp, )+I (kph ) —2cos[k(z, —zh )]cos[m (8, —8h)]I (kp, )I (kph )).
7T C2 E) 0

It may be seen that as expected there is no contribution to the dielectric polarization when r, = r&, as the charges neu-
tralize one another. To this energy we must add the usual Coulomb interaction energy

e 1

By restricting the motion in the transverse plane via the quantum confinement the motion along the z axis will be
governed by an effective interaction energy

U(z, —zh )=e f p, dp, f phdph f d8, f d8h V(r„rh )
~
4'0(p )

~ ~
Wo(ph )

~

(7)

apart from a constant energy shift

b, =4e ———f dk f dp g C (kR)
~
Po(p)

~

2I2 (kp),
0 0

which should be added to the confinement energy shift E0. In Ref. 4 the shallow impurity case was considered, with
the charged impurity fixed on the cylinder axis and with the averaging performed only over the electronic motion.
More explicitly, we have, after a change of integration variable,

e2 1 1

U(Z) = —
2 4 f p, dp, phdph Jo(+(Pe)JQ(soph )

e,Rvr Ji(ao) 0
' '

0

——1 f cos(kZ)CO(k)IO(kp, )Io(kph )dk
77 E2

dO, dO~
[Z /R +(p, cos8, —phcos8h ) +(p, sin8, —phsin8h ) ]'~

(9)

where Z = (z, —zh ).
It may be seen from Eq. (1) that this potential, apart

from the factor e /E&R in front is a universal function of
Z/R, i.e., it depends only on the ratio of the electron-
hole separation and the wire radius and not on each in-
dividually. We denote this universal potential as
U(Z)=ReiU(RZ)/e . This universal feature is con-
venient as it allows us to calculate the potential U(Z)
once and then apply it for any value of the wire radius
simply by scaling the Z coordinate accordingly. We
have accordingly evaluated U(Z') and show the results in

Fig. 1, for e&
——e2 and e&

——1.3@2, the latter corresponding
to the extreme case of x =1 of a GaAs/Ga& Al As
QWW. The dashed curve is a pure 1/

~

Z
~

potential
plotted for comparison. The important feature to note is
that the effective one-dimensional potential no longer
diverges at Z =0, attaining a value of = —3. For Z »1
the ratio of the two curves is naturally e, /e2 (here 1.3),
as at separations much larger than the wire radius one
should have a simple Coulomb potential with most of
the force lines going through the cladding medium. On
the other hand, for Z =0 the ratio of the two potentials
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FIG. 1. U(Z) as a function of electron-hole separation Z for
two different dielectric constant ratios: el ——e& for the upper
solid curve and e l

——l. 3e 2 for the lower solid curve. The
dashed curve is a Coulomb potential plotted for comparison,
and the dotted line is the regularized Coulomb potential for
a =0.3.

is 1.08—much less than eI/e2.
For E'I=1.3@2 the numerical calculation gave an ener-

gy shift 6=0.27E&a0/R.
We have solved numerically the corresponding

Schrodinger equation for the electron-hole relative
motion:

In quantum wires it can be seen that the effect of the
dielectric polarization on the binding energy is small in
comparison to the corresponding two-dimensional case,
where the ratio of the binding energies should be
(E) /&2), a factor of 1.69 compared with our enhance-
ment of =1.2 ~ This is attributable to the differing be-
havior in the limit of small thicknesses. For two-
dimensional systems the wave-function width tends to a
constant a /2 while in the QWW case the wave-function0

5width collapses to zero. Since the materials currently
being proposed for the manufacture of QWW's have
dielectric constant ratios under the 1.3 case considered
here, we shall concentrate now exclusively on the case
E'I =E'2.

For very small radii one must return to a bulk prob-
lem in the cladding material a limit not present within
our model as we assumed an infinite cylindrical potential
for the wire. For GaAs/Ga„AII As QWW's the es-
timated minimal radius below which such effects should
be taken into account is about R =a0/2. This estimate
is based on potential depths of 1.06x eV for electrons
and 0. 187x eV for holes. ' The results of Bryant, who
dealt with the similar problem of shallow impurities in
QWW's and accounted for this finite well depth, suggest
that the excitonic binding energy will continue to in-
crease for radii beneath this value before the bulk effect
sets in. In other materials this limitation may be less
stringent.

+U(Z) —E p =0,
2m ()Z

(10) III. ANALYTIC AP PROXIMATIONS

where

1 1+
me mp,

The binding energies for the two values of eI/e2 con-
sidered above are shown in Fig. 2 [with R scaled to the
bulk excitonic Bohr radius a0 ——A e&/me and the bind-
ing energy ( —e) scaled to the bulk excitonic Rydberg
energy Ez ——fi /2mao]. It can be seen that the binding
energy diverges as R ~0, exceeding the limiting two-
dimensional ground-state binding energy of 4E& for
R ~ao/2 which corresponds to the two-dimensional ex-
citon Bohr radius.

I

50

In the treatment of the excitonic molecule (see the
next section) it is useful to have an analytic approxima-
tion to the potential energy U(Z) as well as for the exci-
tonic wave functions. Loudon has considered analyti-
cally the bound-state problem for a regularized Coulomb
potential 1/(

I
Z

I
+a) instead of 1/ Z

I

. The wave
functions are then given in terms of the Whittaker func-
tion

0 (
I

Z
I

) = II'k, l/2(2(
I

Z
I
+~&)/«o»

where

1

v'

The energy eigenvalues for the symmetrical states, which
include the ground state, are to be determined from the
transcendental equation for c:

3p

dg (Z) =0.
dz z=0

(12)

20

1p

For the ground state this equation has the asymptotic
solution as R ~0

I

P2
j

O~ O5 OS 1O aO 2a&IsI

FIG. 2. Excitonic binding energy as a function of wire ra-
dius for two different dielectric constant ratios: e&

——e2 for the
lower curve and el ——1.3e& for the upper curve.

One sees that as R ~0 the ground-state binding energy
diverges and from the asymptotic expansion of the Whit-
taker function one may see that the normalized, squared
wave function tends to a 6 function in this limit. All the
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2m

mh B~

2m
2+
2 mh ~y

m

2M ()~2

a a
By 2 BX

where the potential u is given by

u = U(yi —y2+x)+ U(x) —U(yt ) —U(y2)

0 i

0 02 OA 0.6 0.8 1.0 1.2 1.4

Z/g,

FIG. 3. Excitonic wave functions for various wire radii.

excited states become pair wise degenerate; however,
their eigenvalues remain finite in this limit. The reader
is referred to Loudon for more details.

The integral representation of the Whittaker function

e
—X/2

Wi &&2(x)= J e ' —+1 dt (14)I'1 —A, a t

Consideration of the biexciton problem in QWW's
leads one to the one-dimensional effective Hamiltonian,

0=-
2me

a2 a2

az2 Bz2
+

e& e2
2mh Bz Bzh

2+ 2

+ U(z, —z, )+ U(zb —zb )

—U(z —zb ) —U(z, zi, )—
—U(z, —zb ) —U(z, —zb ) (15)

or in the new coordinates

y1 =Ze —Zh, y2 Ze2 Zh

m, (z, +z, )+mb(zb +zb )

X —Zh Zh p X
1 2

was used in our calculations. Some typical normalized,
squared excitonic wave functions are given in Fig. 3 for
various radii showing the shrinking of the wave function
for small radii. The binding energies calculated using
this approximation for a=0.3 were so close to those of
the e& ——e2 curve in Fig. 2 that they could not be dis-
tinguished on the same graph. The corresponding ana-
lytic potential is shown as the dotted curve in Fig. l.
We have used the corresponding analytical wave func-
tions and energies for the biexciton calculations in the
next section.

IV. THE BIEXCITON

'P(yi y2 «) =lb(
l

x
l

)@(y»y2 (17)

which consists of the biexciton wave function ttb( x )

for the relative motion of the two holes and P(y, ,y2, «),
which describes the exciton correlations:

1
~'(yi y2 x) 0(yl y2 x)S(x)

with the normalization function

S'(x)= j J dy&dy2$'(y~, y , 2)x.

For P we use the Heitler-London approximation, i.e.,

4(y&,y2, «) =4.(y& )0.(y2)+t(. (y i+«)P. (y2

Each term describes a product of exciton wave func-
tions, gati, one exciton formed by e&, h

&
and the other by

e2, h2 in the first term and by e2, h
&

and e&, h2 in the
second term. The wave function 'P, for an even gb, is
invariant under the permutations of electrons, holes, and
a common reflection of both. As usual the ground state
is assumed to be a singlet spin state for both electrons
and holes, and therefore the antisymmetry required by
the exclusion principle is contained in the spin part of
the wave function. Within the Heitler-London approxi-
mation that we use in this first calculation no polariza-
tion of one exciton by the other is accounted for. In
three dimensions this polarization can be easily included
variationally due to the simple exponential nature of the
exciton wave functions, and leads to a significant
enhancement of the molecular binding energy. Indeed,
for equal electron and hole masses such a polarization is
necessary to obtain a bound state. In the one-
dimensional problem due to the complicated nature of
the exciton wave functions an analogous scheme is com-
putationally much more involved. Nevertheless, we will
show that even without polarization one obtains a strong
binding for all mass ratios in the one-dimensional case.

The separation of the normalization integral S(x) en-
ables one to write a Schrodinger equation for the rela-
tive hole-hole wave function gb,

—U(y
&
+x)—U(y2 —x)

with the effective one-dimensional Coulomb potential

U(z) = 1

l

z
l
+aR/ao

We wish to solve for the ground-state biexcitonic bind-
ing energy, and we look for a solution of the form

with

M =m, +mh .

In units of Ez and ao the Hamiltonian is

2m
2

+v(x) eb iitib
——0, —

mh

with the effective-hole potential

(19)



36 EXCITONS AND BIEXCITONS IN SEMICONDUCTOR QUANTUM WIRES 6103

10—

0

C)
CL.

o -10

R =053ao

-20—

0 0.2

X/po

0 8 1.0

) i I s ( i ( i ( I

0.1 0.2 0.3 0. / 0.5

R/p

FIG. 4. Hole-hole potentials for various wire radii for
m, /mI, ——0.48.

FIG. 5. Biexcitonic binding energy as a function of wire ra-
dius for m, /mq ——0.48.

v(x)= —2e+ J I 4(y„y„x)HC(y, ,y„x)dy, dy,

2m I 8 S(x) I= —2s+ + P(y~, y2, x)HP(y~, y~, x)dy&dy2
mh S x) r)x g (x)

(20)

Here c. is the ground state excitonic energy and the
molecular binding energy ( —Eb ) is defined as the
difference between the energy of the system and the en-
ergy of two infinitely separated excitons therefore
v( oo ) =0.

In Fig. 4 we illustrate this effective hole-hole potential
with an electron-hole mass ratio of 0.48 for various wire
radii. This mass ratio corresponds to that used in the
bulk CzaAs. In fact quantum confinement effects lift the
valence-band degeneracy giving a heavy and light hole
with mass ratios of 0.335 and 0.67, respectively. We see
that the potential becomes deeper and narrower for
smaller radii until a maximum depth is reached at
R =0.083, after which the depth decreases. In fact
v(x)~0 as R ~0 for x&0 while v(0)~ao for R ~0.
In other words, at any finite hole separation, as the exci-
tons shrink there will eventually be no overlap of their
wave functions, while if the holes are already at the same
point before the excitons shrink to a point then the
Coulomb repulsion will be infinite.

The corresponding Schrodinger equation for these po-

tentials was solved numerically and the molecular bind-
ing energy is given as a function of wire radius in Fig. 5.
One may see that the binding energy has a maximum at
R =0.03ao and vanishes for R =0 as the potential is
zero everywhere except x =0. Notwithstanding this
down turn for small radii, the actual value of the exciton
binding energies are relatively large —at R &0.5ao they
exceed 0.2ER, more than a factor of 5 larger than the
bulk molecular binding energy of =0.04E&. As they
stand these energies are roughly the same as those ob-
tained in two-dimensional quantum wells however, one
should realize that our calculations attained such large
binding energies without the inclusion of the excitonic
polarization and deformation, effects which will certainly
enhance them further.

Figure 6 shows the squares of the normalized ground-
state wave functions corresponding to the potentials
given in Fig. 4. An interesting connection to the bulk is
the electron-hole mass ratio dependence of the molecular
binding energy. This dependence is given in Fig. 7 with
the binding energy scaled to the corresonding exciton

06- I
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I
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0.2

0.1 R =053 po

0
0
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0 2 0.& 0.6 0.8 1.0
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FIG. 6. Biexciton hole-hole wave functions for various wire
radii for m, /mq ——0.48.

FIG. 7. Ratio of the biexciton binding energy to the exciton
binding energy as a function of the electron-hole mass ratio.
The equivalent bulk values are given by the dashed curve (after
Ref. 9).
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binding energy for three different wire radii. Note that
(in these relative units) the curves are qualitatively the
same as the bulk curve as given by the dashed curve,
indeed our curve for R =0.53 coincides almost exactly
with the bulk values.

Our results for the excitonic and biexcitonic spectra in
QWW's show that for small wire radii one may obtain a
strong enhancement of the binding energies. The optical
properties of QWW s will therefore exhibit large exciton-
ic and biexcitonic nonlinearities even at room tempera-
ture. The question of whether or not condensation into

plasma clusters will occur remains an open one.
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