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Hot-electron energy relaxation due to the Coulomb scattering in nondegenerate polar semicon-
ductors is treated theoretically by analyzing coupled modes between the electron-hole plasma and
longitudinal-optical phonon in the self-consistent-field approximation. The ratio of lattice energy
in each coupled mode is calculated in terms of the dielectric functions of the phonon and carriers,
by which the screening of the phonon field can be evaluated. The coupled mode consists of three
branches which arise from mixing of two plasmon modes and the phonon mode. Energy loss of an
electron is mainly governed by the scattering by the highest-frequency mode and individual
motion of the carriers, where the latter becomes dominant with increasing carrier density. Nu-
merical computations are made for GaAs at 300 K. It is found that the energy-loss rate 8; z due
to the carrier individual motion becomes nearly equal to that due to the coupled mode at the car-
rier density of 10" cm '. For an electron with energy 3000 K, the values of W, z are 0.28 and 1.9
ergs/s for 10' and 10' cm ', respectively.

I. INTRODUCTION

Scattering of hot electrons by carriers and phonons
plays a central role in semiconductor physics and also in
semiconductor devices. ' Recently, much progress in
this field has been made experimentally by measuring the
time dependence of hot-electron energy distributions.
On the other hand, theoretical research on the Coulomb
scattering in polar semiconductors is still in an early
stage, though unscreened electron-phonon interactions
have been thoroughly investigated. ' The energy relax-
ation of photoexcited electrons and holes has been wide-
ly investigated, —

" where the screening of electron—
longitudinal-optical(LO)-phonon interactions is taken
into account with an

effective

interaction potential
which is assumed as the unscreened interaction potential
divided by the dielectric constant of the electron-hole
plasma. The screening may be, however, correctly treat-
ed by considering the mode coupling between the
plasmon and LO phonon. Coupled-mode analysis has
been given for the degenerate plasma in several pa-
pers, ' ' in which Kim, Das, and Senturia' showed
for the first time a theoretical treatment of the scattering
of electrons by the coupled modes.

In this paper we discuss the energy relaxation of hot
electrons in nonde gener ate semiconductors due to
scatterings by the coupled plasmon —LO-phonon modes

I

and single-particle motions of electrons and holes, since
these scatterings are the main causes of the electron re-
laxation in some semiconductors like GaAs. '

In Sec. II dispersion relations of nonde generate
electron-hole plasmons are calculated by using the
dielectric function in the self-consistent-field approxima-
tion, since they have not been given explicitly in the
literature. The mode coupling between the plasmons
and LO phonons is analyzed in Sec. III with a method
similar to one used for degenerate semiconductors. '

The phonon contribution to each coupled mode is deter-
mined in terms of the dielectric functions of the LO pho-
non and plasmon.

The energy-loss rate of hot electrons is calculated in
Sec. IV as a sum of two terms, where one results from
excitation of the coupled modes and the other comes
from excitation of single-particle motions. It is shown
that both rates are functions of the carrier density and
for GaAs at 300 K they become comparable in magni-
tude at a carrier density of 10' cm

II. ELECTRON-HOLE PLASMA

In the self-consistent-field approximation, ' or the
random-phase approximation, ' the dielectric function
e, (q, co) of free carriers in a medium of a high-frequency
dielectric constant e„ is given by

4~e 1
E (q, co) =6 + hm, Q fp( l fp+q )—

Q Qq Q k Q)+co(q, k)+i q

1

co —co(q, k)+i g

Here, k and q are wave vectors, co is the frequency, 0, is
the volume of the specimen, fk is the distribution func-
tion, and

cu(q, k) =(Eq+q Eq)/A', —

where Ek is the energy of an electron.

Assuming the Maxwell distribution for fz, and ap-
proximating 1 fk+q ——1, we obta—in

&, (q, co)/e = „e(q,co) +is„(q,co),

&.,(q, co)=l+ g A, Y, 'fF(Z, +Y, ) F(Z —Y )], —
j=e, h
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e.,(q ~)= g (~/2)' A YJ Jj =e, h

X[G(Z, —Y, ) —G(Z, + Y, )], '(n

IO

F(Z)=exp( —Z /2) J exp(x /2)dx,
0

G (Z) =exp( —Z /2),
and the sum is taken for electrons (j =e) and holes
(j =h). In the case of the electrons we have

D
6

2

A, =one fi /.2m „e (kz T, )

Y, =Aq/2(m„ks T, )'

Z, =Ace/2k~ T, Y, ,

(8)

(10)

08 12 16

Wave Number q (10' cm ')

where n is the electron density, m„ is the electron
effective mass, T, is the electron temperature, and kz is
the Boltzmann constant. For the holes, Az, Y&, and Z&
are obtained by replacing n, m„, and T, with the corre-
sponding quantities p, m~, and Tz in Eqs. (8)—(10). In
the following n =p is always assumed.

We first calculate the dispersion relation from

e„(q,~)=0
and then examine the Landau damping term e„(q,co).
Figure 1 shows the electron-hole plasma dispersion rela-
tion obtained from Eqs. (4) and (11) with T, = T& ——300
K, m„=0.067m, mz ——0.45m, and e =10.9 for n =10'
and 10' cm . The main feature of the dispersion rela-
tion, which is independent of material constants, is the
existence of two branches, the optical and acoustic
modes, limited by a critical wave number.

In the long-wavelength limit the frequencies of the
two branches are easily found. When q goes to zero
with fixed co, Eq. (4) becomes

FIG. 1. Dispersion relations of the nondegenerate carrier
plasma with m„=0.067m, m~ =0.45m, e„=10.9, T, = Tq ——300
K, and n =p = 10" and 10' cm

values of the damping cutoff wave number q, are
0.2~10 and 0.6)&10 cm ' for n =10'7 and 10'8 cm
respectively, though these values are somewhat ambigu-
ous.

III. COUPLED MODE
OF PLASMON AND PHONON

The interaction between electric fields associated with
the LO phonon and electron-hole plasma implies a cou-
pling between these modes. Since in the self-consistent-
field approximation the polarizabilities of electrons and
ions are additive, ' ' the coupled modes are obtained
from

e„(0,co) =1—co2/~2 (12) I 0

~~ =(4mne /e„)(m„'+m~ '). Therefore, the
optical-mode frequency at q=0 equals the plasma fre-
quency co&. On the other hand, if ZJ's are fixed, Eq. (11)
for small q reads

IO'
Acoustic bmnch

1+ + 2A, Y~ [1 ZF(Z, )]=0, — (13) 10

Q3

from which the acoustic-mode frequency near q=0 can
be obtained. It is noted that the acoustic branch is ob-
tained even when the hole mass becomes infinitely large.

It is found from Eq. (5) that magnitudes of the Landau
damping are very much different for different branches.
At q=0, e„becomes infinity for the acoustic branch,
while it vanishes for the optical branch. Calculated
values of e e„(q,cu) for n = 10' and 10' cm are
shown in Fig. 2, which indicates that the acoustic
plasmon cannot actually be observed. The possibility of
observing the acoustic plasmon was discussed by Pines
and Schrieffer. ' The optical branch below a wave num-
ber q, may be considered as the stable mode, since there
the damping is small ~ We assume from Fig. 2 that the

-2
IO
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-3
10 ( i i
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Wave Number q ( )0'cm ')

FIG. 2. Landau damping e e„, the imaginary part of the
dielectric function, of the modes in Fig. 1. Solid and dashed
lines indicate, respectively, the optical and acoustic branches.
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eL„(co)+e„(q,co) =1,
where

(14) IO

eLr(co) (col co )/(co co ) (15)

As illustrated in Fig. 4, the nature of the modes changes

10" " cm-'
remarkably when the electron density incr f

to 10 cm ].7 —3
'ncreases rom

cm . At n =10 cm mode 1 is almost
phononlike, while at n =10' it is plasmonlike below
q —. & 0 cm; it changes to phononlike above
q —. )& cm, and becomes completely the phonon= 1.4 10
mode for q ) 1.6&10 cm

Qualitatively, the degree of transformation of the
mode character in the long-wavelength region can be
found by using e,„(O,co) instead of e„(q,co). Then, the
phonon strength ratio is approximated by

R = ezra(O, co) /[el „(co)+ ezra(O, co)] (17)

where the mode frequencies are derived from

el„( co) +~ei( 0, co)= 1 (18)

Thhusly obtained phonon strength ratios for modes 1 and
2 are shown in Fig. 5 as a function of the electron densi-
ty. Between n =10' and 10' cm R for mode I de-
creases from 0.97 to 0.03, while for mode 2 it increases
from 0.03 to 0.23.

As shown in Fig. 6, the Landau damping e e„ for
each mode increases abruptly at a wave number corre-
sponding to the cutoff q, defined in Sec. II, so that above
t is the mode becomes unstable. The Landau dam in
for mode 1 is found to be significantly large in a wide
range of wave numbers containing a pure phonon mode,
since there phonons are frequently absorbed and emitted
by the carriers. In this range, therefore, the LO pho-
nons are strongly coupled to carrier individual motions.

IV. ENERGY RELAXATION OF HOT ELECTRONS

Hot electrons injected into the semiconductor lose
their energy by interactions with carriers and lattice

ations. In this paper we consider the long-range
Coulomb interaction only so that i th B7 in e orn approxi-

el (co)=e„el„(co) is the dielectric function of the lattice
ions with neglect of dispersion and dampin ' ' In E .
(15) cocoI and co, are the LO-phonon and transverse-

'ng. ' n q.

optical-phonon frequencies, and co, =(e„/e, )co~, where
e, is the static dielectric constant.

Figure 3 shows the coupled-mode dispersion relations
calculated from Eq. (14) combined with Eqs. (4) and (15),
where solid and dashed lines represent respectiv 1 th

18
've y, e

cases of n =10 and 10 cm with Ace&/kz ——430 K,
e =128.8, and the same values of other parameters as in
Fig. 1. We denote the upper branch by mode 1 and the
lower by mode 2 with neglect of the acoustic branches.

According to Eq. (14) the lattice polarization is pro-
portional to e„(q,co), so that the ratio of the phonon
strength R, that is, the ratio of lattice energy in the
mode, can be defined by

& =&„(q,co)/[eL, „(co)+e„(q,co)] .

4
(0

2

I.O

Wave Number q (lo' crn ')

FIG. 3. Dis persion relations of the coupled plasmon and
LO-phonon modes for n =10" (solid lines) and 10' cm
(dashed lines). Values of parameters are the same as in Fig 1~ ~

Eq. (2O) e(q, co) is the dielectric function which
represents the response of the carriers and ions to the
e ectron. We assume the hot-electron energy is written1

as Ez fi p /2m„. ——
We shall discuss the energy loss of hot electrons by di-

viding the loss process into two parts: part A, energy
loss due to excitation of collective motions of the car-
riers and ions, and, part B, energy loss due to excitation
of single-particle motions of the carriers.

A. Energy loss to collective modes

We start by studying energy loss due to unscreened
LO phonons, since it offers a typical example of the
treatment of hot-electron energy relaxation caused b

1.0—
0.8—

rn 0.6—

0,4—
O

CL
0.2—

I0 1 7

I
I I

I.O

Wave Number q (10'cm ')

I

2.0

FICx. 4. Phonon strength ratio defined by Eq. (16) of mode 1

indicated in Fig. 3.

mation the energy-loss rate W of an electron which has
momentum Ap and energy E is given by'

P

W= g I d(fun) iricow(q, co)5(fico E~+E~ q)—, (19)
q

where w(q, co) is the scattering rate in which the electron
loses the energy irico with transfer of momentum +:

w(q, co)=(8ire /A'q 0)[—Im[l/e(q, co)]] .
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0.8

—Im[1/e h(q, co)]=(2' /ycoi )[(Na+ 1)|i(co—coi)

N—06(co+coi)) ~ (22)

0.6

CA
04

0

0.2

Wph =fico/( I —e /eg )(ED /Ep )

X [(No+1)g (E, ) —Nog (E, + & coI ) ],
where

(23)

where No = [exp(A'coi /kii T) —1] ' is the number of
thermal phonons. By combining Eqs. (19), (20), and (22)
the energy loss rate 8'zh to the LO phonon is found to
be'

I 2 3 4 5 6 7 8 9 10

Electron Density (10"cm')

FIG. 5. Phonon strength ratio vs carrier density in the
long-wavelength limit, Eq. (17), for mode 1 (solid line) and
mode 2 (dashed line).

E 1/2+(E g )I/2

E '/' (Eg (E )=ln
p p

F. =m e /2' e

For hot electrons Eq. (23) is approximated by

Wph ——IIicol(1 —e„le, )(ED /Ep )' ln(4Ep/ficoI ),

(24)

(25)

(26)

PI (r) =(A'/2ycoIQ) g (bqe' '+bze 'q' ),
q

(21)

where bq and bq are the quantized phonon operators and
y =(coi/4')(e —e, ), we obtain from the interac-

—1 2 —1 —1

tion Hamiltonian —J Pl Ddr

IO

the collective-mode excitation. For n = 10' cm the
coupling between the plasmon and phonon is weak, so
that the LO phonon can be treated independently of the
plasmon.

We can easily find the response function epI, (q, co) of
the LO phonon to the electron field D with the standard
perturbation theory. ' Expressing the lattice polariza-
tion I'L in the form'

e, (co) =(Be/Bco)J [(co—co, )+iii], (27)

where (Be/Bco), indicates the value of Be/Bco at co=co, .
Then we have

—1m[1/e, (co)]=ir(Be/Bco), '5(co —co, ), (28)

so that, substituting this into Eq. (20), we obtain the en-

ergy loss rate to mode j in the form

W =ajfico~(ED /E, )'"»(q,„ /q, i ),
where aj is defined by

(Be/Bco), '=a, co /2e„.

(29)

(30)

provided that E~ &&%~I.
This result can be obtained by a simple procedure

applicable to all the collective modes considered here.
The dielectric function e, (co) of mode j near the mode
frequency co~ may be written as'

IO
I

mode

mode I

The upper and lower limits of the wave number, qj.„and
qj&, concerning the scattering by mode j are found from
energy conservation to be

q,.=p+(p' —q,')'" (31)
/

IO — I
O I

43 I
I

10
f

I

I

-2
IO — I

I

IO I I

0.2

/
/

/

l

I
l
l

l

Il

0.4 0.8 I.2 I6
cc I I I I

J)
4 6 8 IO

(32)

where qz is given by A q~ /2m„=%co . When the damp-
ing cutoff wave number q~, of mode j is smaller than q~„,
in Eq. (29) qj„must be replaced by q, .

Since in Eq. (27) thermal excitation of the mode is
neglected, in the case of the LO phonon Eq. (29) is ex-
pected to be identical with Eq. (22) except for the terms
proportional to No. This is confirmed by substituting
e(co) =eL (co) and co~ =coi into Eq. (27), where aj is found
to be 1 —e /e, . Energy loss to the coupled mode 1 or 2
is obtained by setting

Wave Number q ( IO' cm )
e(co) =eL(co)+e„e„(0,co), (33)

FIG. 6. Landau damping of modes 1 and 2 indicated in Fig.
3 for n =10' (dashed line) and 10' cm ' (solid line).

from which co~, a, q&„, q I, and consequently 8 j are cal-
culated. For example, for pure plasmon excitation the
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energy loss rate becomes

W&i=fico (ED/E )' ln(2pq, /qo), (34)

where qp is defined by A qp/2m„=%co~ and E ))A'co is
assumed.

Io0

IO18

B. Energy loss to single-particle motions

The energy loss rate W, & with the excitation of
single-particle motion of carriers is derived from Eqs. (3)
and (20) in the form

W, i, = g J d(A'co) A'co(8vre /e„fiq 0) CA

tA

IO

IO

IO

XSe„5(fico . Ep+—E q),

where

S =[e,„(q,co)+e„(q,co)]

(35)

(36)

Q)

LLJ

Wp

(IO")
Wpj

IO

stands for the screening factor due to the electron-hole
plasma. If we set co =0 and then take the long-
wavelength limit, Eq. (36) becomes the well-known static
approximation formula

-2
IO I I I I I I I

5 IO

Electron Energy (Ez/k~ T~)

So ——[1 +4i(rn +p)e /e kiiTq ]

provided that T, = T& ——T.
Substituting Eq. (5) into Eq. (35), we have

W, g
——W, +Wg,

(37)

(38)

FIG. 7. Energy dependence of energy loss rates 8' and 8'q
due to electron and hole individual motions for n =10' and
10" cm ' with the same parameter values as in Fig. 1. The
energy loss rate due to the plasmon at n = 10" cm is indicat-
ed by a solid circle.

where W, and Wh are energy loss rates to electrons and
holes, respectively. They are written as

W, =fico„(ED /irkii T, )' I, ,

Wh fico„(E„/i——rkii Ti, )' Ii, , (40)

where co„=4~ne /e„m„, Ez ——
rnite /2A e, and nu-

merical factors I, and Iz are in integral forms:

I, = dx x —Y, Y, ~GZ, —Y,

—G(Z, + Y, )]SdY, ,

(41)

Ih —— dx x —Y, Y, G Zp, —Yg
C C

—G(Zi, + Yi, )]SdY, .

(42)

Here, x =cosO with 0 as an angle between p and q,
g=iiip/(m„kii T, )', Y, =A'q, /2(m„kii T, )', and
x, = Y, /g. In Eqs. (41) and (42) we have used the energy
conservation

A'co=(A' /2m„)(2pqx —q ),
so that Z, and Z& are functions of Y, .

In Fig. 7 calculated values of W, and Wz are shown
for n =10' and 10' cm by the solid and dashed lines
as a function of the electron energy Ez normalized by
k&T„where the values of parameters are the same as
those in Figs. 1 and 3. It is found that Wh is an order of

magnitude smaller than W, . A value of Wp] obtained
from Eq. (34) at n =10' and E~/kii T, =10 is also
shown by a solid circle, which indicates that the energy
loss to mode 1 in the stable plasmon range is much
smaller than the energy loss to the individual carrier
motions.

Energy dependence of W h derived from Fig. 7 is
shown in Fig. 8, where for comparison Wph calculated
with Eq. (23) is indicated by the dashed line. At n =10'
cm mode 1 is almost phononlike, so that in this case

ph and, as seen in Fig. 8, it is nearly equal to
W, h. At n = 10' cm the hot-electron energy relaxa-
tion is found to be governed by W, z. For this carrier
density, energy loss to the LO phonon is reduced from
'Wph due to the screening effect, which causes the disap-
pearance of the phonon in the small-wave-number range
of mode 1. Energy loss to mode 2 can be neglected since
the frequency is small and the stable range in wave num-
ber is very limited.

It is remarked that in the static approximation the
screening of the Coulomb interaction between carriers
seems to be overestimated. To show this, I, is compared
in Fig. 9 with I,p defined by

I p= dx x —Y, Y, G Z, —Y,

—G(Z, + Y, )]SO dY,

(44)

for n =10' cm and the same parameter values as be-
fore.
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w&~ (io")
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U
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V)
v) 0.5—
O h( Io")

LLJ

Q. I

5 iO

Electron Energy (E&/k~ Te)

FIG. 8. Energy dependence of energy loss rates
W, q ——W, + Wq (solid lines) and W~h (dashed line) with
T = T, =Tq ——300 K and the same parameter values as in Fig
1, where W~h is due to the unscreened LO phonon.

V. SUMMARY

&e

0,8—

04-

0.2—

O. l

I 5 IO

Electron Energy (Ez/kBT, )

FIG. 9. Numerical values of the integrals I, (solid line), Eq.
(41), and I,o (dashed line), Eq. (44).

Dispersion relations of the plasmon and coupled
modes between the plasmon and LO phonon in nonde-
generate semiconductors have been calculated with the
self-consistent-field approximation. For the plasmon we
find the optical and acoustic modes with wave numbers
smaller than a critical value, which depends on the car-
rier density and temperature. The Landau damping is
large except for the optical branch with long wave-
lengths, so that only optical plasmons which have wave
numbers below the damping cutoff q, are considered to
be stable. For GaAs at 300 K assumed values of q, are
0.2&&10 and 0.6&10 cm ' for n =10' and 10' cm
respectively, which are fairly smaller than the critical
wave-number values.

The coupled modes are composed of three branches
which arise from mixing of two plasmon modes and the
LO-phonon mode. In these three branches the lowest-
frequency acoustic mode is neglected because of the

strong Landau damping. Of the remaining two branches
the higher-frequency branch is denoted by mode 1 and
the lower by mode 2. For small carrier densities, where
the plasma frequency is much smaller than the LO-
phonon frequency, mode 1 is equivalent to the LO pho-
non and mode 2 is the optical plasmon. Accordingly,
mode 1 extends through the whole first Brillouin zone,
while mode 2 is limited to a small wave-number range.
These features do not change with increasing carrier
density, where mixing of the plasmon and LO phonon
occurs.

Effect of the electron-hole plasma on electron scatter-
ing by the LO phonon has been considered to be the
screening of the interaction potential. " As discussed
in Secs. III and IV, however, the effect is reduced to
changes in lattice energy and scattering strength of the
coupled modes. The scattering strength of each mode is
given by ajco& in Eq. (30), which is obtained by a method
similar to the previous work. ' The phonon-strength ra-
tio is defined by Eq. (16) in terms of the dielectric func-
tions of the phonons and carriers. This definition seems
reasonable within the framework of the self-consistent-
field approximation, though it is different from the previ-
ous ones. ' ' For GaAs at 300 K mode 1 is almost pho-
nonlike for n =10' cm ~ With increasing carrier den-
sity the phonon-strength ratio of mode 1 in the long-
wavelength range decreases and at n = 10' cm it
reaches nearly zero for wave numbers less than 1.4& 10
crn '. For this carrier density the phonon-strength ratio
of mode 2 is 0.23.

The energy loss rate of a hot electron has been con-
sidered as a sum of three terms W&, Wz, and
where 8'& and W2 are energy loss rates due to the cou-
pled modes 1 and 2, and 8'

& is the loss rate due to
single-particle motions of the electrons and holes. In
these three processes 8'z is always negligible as com-
pared with 8'& because of the small frequency and limit-
ed wave number. Numerical computations of 8'& and
8, h have been made for GaAs at carrier and lattice
temperatures of 300 K. We have found that at n =10'
cm 8' z is comparable in magnitude with 8'&, where
8'& is equal to 8'ph, which is the energy loss rate due to
the unscreened LO phonon. At n =10' cm 8'& re-
sults from two different contributions. For
q & q, =0.6)& 10 cm ' 8

&
is represented as the

plasmon excitation loss rate Wp~ and for q ~1.6~10
cm ' it is the phonon excitation loss. As shown in Figs.
7 and 8, 8 p~ is negligibly smaller than 8' z or Mph.

for q & 1.6X10 cm ' must be also smaller than
Wph since the wave number is limited. Consequently, at
n =10' cm 8'

~ dominates the energy loss of hot
electrons. For an electron with energy 3000 K values of
8'

q are 0.28 and 1.9 ergs/s for n =10' and 10' cm
respectively.

In addition to the screening the carriers affect the life-
time of the phonons. As seen in Fig. 6, at n =10' cm
the phonons with wave numbers below about 10 cm
are strongly coupled with carrier individual motions, so
that in this wave-number range to distinguish W& from
8'

~ seems somewhat meaningless.
In conclusion we have shown a theoretical treatment
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of hot-electron energy relaxation due to the Coulomb
scattering in nondegenerate semiconductors by analyzing
the coupling between the plasmon and LO phonon.
Screening of the phonon field by the electron-hole plas-
ma causes the decrease or even disappearance of the
phonon contribution to the coupled modes in a long-
wavelength region. Coupling between the carrier indivi-
dual motion and LO phonon results in strong damping
of the phonons with transfer of energy to the carrier
motion. These screening and damping effects appear in

different wavelength regions. Hot-electron energy relax-
ation is governed by the LO-phonon excitation process
for smaller carrier densities and by the carrier individual
motion excitation process for larger carrier densities.
For GaAs at 300 K these two processes become nearly
equal at n =10' cm
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