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We have developed a self-consistent multi-ion screening formalism which, unlike conventional
treatments, explicitly assures that no electron state should contribute more than —e to the net
charge screening the donors. A key finding is that formal consistency can be achieved only when
neighboring ion potentials overlap somewhat. Ionized-impurity scattering in a semiconductor is
therefore intrinsically a multi-ion process, and the tightly screened, isolated-impurity regime is un-
physical. Temperature- and doping-dependent majority-carrier mobilities for uncompensated n-
type Si, Ge, GaAs, and InP are recalculated using the ‘“multi-ion” screening length. The correc-
tion to the mobility is often substantial (as much as a factor of 4), and in some regimes the agree-
ment between theory and experiment is.considerably improved.

I. INTRODUCTION

Virtually all previous treatments of impurity screening
by a free-electron gas in a doped semiconductor have
been based on a linear extrapolation from the single-ion
problem."2 However, it will be shown in the following
sections that the electrons are never able to screen a
given ion in a multi-ion system as well as they can screen
the same ion in a single-ion system. A self-consistent
screening formalism will be developed which for the first
time explicitly accounts for the fact that no electron can
contribute more than one unit charge (—e) to the total
screening of all donors. The qualitative differences be-
tween single-ion and multi-ion screening are particularly
important in the ‘‘strong-screening” regime, where the
screening length calculated by conventional methods is
so short that neighboring impurity potentials do not
overlap significantly.

The derived formalism is based on a breakdown of the
free-electron screening charge in a way which is not usu-
ally considered, namely as a function of energy. Using
the linearized Thomas-Fermi (LTF) approximation, one
may calculate to reasonable accuracy the total electron
charge density p(r) devoted to the screening of a single
donor. However, the LTF approach yields no informa-
tion concerning how electrons with different energies
contribute to p(r). In an effort to obtain the energy
dependence of the screening charge, it is tempting to use
the expression for the generalized Friedel sum rule>*
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which, in the single-ion limit, assures that a given impur-
ity is “fully screened” at large distances. Here Z;e is the
charge on the impurity, f, is the Fermi distribution
function, and 8, is the phase shift for the /th partial
wave. The functional form of this integral would seem
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to imply that for degenerate statistics, only electrons
with energies near the Fermi level contribute to the
screening. However, it will be shown below that this ar-
gument is quite misleading.

In Sec. II we employ the Kohn-Sham formalism to ob-
tain a reliable lowest-order expression for the energy
dependence of the screening charge [and show that the
charge represented by the right side of Eq. (1.1) is a
physically distinct entity from the “screening charge”].
In Sec. III the energy-dependent expression is used to
demonstrate that the conventional linear extrapolation
from the single-ion case leads to a formal inconsistency.
An improved formalism is then derived which removes
this difficulty. Finally, in Sec. IV the “multi-ion screen-
ing length” is used to calculate revised electron mobili-
ties. Detailed comparisons are made with experimental
results for Si, Ge, GaAs, and InP as a function of doping
level and temperature.

II. ENERGY DEPENDENCE OF THE SCREENING
CHARGE

We consider a large sphere of radius R, which is filled
with an electron gas of density » and a uniform back-
ground of positive charge with the same density. The
medium has a static dielectric constant x,, and the elec-
trons are characterized by an isotropic, parabolic
effective mass m,. This system is then perturbed by add-
ing a point impurity charge Z;e at the center of the
sphere as well as Z; additional electrons to preserve
charge neutrality. The Kohn-Sham density-functional
formalism®>¢ yields that the excess electron charge densi-
ty p(r) may be found from the simultaneous solution of
Poisson’s equation
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and the radial Schrodinger equations
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where ¢(r) is the spherically symmetric screened electrostatic potential, ¢,.(7) is the exchange-correlation potential,
R,(k,;r) is the radial wave function, and k,; is the wave vector associated with the state having quantum numbers n
and I. The excess charge density associated with screening may be written as the difference between the perturbed

and unperturbed electron charges
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Here the j; are spherical Bessel functions of the first
kind and N,; is the wave-function-normalization factor
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The large-r boundary condition of Eq. (2.2) is
R;(k, R =X, )=0, where X,, is the nth zero of R;.
From the asymptotic form
kS ji(kSr)—sin(kyr — L) (2.5)
we see that the unperturbed solution RP=(kyr)j,(k%7)
satisfies the boundary condition when kJR =(n +1Dm.

Similarly, the phase-shifted asymptotic form of the per-
turbed solution

Ri(kyyr)—sin(k,r —41m+8;) (2.6)

gives kR =(n +10)m—38,. We have specifically defined
R; such that at large r the amplitudes of the oscillating
|
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a “‘density-of-states’ term
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and a “wave-function-redistribution” term
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where f(g,;) in Eq. (2.8) has been expanded in a Taylor
series about €%,. We also define the integrated charge as-
sociated with each term

R
Py=dm [ p;(rir’dr (2.10)
and the total charge P =P, + P, +P;.

One finds that p;(r) is the only term which contributes
appreciably within the small sphere r <a. This is be-
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perturbed and unperturbed wave functions are the same,
with any further multiplicative constants being absorbed
into the normalization factor N,;. The other boundary
conditions are

R;(r—0)—0, ¢(r—0)——Z;e/kr ,

and

¢(r>a)—0,

where a << R is a radius on the order of a few screening
lengths beyond which the ion potential may be ignored.
The bracketed expression of Eq. (2.3) contains three
factors which are different for the perturbed and unper-
turbed systems. It will be seen below that corrections
due to any two of the three factors are never large at the
same time. It is therefore valid to decompose the excess
charge density into three parts p(r)=p(r)+p,(r)+p;(r),
corresponding to a ‘“normalization-correction’ term
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cause P, and P, are distributed relatively uniformly’
within the much larger sphere r <R. Because the im-
purity charge Z;e must be completely screened within
r <a, the integral of p3(r) in this region must yield
—Ze. For r >a we can use the large-r forms of the per-
turbed and unperturbed wave functions [Egs. (2.5) and
(2.6)] in Eq. (2.9) to find that p;(r>a)=0. Thus
Py=—Z,e. Furthermore, P;+P; must vanish identical-
ly since these two terms represent only a spatial redistri-
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bution of charge within the same set of electron states.
We therefore find that P;=Z;e and that P =P,. Recal-
ling that Z; electrons were added to the perturbed sys-
tem, it follows that P, = —Z;e. While only p; is impor-
tant in the region r <a, both p; and p, contribute when
r >a. They cancel, however, leaving the charge density
far away from the impurity essentially the same as in the
unperturbed case.

The generalized Friedel sum rule may be derived by
writing Z; = —P, /e, and performing the integral in Eq.
(2.10) using the normalization condition [Eq. (2.4)].
Converting the sum over n to an integral over energy

(2w /R)S, —(2m, /#%)*de

then leads immediately to Eq. (1.1). As was mentioned
in the Introduction, the additional charge added to the
system in order to preserve charge neutrality (p,) is
equal in magnitude but physically distinct from the actu-
al “screening charge” (p;) located in the immediate vi-
cinity of the impurity. It is therefore p; rather than p,
which must now be examined in order to determine the
energy distribution of electrons screening the impurity.

Having shown that p, and p, are unimportant when
r <a, we consider p(r)=ps(r) in that region. Converting
the sum over n to an integral and using the relation
(N =m,e/mH*R, Eq. (2.9) becomes

372
e 2"ne
preal=—5a | %
x [ 172
J."desotere
© R} (kr)
X 3 QI+1) | = —jAkr) | .
=0 kr)

(2.11)

In general, the simultaneous equations (2.1), (2.2), and
(2.11) must be solved numerically.>® However, it is
shown in the Appendix that the summation over / may
be evaluated in the limit of weak potentials, where the
LTF approximation is valid. Ignoring the exchange-
correlation contribution to the effective potential,lo we
obtain
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This is the desired result which gives the contribution to
the screening by electrons as a function of energy. It is
easily verified that when the integral in Eq. (2.12) is eval-
uated, one obtains the conventional LTF result

neF'(7)¢(r)
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pLTE(r)=
where 7 is the total electron density, n=¢p/kgT is the
reduced Fermi energy,
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and the f7p are Fermi integrals.” However, rather than
performing the integral, we instead use Eq. (2.12) to
determine the charge density contributed by a single

electron in state i with energy . We write!?

p(r)=2ﬁi(r)f0(€,) (2.15)
which implies'?
pilr)=—e[ | ¥;(r)|2— | ¥)r)|?]
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Here ¥V =47R3/3 is the total volume of the system and
we have used the operator relation
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If the potential ¢(r) appearing in Eq. (2.16) is evalu-
ated by substituting the LTF charge density [Eq. (2.13)]
into Poisson’s equation [(2.1)], one obtains a simple
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screened Coulomb potential’-?
2, —r/A
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where A is the screening length and for simplicity we as-
sume Z; =1. In this approximation, A is given by!

A2 4mne*F'(n)
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Combining Egs. (2.16) and (2.18), one finds that the to-
tal screening charge contributed by state i to the screen-
ing of a single impurity (called j) is given by
_ 2me 32

Vkoe;

(2.19)

;= [ d* p;(1)— (2.20)
This simple, first-order result shows that in the single-
ion problem, low-energy electrons contribute much more
to the screening than do high-energy electrons. This
should not be surprising, since it is well known that
low-energy electrons have much stronger interactions
with ionized impurities. However, g;; is always much
less than the total electron charge —e because the sys-
tem volume V can be made arbitrarily large.

III. MULTI-ION SCREENING

In this section we demonstrate that even though LTF
provides a useful lowest-order approximation for the
screened single-ion scattering potential, generalization to
the multi-ion problem by the usual procedure leads to
physically unreasonable results. This is most easily un-
derstood if we first consider the ‘“‘strong-screening” re-
gime, where the LTF screening length Ay is much short-
er than the average distance between impurities and
where neighboring ion potentials do not overlap
significantly. However, the final results will be in a form
which applies to any uncompensated semiconductor.

In the LTF approximation, the net multi-ion potential
is simply a linear superposition of single-ion potentials
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where 1; is the position of the jth donor and N is the
total number of donors in the system. Using Egs. (2.20)
and (2.16), one finds that the net charge contributed by a
given electron to the screening of all donors is
b 27Npe’A?
D
Q=3 qi>——"—.

j=1

(3.2)
KoE;

Here Np =Ny /V is the donor density, which is equal to
n when there is no compensation.

If Q; is summed over electron states, one finds that in
LTF the total screening charge exactly neutralizes the
donor charges

2—“Qe_l'f0(€,‘)=./vl) . (3.3)
1

However, a closer examination of Eq. (3.2) shows that
this procedure contains an inconsistency. For high-
energy electrons —Q; /e <1, that is, a given electron’s
total charge —e is not completely devoted to screening.
On the other hand, evaluation of Eq. (3.2) for low-energy
electrons leads to the relation —Q; /e > 1, indicating that
the assumed contribution to the screening is greater than
the charge available. This is physically unreasonable
since we are specifically considering the regime where
LTF theory predicts no significant overlap of neighbor-
ing donor potentials (a given quantity of electron charge
cannot simultaneously contribute to the screening of
more than one donor).

In a more realistic calculation of the screening, we
must require that —Q; /e <1 for all electrons. The sim-
plest way of accomplishing this is to multiply the charge
density for state i in Eq. (2.16) by an additional factor S;
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Using Egs. (2.20) and (3.2), one immediately obtains for
the corrected screening charge Q;/=S;Q;.

Since —Q;/e for low-energy electrons has been
effectively decreased (it may no longer exceed unity) Eq.
(3.3) no longer holds. While each low-energy electron
(e; <€y) now contributes a charge of exactly —e to the
screening of the donors, the high-energy electrons
(g; > €;) do not screen effectively and each contributes
less than its total charge.!* Since n =N, this implies
that the donors are not fully screened. Varying the
screening length from A, to some A’ does not remove the
apparent difficulty because no matter how much the
screening length (and hence ¢;) is increased, there are al-

q
ways electrons in the high-energy tail of the finite-
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temperature Fermi distribution which are not fully de-
voted to screening. We conclude that Eq. (3.3) can nev-
er be satisfied. However, this is not a drawback as long
as neighboring potentials overlap somewhat. At dis-
tances greater than half the average interdonor separa-
tion, D =(4wNp /3)~ 173, it is unnecessary to insist that
each donor be fully screened, only that overall charge
neutrality be preserved.!> This considerably relaxes the
magnitude of the total screening charge required and
makes it unnecessary to satisfy Eq. (3.3).

Although we do not require that each donor be fully
screened independently of the others, there must still be
enough electron charge available to provide screening
out to the overlap region. ‘“Complete” screening of a
given donor would require that the excess electron
charge integrated over all space add up to exactly —e.
Here we define g to be that fraction of the total which
would be contained within a sphere of radius D sur-
rounding the donor. Using the proportionality of p(r) to
¢(r), we have

am [°g(rridr
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where the ‘“multi-ion” screening length A, will be
defined below. We now rewrite Eq. (3.3) to reflect the
relaxed requirement that the total donor charge to be
screened has been reduced by a factor of g

Qei fole))=gNp .

>- (3.8)

The restricted region of integration also causes the elec-
tron charge per donor g;; to be smaller by the same fac-
tor. Using Egs. (2.20), (3.2), and (3.4), the total screen-
ing charge for a given state i becomes
2mgNpeA%sS;

Ko€;

Q' = (3.9)

Again, we must not allow this charge to exceed —e. In
Eq. (3.5) for S;, we therefore set
2mgNpe?Ay,

Ko ’
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g (3.10)

The screening-charge requirements may now be
fulfilled by adjusting the screening length A,, until Eq.
(3.8) is satisfied. This condition may be written in the
compact form

A?=TA5?, (3.11)
where
z, Z172 -
f —fodz+f 27 V2f0dz
0z, 2
I'= (3.12)
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and
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We refer to Ay, as the “multi-ion” screening length be-
cause its value is quite sensitive to the interdonor spac-
ing (through the factor g).

An interesting implication of the preceding analysis is
that the ‘“‘strong-screening” limit, in which each impuri-
ty potential may be considered well isolated from its
neighbors, is found to be unphysical. This is because Eq.
(3.8) can never be satisfied unless neighboring impurity
potentials have at least a modest amount of overlap. We
conclude that ionized-impurity scattering in a semicon-
ductor is intrinsically a multi-ion process.

IV. ELECTRON TRANSPORT AND COMPARISON
WITH EXPERIMENT

In the previous section, it was shown that the screen-
ing length in a multi-ion system must always exceed the
value predicted by conventional single-ion calculations.
The results of that analysis will now be used to assess
the importance of multi-ion screening in semiconductor
free-carrier transport. To illustrate, we calculate elec-
tron mobilities as a function of donor density and tem-
perature for uncompensated silicon, germanium, GaAs,
and InP. ‘

Naturally, the importance of the multi-ion screening
correction depends both on the amount by which A,
exceeds Ay, and on the sensitivity of the scattering to
variations in the screening length. In discussing the
former, it is useful to rewrite Eq. (3.13) as

) 4.1)

n

where z,=3/2F'(np) is the average electron energy.
From Eq. (3.12), it is evident that the multi-ion screen-
ing correction is largest when z, /z is large. This favors
either high compensation (since the greater Np/n, the
more difficult it is for a given number of electrons to
screen all donors simultaneously'®) or large g (the
strong-screening regime!’). However in the specific cal-
culations which follow the screening correction for un-
compensated materials tends to lie within the fairly nar-
row range 1.07<Ay/Ag<1.45. Thus the more
significant consideration is the sensitivity of the mobility
to changes in the screening length. From a lowest-order
Brooks-Herring calculation,!® one finds that the
momentum-transfer scattering cross section depends on
A through the factor
, b

g'=In(b +1)— b4l
where b=4k?A% Evaluation at a wave vector corre-
sponding to the ““average” electron energy yields
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where mgy. is the density-of-states effective mass. When
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b is large (low densities or high temperatures), the
scattering cross section has only a logarithmic depen-
dence on A and the multi-ion screening correction will
have negligible effect on the transport properties. How-
ever, in the small-b limit one has g’ < b? o A*, and any in-
crease of A by 1.19 or more leads to at least a factor of 2
decrease in the mobility. Multi-ion screening effects are
therefore far more important in the strong-screening re-
gime where b is small. One should note that despite the
n ~! factor, b for a given material at a given temperature
does not decrease monotonically with increasing carrier
density. As soon as the carrier population starts to be-
come degenerate (17>0), the factor (F’)~2 causes b to
increase with further increases in n. The very smallest
values of b and hence the highest sensitivity to multi-ion
screening would probably be observed for minority
transport of a carrier with light effective mass in a heavi-
ly doped material. In that case a very short screening
length would be combined with a very small wave vec-
tor.

In obtaining the electron mobilities to be discussed
below, we have employed the multi-ion screening length
Ay rather than the conventional single-site result A,.
However, the single-site scattering picture!® has then
been used to obtain transition rates based on the altered
ion potentials. In contrast to most previous calculations,
momentum-transfer scattering cross sections have been
calculated by the partial-wave phase-shift method?®?! in-
stead of Brooks-Herring theory,'® in order to avoid er-
rors introduced by the Born approximation. In combin-
ing the multi-ion screening correction with the phase-
shift method it is necessary to modify the generalized
Friedel sum rule®**?° [Eq. (1.1)], since ‘“complete”
screening of each donor can no longer be required [see
the discussion preceding Eq. (3.8)]. Because the sum
rule should still be satisfied in the limit where the multi-
ion screening correction is negligible (i.e., when I'=1),
we replace Eq. (3.11) by

A2=TAz?, (4.4)

where A is that screening length which satisfies the gen-
eralized Friedel sum rule® rather than the LTF value.

In the mobility calculation’> we have solved the
Boltzmann equation by Kohler’s variational method,?
which accurately accounts for an arbitrary number of
elastic and inelastic scattering processes. Mechanisms
considered include ionized-impurity scattering, electron-
electron scattering, and acoustic-, piezoelectric-,
nonpolar-optical-, and polar-optical-phonon scattering.
For GaAs and InP, conduction-band nonparabolicity
was incorporated into the formalism.?* Theoretical drift
mobilities have been multiplied by the Hall factor ry in
order to allow direct comparison with experimental Hall
results.”> For silicon and germanium, the anisotropy
correction?® to ry has been included. Otherwise, anisot-
ropy effects have been treated only by using different
“conductivity” and “density-of-states” effective masses.
Material parameters employed in the calculations were
taken from Ref. 22 for silicon, Ref. 27 for germanium,
Ref. 28 for GaAs, and Ref. 29 for InP. Phonon parame-
ters for each material were adjusted slightly to assure
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agreement with experiment at high temperatures and
low doping levels.

A. Silicon

Figure 1 gives theoretical and experimental electron
mobilities for uncompensated Si:P in the low-
temperature limit. Comparison of the solid curve
(multi-ion screening) with the dashed curve (convention-
al screening) indicates that multi-ion effects are quite
significant in this regime. The figure illustrates that the
conventional calculation leads to mobilities which are
too high by as much as a factor of 4 near n_, the critical
density for the metal-insulator transition (~3.7x10'®
cm™3). This is because b is small (on the order of 0.5),
and the mobility is quite sensitive to changes in the
screening length. The figure also shows that the agree-
ment with experiment’*~3? is much better when the
more consistent treatment of the screening is employed,
although it should be remembered that there are addi-
tional higher-order effects which can lead to theoretical
uncertainties.’”> For example, Krieger et al.’*3* have
suggested that the large discrepancy between the con-
ventional theory and experiment may be due to the effect
of conduction-band anisotropy on the screening. How-
ever, the more recent results of Saso and Kasuya for ger-
manium,’ which has an electron effective mass even
more anisotropic than that of silicon, seem to indicate
that screening anisotropy has a relatively small effect on
the calculated mobility. The theoretical curves in Fig. 1
do not reproduce the precipitous drop of the mobility as
n. is approached from above, since we have made no at-
tempt to include localization or impurity-banding effects
in the free-electron calculation.

Figure 2 shows a similar plot for uncompensated n-
type silicon at 300 K. At this temperature the multi-ion
screening correction has little effect when the doping lev-

r\ ~ Si:P (T — 0)
r ~N
~ ~ o Chapman et al.
1000 A Yamanouchi et al.
~ ~ ® Rosenbaum et al.

T IIIIIT]'
/

n (cm?/Vs)

100

T T
>

T

Te

bl Lol 1 Loty

10 4
1018 1019 1020 1021

Np (em™3)

FIG. 1. Hall mobilities for uncompensated n-type Si:P ex-
trapolated to the low-temperature limit. Experimental points
(Refs. 30-32) are compared with the conventional screening
theory (dashed curve) and the multi-ion screening theory (solid
curve). The critical density n. for the metal-insulator transi-
tion is indicated.
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FIG. 2. Hall mobilities for uncompensated n-type Si:P at
300 K. Experimental points (Refs. 35~37) are compared with
the conventional screening theory (dashed curve) and the
multi-ion screening theory (solid curve).

el is below 10'® cm™3, since b is large in that region

(>40). However, b decreases rapidly with increasing n,
until at 10%° cm 3 it is only 1.7. Then the scattering be-
comes much more sensitive to changes in the screening
length and the conventional calculation (dashed curve)
introduces nearly a factor of 2 error in the mobility.
The corrected mobilities (solid curve) are in considerably
better agreement with experiment®~37 at the highest
densities.

However, even when the multi-ion screening correc-
tion is included the calculated mobilities are somewhat
too high at intermediate doping levels. (At Np~3x10'8
cm ™3, the discrepancy is a factor of 1.7. It would be
20% larger were Brooks-Herring theory employed rath-
er than the phase-shift formalism.) The source of this
disagreement is unclear, but it may be related either to
the large effective-mass anisotropy of the conduction-
band valleys®® or to distortion of the free-electron wave
functions and energies**~*° by interactions with impuri-
ties, similar to those which lead to localization and the
metal-insulator transition at low temperatures. (Factors
such as partial freezeout of the electrons onto donor
sites*! and uncertainties in the precise doping levels®’
probably introduce only second-order errors.) Although
Li and Thurber,! and Bennett*> have claimed good
agreement between their theories and experiment, the
effects of electron-electron scattering were significantly
overestimated in both of those studies. While they mul-
tiplied the ionized-impurity-scattering mobility by a con-
stant factor*® of 0.63, Appel* has shown that the correc-
tion should depend strongly on the value of the screen-
ing parameter b. He obtains 0.57 in the large-b limit,
but greater than 0.95 when b <10. Using Appel’s
scattering rates in conjunction with the Kohler varia-
tional method for solving the Boltzmann equation, we
find that the electron-electron scattering correction for
silicon at 300 K is never greater than a few percent at
any doping level.** Tosic et al.,* also obtained good
agreement with experiment using a calculation in which
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the electron density of states was altered by the presence
of an impurity band. However, the impurity band is as-
sumed to remain distinct up to the highest densities
(with a constant donor binding energy). In a more real-
istic model the binding energy should decrease with dop-
ing level until it vanishes* above n ~10' cm™3. Both
Tosic et al. and Bennett employed a ‘“conductivity”
effective mass*’ which is considerably larger than the ac-
cepted value of 0.26. We conclude that while the in-
clusion of multi-ion screening improves the agreement
between theory and experiment for n-type silicon at
room temperature, there is presently no comprehensive
theoretical treatment which accurately accounts for all
of the data.

B. Germanium

Figure 3 shows calculated and experimental*®—% elec-

tron mobilities for uncompensated germanium at low
temperatures. The marked dependence of the experi-
mental results on dopant (Sb or As) is thought to be due
primarily to scattering by the stronger core potentials of
the As impurity atoms.’®*” Since core scattering is not
included in our mobility formalism, it is probably more
appropriate to compare the theoretical results with Sb-
doped data.

For doping levels below 2 10'® cm™3, the multi-ion
screening calculation (solid curve) is in considerably
better agreement with experiment than the conventional
theory (dashed curve). Although the solid curve over-
corrects by about 30% at higher densities when compar-
ison is made with the Sb-doped data, this relatively small
disagreement may be due to our approximate treatment
of the large anisotropy of the electron effective mass. As
they did for low-temperature silicon, Krieger and
Meeks® have argued qualitatively that inclusion of mass
anisotropy into the multivalley screening calculation
leads to less-effective screening and hence lower mobili-

Ge (T~ 1K)
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FIG. 3. Hall mobilities for uncompensated n-type Ge:Sb
and Ge:As at T=1 K. Experimental points (Refs. 48—55) are
compared with the conventional screening theory (dashed
curve) and the multi-ion screening theory (solid curve). The
critical density n. for the metal-insulator transition in Ge:Sb is
indicated (it is slightly larger in Ge:As).

ties than in the isotropic case. However, Saso and
Kasuya® have performed a more detailed calculation of
the random-phase-approximation (RPA) dielectric con-
stant including mass anisotropy, and their results indi-
cate a relatively modest correction to the mobility (about
20% at 10'® cm~3). Saso and Kasuya have also per-
formed a Kohn-Sham calculation of the phase shifts,
which yielded a stronger scattering potential than the
conventional LTF result. While their theoretical mobili-
ties agreed well with experimental values at doping levels
above 2 10'"® cm~3, they were too high by factors on
the order of 2 at lower densities. The development of a
Kohn-Sham calculation which includes the multi-ion
screening effect (suggested in Ref. 19) should improve
considerably the agreement of their calculation with the
experimental results.>

Theoretical and experimenta results for
germanium at room temperature are shown in Fig. 4. In
this case, the agreement between theory and the Sb-
doped data is quite good at all densities. Here the
multi-ion screening correction never exceeds 30% since
the lighter effective mass in germanium leads to in-
creased degeneracy, which in turn prevents b from
becoming as small as the minimum value noted above
for silicon. It will be seen that in GaAs and InP, which
have even smaller effective masses, the multi-ion screen-
ing correction to the room-temperature mobility is even
less important (<10%). The previous calculation of
Rode?’ gave mobilities for uncompensated germanium at
300 K which were somewhat higher than the experimen-
tal results, probably because of errors introduced by the
use of Brooks-Herring theory and conventional rather
than multi-ion screening (the combined correction is
40% at 10" cm ).

147 —50,59—62

C. GaAs

The most commonly used method for determining
compensation densities in n-type GaAs has been to com-
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FIG. 4. Hall mobilities for uncompensated n-type Ge:Sb

and Ge:As at 300 K. Experimental points (Refs. 48—51 and
60-63) are compared with the conventional screening theory
(dashed curve) and the multi-ion screening theory (solid curve).
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pare the measured electron mobility at an intermediate
temperature (e.g., 77 K) with theory,?* %% using N, as
an adjustable parameter. It has been widely noted®®¢’
that this manner of characterization leads to acceptor
concentrations which are never less than 30-50% of the
donor densities, a finding that is relatively independent
of the dopant and growth process. It has therefore been
argued that GaAs is intrinsically self-compensating.®®
However, these conclusions depend heavily on the relia-
bility of the calculated mobilities, and both of the models
usually employed in the fitting?> %% are based on
Brooks-Herring theory.

Figure 5 shows theoretical and experimental®~72 Hall
mobilities for n-type GaAs at 77 K, where N =0 has
been assumed in the calculations. Note that when both
the phase-shift correction to Brooks-Herring theory and
the multi-ion screening correction are omitted (dashed
curve), the calculation yields mobilities which are as
much as 70% higher than the experimental values. Re-
sults such as these led previous investigators to conclude
that around 35% compensation would be required to
bring the two into agreement. However, the most gen-
eral theory’® (solid curve) is <25% too high, which
must be considered within the limits of theoretical un-
certainties. Only =~ 13% compensation would be needed
to achieve agreement.

When comparison is made to the more detailed
theoretical treatment, we find that the mobility data at
77 K provide little evidence for significant self-
compensation. This is in agreement with the conclusions
of Poth et al.,”* who argued that while the measured
mobilities are not found to vary appreciably with donor
species or growth parameters, the degree of self-
compensation should. Kamiya and Wagner’® also ar-
gued for minimal compensation in some of their sam-
ples, based on a technique using line-shape analysis of
impurity photoluminescence spectra. Although Wolfe
and Stillman® obtained an average compensation of
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FIG. 5. Hall mobilities for uncompensated n-type GaAs at
77 K. Experimental points (Refs. 68-72) are compared to
Brooks-Herring theory with conventional screening (dashed
curve) and to the phase-shift formalism with multi-ion screen-
ing (solid curve).
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25% in lightly doped samples from a fit to the tempera-
ture dependence of the Hall coefficient Ry, those same
authors’® noted that the possible error in the analysis
due to uncertainties in the treatment of excited impurity
states is at least 17%. They also pointed out that the
determination of N4 from Ry(T) is unreliable at donor
concentrations above ~5X10° cm~3 Using free-
carrier absorption measurements, Walukiewicz et al.”’
obtained significant compensation densities which ap-
peared to agree well with mobility-analysis results on the
same samples. However, both of their techniques relied
on the accuracy of theoretical models for the ionized-
impurity scattering rates.

Several authors’>78~% have employed detailed mobili-
ty analyses to investigate the apparent presence of an ad-
ditional mechanism such as space-charge or central-cell
scattering. Assuming that the unknown process has a
mobility of the form puy= Ay T ~!/%, both the acceptor
density and A4y have been treated as adjustable parame-
ters. However, since the additional scattering mecha-
nism does not even dominate at most temperatures, this
type of two-parameter fit is only meaningful if the “con-
ventional” processes are unambiguously characterized.
We have seen above that transport formalisms based on
Brooks-Herring theory and single-ion screening yield
GaAs mobilities which contain relatively large
temperature-dependent errors. One must therefore ques-
tion the reliability of even qualitative conclusions based
on detailed analyses using such formalisms.

Figure 6 shows that at 300 K the assumption of un-
compensated materials (N 4 =0) leads to excellent agree-
ment between the most general theory (solid curve) and
the data.® =728 Mobilities calculated using convention-
al screening and Brooks-Herring theory (dashed curve)
are only 15% higher, which is probably no larger than
the theoretical uncertainty.>> However, this difference is
just large enough to cause the dashed curve to appear
high when compared to the data. (See also Fig. 2 of Ku-
phal et al.”!)
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FIG. 6. Hall mobilities for uncompensated n-type GaAs at
300 K. Experimental points (Refs. 69-72 and 81) are com-
pared to Brooks-Herring theory with conventional screening
(dashed curve) and to the phase-shift formalism with multi-ion
screening (solid curve).
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D. InP

As in the case of GaAs, the highest mobilities report-
ed for n-type InP at 77 K are seemingly independent of
dopant.’? Also similar is the finding®?—%7 that the data
can only be fit by conventional transport calcula-
83—85 if at least 30-35 % self-compensation is as-
sumed. This can be seen by comparing the dashed curve
in Fig. 7 with the experimental points (the data from
Anderson et al.®? are consistent with other experimental
results from the literature®—?%). However, incorpora-
tion of the phase-shift and multi-ion screening correc-
tions (solid curve) again reduces the maximum
discrepancy to below 25%, corresponding to less than
13% compensation. Significantly, the solid and dashed
curves begin to differ when Np > 10' ¢cm~3, which is
precisely the density above which a marked increase in
the self-compensation is needed if the data are to be fit
by the conventional theory.’? Since no autocompensa-
tion is apparent from a chemical analysis of S-doped ep-
itaxial layers,82 Anderson et al. have attempted to im-
prove the agreement with conventional theory by apply-
ing the lowest-order multi-ion scattering correction of
Moore.?® Although the correction factor of 2 is well
outside the limits of validity claimed by Moore, the
agreement between theory and experiment is improved
in some regions. However, we have pointed out previ-
ously®® that the next term in the multi-ion expansion is
comparable to the lowest-order correction obtained by
Moore and that any truncation of the expansion after a
few terms may be invalid even when the low-order terms
are small. The improved agreement resulting from the
lowest-order multi-ion scattering correction must there-
fore be considered fortuitous.

Figure 8 shows the data® (points), conventional
theory (dashed curve), and theory containing multi-ion
screening and the phase-shift correction (solid curve) for
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FIG. 7. Hall mobilities for uncompensated n-type InP at 77
K. Experimental points (Ref. 82) are compared to Brooks-
Herring theory with conventional screening (dashed curve) and
to the phase-shift formalism with multi-ion screening (solid
curve).
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FIG. 8. Hall mobilities for uncompensated n-type InP at
300 K. Experimental points (Ref. 82) are compared to
Brooks-Herring theory with conventional screening (dashed
curve) and to the phase-shift formalism with multi-ion screen-
ing (solid curve).

n-type InP at 300 K. Although the more general theory
marginally worsens the agreement with experiment at in-
termediate densities (the discrepancy is never more than
20%), it somewhat improves the agreement at high den-
sities. As with GaAs, we find that multi-ion screening
considerations do not have a large effect on the transport
at 300 K.

V. CONCLUSIONS

In the preceding sections, we have demonstrated that
conventional derivations of the scattering potential for
ionized donors in an uncompensated semiconductor
overestimate the ability of free electrons to screen all im-
purities at the same time. From a lowest-order Kohn-
Sham analysis of the single-ion problem, we have shown
that low-energy electrons screen much more effectively
than do high-energy electrons. Linear extrapolation to
the multi-ion regime then leads to the unreasonable re-
sult that low-energy electrons contribute more charge
than they possess to the total screening of all donors in
the system. To overcome this difficulty, we have
developed a simple, self-consistent screening formalism
based on the requirement that no electron state should
contribute more than —e to the net screening charge.

The ‘“‘multi-ion screening length” derived from this
formalism has been used to obtain improved cross sec-
tions for the scattering of electrons by ionized donors.
In order to test the effects of the revised scattering po-
tentials on electron transport, we have recalculated elec-
tron mobilities for uncompensated n-type germanium,
silicon, GaAs, and InP as a function of doping level and
temperature. In several important regimes, such as
low-temperature silicon, room-temperature silicon at
Np~10® cm~3, and low-temperature germanium at
donor densities in the range Np <10n., the multi-ion
screening correction to the mobility is quite large.
Theoretical mobilities are reduced by factors of 2 to 4,
and the agreement with experiment is considerably im-
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proved. In other cases such as room-temperature ger-
manium and GaAs and InP at 77 K, the correction is
somewhat more modest but still markedly improves the
agreement with experiment. On the other hand, in ex-
amples such as GaAs and InP at 300 K, where agree-
ment between the conventional theory and experiment
was already fairly good, the multi-ion correction to the
mobility is much smaller. In only one case considered,
low-temperature germanium at Np >2X 10'® cm~3, does
the more general theory overcorrect the mobility, and
there the conventional and multi-ion screening calcula-
tions are in roughly equal disagreement with experiment
(=30%). We have encountered no example in which
the multi-ion screening correction appreciably worsens
the agreement between theoretical and experimental
electron mobilities.

In a future work we will treat the effects of multi-ion
screening on electron transport properties in a compen-
sated semiconductor. With significant compensation the
increase of the screening length will be larger since
n << N; and it is even more difficult for a given number
of electrons to screen all donors and acceptors at the

|

R (kr) a;(kr)
kr  ajkr— o)

[j;(kr) cosd,(r)—

n;(kr) sinsl(r)]

same time.'® However, it should be remembered that
the electron transport is only sensitive to changes in the
screening length when the parameter b [see Eq. (4.3)] is
small. At small-electron densities and hence long
screening lengths and large b, the direct effect of multi-
ion screening on the single-site scattering cross sections
is not necessarily large in compensated samples. Howev-
er, we have shown previously'” that the single-site theory
is inaccurate whenever the potential fluctuations due to
random inhomogeneities in the impurity density are
large compared to typical electron energies. The multi-
ion screening correction may therefore be quite
significant in that it leads to much larger fluctuations
than are estimated from the conventional screening cal-
culation.

APPENDIX: EVALUATION OF p;(r) IN
THE WEAK-POTENTIAL LIMIT

It is useful to rewrite the radial wave function in the
form®!

(A1)

where n; is the Ith-order spherical Bessel function of the second kind. The “amplitude function” «a,(kr) is defined

a;(kr)=exp | — hzk

X Lj;(kr')sin8, (r

f dr' g r' ' 2 (kr') cos®,(r')—n;(kr')sind,(r")]

"Ytn,(kr')cosd;(r')] (A2)

while the “phase function” §,(7) satisfies the first-order differential equation

38,(r) 2m kr2¢oqlr)

= Lj,(kr) cos®,(r)—n,(kr) sin8,(r)]? (A3)

or #2

and becomes the usual phase shift at large 7: 81(r—>a)=8,.

In Eq. (A1), we have normalized to a;( ) so that the

boundary condition Eq. (2.6) is satisfied at large r. The effective potential is @ g(r) =d(r)+P,..
In the “weak-potential” limit, the phase shifts are small and Eq. (A3) yields the Born-approximation phase function

[compare with Eq. (2.27) of Ref. 20]

N 2m.k N 5
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Similarly, the normalized amplitude function becomes
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aleo)
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Substitution of these forms into Eq. (A1) leads eventually to
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(A4)

(AS)

(A6)

where one integration has been performed by parts and we have used the result
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Of the two sums over /, it is easily shown using well-known relations®?

'3[2][(kr nl(kr )— j,_l(kr')n,+1(kr')—j,+1(kr')n1_l(kr')]dr'

¢eﬂ{ '3[] (kr')—ji _(kr')jp o a(kr)]dr’ |=1. (A7)

that the first is identically unity. For kr >>1

and [3¢.(r)/3r]/kdeglr) <<1 (that is, the effective potential does not vary significantly over an electron wavelength),
the second sum is small and oscillating for any potential ¢ 4(7).
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