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The electronic structures of the pseudobinary alloy semiconductors Pbl Sn Te are analyzed
using a tight-binding model with spin-orbit interaction. The densities of states and the band gaps
at the L point are computed for both the effective media using the virtual-crystal approximation
and the realistic media employing the recursion method, and the results are compared. Both
theories exhibit alloying effects such as band broadening, energy shifts, and Dimmock's band-
crossing phenomenon. However, significant deviations from the virtual-crystal approximation are
found for the cation-derived s-like deep valence-band states.

I. INTRODUCTION

The narrow-gap IV-VI semiconductor compounds and
their pseudobinary alloys have unique properties. They
have on the average five valence electrons per atom,
small direct band gaps at the I point, and high static
dielectric constants of order 10 . They often show a
variety of anomalous thermodynamic, acoustic, and elec-
tronic properties. ' Pb

&
Sn Te is an especially in-

teresting semiconductor alloy because the symmetry of
valence- and conduction-band edges of SnTe is reversed
compared to PbTe and other IV-VI semiconductors:
The conduction- and the valence-band edges have 1.6

and L6+ symmetry, respectively, in PbTe and most other
IV-VI semiconductors, while the ordering is "Dimmock
reversed" in SnTe. ' This has an interesting conse-
quence: the fundamental band gap closes to zero at an
intermediate composition x in Pb

&
Sn Te. This prop-

erty of the fundamental energy-band gap vanishing for a
selected composition means that alloys with cornposi-
tions near this composition exhibit small band gaps that
satisfy the special needs for infrared sources and detec-
tors in modern technology. Therefore it is very impor-
tant to understand the effects of alloy disorder on the
electronic structures of these technologically important
materials.

Recently, Spicer et al. have reported experiments in-
dicating the selective breakdown of the virtual-crystal
approximation for deep valence bands in Hg& Cd Te
[which is a covalent semiconductor alloy containing
"light" (Cd) and "heavy" (Hg) atoms], and have
identified that phenomenon as resulting from the Hg 6s
atomic levels being significantly below the Cd 5s levels.
Also, Hass et al. have obtained similar disorder effects
theoretically, in Hg& Cd Te using the coherent-
potential approximation. Davis has also found large de-
viations from virtual-crystal behavior theoretically in
Pbt Sr„S where the cations Pb (configuration 6s 6p )

and Sr (configuration Ss ) differ so much that an average
cation potential is meaningless.

The present work analyzes the effects of alloy disorder
on the electronic structures of the random alloys

Pb& Sn Te using the recursion method with a tight-
binding model. Pb& Sn Te is an interesting material
for this purpose because its constituent semiconductor
compounds PbTe and SnTe have very similar overall
electronic structures, except for the Dimmock reversal
of the valence- and conduction-band edges; the alloy
contains light (Sn) and heavy (Pb) cations. Moreover, the
electronic band structures of these materials have large
spin-orbit splittings, and the fundamental gaps are not at
the center of the Brillouin zone, k=O. Indeed, some au-
thors believe that PbTe and SnTe are ionic rather than
covalent materials. Therefore the usual criteria' for
the validity of the virtual-crystal approximation may not
app» .

In Sec. II, the tight-binding model for the parent semi-
conductors PbTe and SnTe is discussed, and the recur-
sion method is outlined. In Sec. III, the results of the
calculations are presented and discussed. Section IV
summarizes the conclusions.

II. CALCULATIONAL PROCEDURES

A. Tight-binding model

It is well known that Pb
&

Sn Te forms a single-
phase pseudobinary alloy over the entire composition
range x, with about 2% of lattice-constant change from
PbTe to SnTe. Both compounds crystallize in the rock-
salt structure with lattice constant 6.443 A for PbTe and
6.327 A for SnTe (Ref. 11) at 300 K. The electronic
structures of PbTe and SnTe (and other IV-VI com-
pounds) have been extensively investigated theoretically
and experimentally. ' A variety of computational tech-
niques such as the relativistic augmented-plane-wave
(APW) method, ' ' the orthonormalized-plane-wave
(OPW) method, ' the empirical pseudopotential
method, ' ' and the relativistic Green's function or
Korringa-Kohn-Rostoker method (KKR) (Ref. 20) have
been used to calculate the electronic band structures of
these materials. More recently, a self-consistent relativ-
istic APW calculation for Sn Te (Ref. 21) and first-
principles pseudopotential total-energy calculation for
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the ground-state properties and electronic structures of
PbTe and SnTe (Ref. 22) have been reported. Although
considerable differences may exist concerning some de-
tails, such as the parity assignments at the L point and
gap structures at critical points (for example, some cal-
culations' ' ' ' showed a "hump structure, " i.e., the L
point is not a minimum- or maximum-energy point, but
a saddle point in SnTe), the general features of the vari-
ous band structures mentioned above are quite similar.
Concentrating on this point and the fact that the recur-
sion method takes its most convenient form in a tight-
binding model, we shall use in this work the empirical
tight-binding Hamiltonian matrix elements of Lent
et al. , which are obtained by fitting the eigenvalues of
the tight-binding Hamiltonian matrix to the experimen-
tal band gap at the L point and to band energies at sym-
metry points, as calculated by Herman et al. '

Since the relativistic corrections to the energies of
heavy materials, particularly those including Pb, are
significant, ' the Hamiltonian used for band calcula-
tions should include these effects. The relativistic Ham-
iltonian which produces the energy-band structure has
the following form

H =(p /2m)+ V+H„+Pi V' V/8m c —p /8m c

where V is the periodic crystal potential. The spin-orbit
term which may split degenerate levels is

H„=Acr (V Xp)/4m c (2)

and the remaining terms are the Darwin and mass-
velocity terms, respectively.

Employing the ideas of Harrison, Chadi, and Vogl
et al. , the nearest-neighbor tight-binding Hamiltonian
can be constructed,

Ho ——g (
~

a, i,o,R)E;, (a, i, o, R
~

R, o, i

+
~
c,i, o', R+d)E;, (c,i, o, R'+d

~
)

+ g (
~
a, i, o, R) V, j(c,j,cr, R' +d

~

R, R', o,i,j
+H. c. )+H„, (3)

where H.c. means Hermitian conjugate, R are the lattice
vectors, i and j are the localized quasiatomic orbitals for
the cation and anion, a is the spin index (up or down), a
and c refer to the anion and cation, respectively, and d is
the position of the cation relative to the anion in any
unit cell: d=(aI /2, 0,0). The spin-orbit interaction
term can be described by the following Hamiltonian:

H„= g [ )
a, i, o, R)(A,, /2)L, o, (a,j,o', R

(
+

(
c, i, o, R)(A,, /2)L, cr, (c j,o', R

( ] .
R,i,j,o, cr'

(4)

As a basis set, we used 18 quasiatomic orbitals local-
ized on each atomic site which are assumed to be mutu-
ally orthonormalized by the method of Lowdin: s, p,
pyp p» d&2 2 83~2 ~2& dzy dyzp and d» for each spin-up
and -down state. The parameters of this model are given
in Ref. 24, and reproduce the experimental band gaps at
the L point (0.186 eV for PbTe and 0.3 eV for SnTe) as
well as the calculated band energies of Ref. 15 at the
high-symmetry points I, X, and L. The resulting band
structures are given in Ref. 24. In particular, the Dim-
mock reversal of the band structure from PbTe to SnTe
is correctly reproduced by the model.

B. Recursion method

To obtain the densities of states of Pb& „Sn Te alloys,
we require a theory that is capable of predicting the
spectra characteristic of pairs and clusters of minority
atoms, namely a theory that goes beyond the virtual-
crystal approximation (VCA) (Ref. 31) and the
coherent-potential approximation (CPA) (Refs. 6, 7, 10,
and 32—36). We use the recursion method, ' which ex-
ploits the fact that the Hamiltonian matrix for the alloy
can be transformed into a real symmetric matrix by uni-
tary transformation from the old basis

~ g ) (with
/=0, 1, . . . , N, where g' stands for b, i, o, R) to a new
basis

~
vI (v=0, 1,2, . . . , N). Thus we have

Go, o(E)=
E —ap—

b2
E —a)—E —a2—

(6)

where E has an infinitesimal positive imaginary part. In
practice this expansion is cut off at some finite level L
(=51 here), and the remainder is neglected. Then the
local densities of states for a specific site b and sym-
metries i are obtained from Gp p by taking the imaginary
part: ( —1/m )Im60 o. The choice of initial state

~
OI,

~
OI = g +

~
b, i, o,R),

R, o

where + means that each term is given a randomly
chosen sign, yields the local density of states projected
onto the b (anion or cation) site and the symmetry i in a
random alloy, and the sum of these local-state densities
is the total density of states. Details of the method can
be found in Ref. 37; computer programs for executing
the recursion method are available.

H
~

Iv=b
~

v —1I+a
~
vI+b ) ~

v+11 .

With an initial choice of
~

OI and bo ——0, this equation
can be iterated to determine the recursion coefficients a
and b (v=0, 1, . . . , N) and the Green's function:
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III. RESULTS AND DISCUSSION

We first calculate the density of states for the perfect
crystals PbTe and SnTe, employing the nearest-neighbor
tight-binding model discussed in the previous section.
The results are shown in Figs. 1 and 2. The dot-dashed
curve is the density of states obtained by the Lehmann-
Taut method. In this method, the Brillouin zone is
decomposed into a set of tetrahedra, and the integration
over the Brillouin zone is evaluated using an analytic ex-
pression. The solid curve is from the recursion method.
A 12&(12)&12-atom cluster was generated to simulate
the perfect infinite crystal, and the local density of states
for each orbital i, u was calculated with periodic bound-
ary conditions.

The overall agreement between the two methods is
very good, except for some minor details such as the
peak structures and the band-gap smearing; the
differences between the results of the recursion method
and the Lehmann-Taut method are within the tolerable
range. The 5-function-like peaks are associated with van
Hove singularities due to the long-range order. The
more or less smooth peaks in the upper valence bands
given by the recursion method (solid curve) are partly
due to the finite size of the cluster and partly due to the
limited resolution of the present method because of the
finite cutoff at L =51. (We determined this by varying
the size of the cluster and L.) Another difference is that
while the Lehrnann-Taut method clearly shows the band
gap to contain no states, the band edges are smeared in
the recursion method. The main reasons for this are the
limited resolution of the method and the incomplete can-
cellation of the off-diagonal elements of the Green's
function due to the choice of randomly phased initial
state. The band edges can be sharpened by choosing an
initial state

~
OI localized at the center of a cluster or by

investigating the spectral density of states (as will be dis-
cussed below). In Fig. 3, the contribution of each orbital
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FIG. 2. The virtual-crystal-approximation (dot-dashed

curve) and the recursion-method (solid curve) density of states
in SnTe. A 12&(12X12-atom cluster with periodic boundary
conditions was used in the recursion method.

to the density of states of PbTe is displayed. The lowest
valence band is predominantly anion s-like, and the rnid-
dle valence band is cation s-like. The upper valence
bands have dominant anion p-like character, while the
lower conduction bands are p-like and cation derived.
This can be visualized by the following simple picture.
The Pb atom has four valence electrons (6s 6p ) with
free-atomic orbital energies —12.42 and —6.95 eV (rela-
tive to vacuum) for s and p orbitals, respectively, and the
Te atom has six valence electrons (5s 5p ) with orbital
energies —19.05 eV (5s) and —9.79 eV (5p). ' The two
5s electrons of Te, which have the lowest orbital ener-
gies, form an isolated valence band deep in energy, and
the two 6s electrons of Pb form a middle valence band.
The two 6p electrons of Pb and the four Sp electrons of
Te interact with each other to form bonding (valence
band) and antibonding (conduction band) bands. There-
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FIG. 1. The virtual-crystal-approximation (dot-dashed
curve) and the recursion-method (solid curve) density of states
in PbTe. A 12&(12&(12-atom cluster with periodic boundary
conditions was used in the recursion method. The zero of en-

ergy is the valence-band maximum.
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FIG. 3. Local density of states for cation (dot-dashed curve)
and anion (solid curve) calculated by the recursion method in
PbTe.
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FIG. 4. Local density of states for cation (dot-dashed curve)
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FIG. 6. The virtual-crystal-approximation (dot-dashed

curve) and the recursion-method (solid curve) density of states
in PbQ 4SnQ 6Te. A 12)& 12)& 12-atom cluster with periodic
boundary conditions was used in the recursion method.

fore, alloying PbTe and SnTe, which is equivalent to dis-
tributing Pb and Sn atoms randomly on cation sites, has
the largest effect on the cationlike middle valence band.
The characteristics of the local density-of-states struc-
ture in SnTe are similar to those of PbTe (see Fig. 4); the
5s and 5p free-atomic orbital energies of Sn are at
—12.97 and —7.21 eV, respectively.

We generate a model of the random alloy Pb& Sn„Te
by randomly occupying cation sites by either Pb (with
probability l —x) or Sn (with probability x), while all
anion sites are occupied by Te. The matrix elements of
the alloy Hamiltonian are derived from those of PbTe
and SnTe as follows: On cation sites, we use either PbTe
or SnTe matrix elements, depending on whether the site
was occupied by Pb or Sn. On Te sites, we average the
PbTe and SnTe matrix elements, weighting the average
in proportion to the number of neighboring Pb and Sn
atoms to the Te. Then the densities of states for

Pb& Sn Te are calculated using both the virtual-crystal
approximation and the recursion method for a number
of compositions x. Again, the density of states is ob-
tained by the use of the Lehmann-Taut method in the
virtual-crystal approximation, and a 12X12X12-atom
cluster is used in the recursion method with periodic
boundary conditions. In order to avoid sample-
dependent results, we repeated the calculations for five
different alloy configurations of 12 atoms, and averaged
the densities of states. The results are shown in Figs.
5 —8. The solid curves represent the recursion density of
states, and the dot-dashed curves are for the virtual-
crystal approximation (VCA) results. Both the virtual-
crystal approximation and the recursion density of states
show the alloying effects, i.e., energy shifts and width
changes of the density-of-states peaks. However,
analysis of the middle valence band near —7 eV, which
has the greatest alloying effects, clearly reveals the
differences between the predictions of the two
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FIG. 5. The virtual-crystal-approximation (dot-dashed
curve) and the recursion-method (solid curve) density of states
in PbQ 3SnQ 7Te. A 12 &( 12 & 12-atom cluster with periodic
boundary conditions was used in the recursion method.

FIG. 7. The virtual-crystal-approximation (dot-dashed
curve) and the recursion-method (solid curve) density of states
in PbQ 5SnQ 5Te. A 12 && 12)& 12-atom cluster with periodic
boundary condition was used in the recursion method.
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methods —the effect of disorder. This band is a doublet,
with its low- and high-energy components due to Pb and
Sn s states, respectively.

Since the bands that exhibit the alloy effects which are
beyond the virtual-crystal approximation are cation s-
like in character, spin-orbit coupling does not produce
any novel features in the spectra of Pb& Sn Te, beyond
the spin-orbit features found in PbTe, SnTe, and a
virtual-crystal theory of Pb& Sn Te.

Fortunately the results we find agree rather well with
what is expected, based on the Onodera- Toyozawa
theory of alloys' —despite the fact that theory, to our
knowledge, has not been applied previously to alloys
with fundamental band gaps at the I. point of the Bril-
louin zone. The density-of-states spectra of the alloys
exhibit some features that are "persistent" and others
that are "amalgamated" in the terminology of Ref. 10.
The persistent features are associated with the cationlike
middle valence bands: the Pb 6s-like and Sn 5s-like
bands that retain their characters in the alloy because
the perfect-crystal bands do not overlap in energy. The
remaining bands are amalgamated and tend to form hy-
brids of the PbTe and SnTe bands rather than exhibit
separate PbTe- and SnTe-like bands. This amalgamation
occurs because the PbTe and SnTe bands overlap in en-
ergy, and hence mix in the alloy. ' Bands that fall
within this amalgamated regime can generally be de-
scribed, in a first approximation, by the virtual-crystal
approximation.

Although it is straightforward to include a valence-
band offset in the calculation by adding a constant ener-
gy to all of the diagonal matrix elements of either PbTe
or SnTe (by construction, the matrix elements of Ref. 24
place the zero of energy at the valence-band maximum),
we have not done so here because the offset is thought to
be small (of order 60 meV), almost negligible on the
scale of the figures.

It is well-known that the fundamental band gap of
Pb& Sn„Te closes at some intermediate composition be-
cause of the inverted band structure of SnTe. We calcu-
lated E(L6 ) E(L6+) of Pb& „Sn„Te as —a function of

FIG. 9. The band gap E(L6 ) —E{Lq+}of Pbl «Sn„Te vs
composition x. The solid circles (triangles) are obtained using
the virtual-crystal approximation (the recursion method), and
the solid line represents the interpolation of PbTe and SnTe ex-
perimental results of Ref. 3.

composition x by diagonalizing the virtual-crystal empir-
ical tight-binding Hamiltonian (solid circles in Fig. 9).
Also the corresponding quantity can be calculated using
the recursion method. In alloys, the translational sym-
metry is broken, thus the wave vector k is not a good
quantum number. However, we still can define the
spectral-density functions analogous to those of the per-
fect crystal by the following:

A(k, E)=—(lie) lim Im(b, i, o, k
~

G(E+ie)
~
b,i, o,k),

e~o

where
~
b,i, o, k ) is a normalized Bloch sum over all unit

cells of orbital i with spin o on each atomic site b (anion
or cation). Then the position and broadening of the
peak represents the energy shift and damping of a par-
ticular quasiparticle state of energy E and wave vector k.
Since L6+ (L6 } has anion (cation) p-like character, a
Bloch sum of (p„+p~+p, )/&3 on each anion (cation)
site at the L point is chosen as the initial state

~

0) for
L6+ (L6 }, and the spectral density of states & (k,E) is
calculated. Then the gap is defined by the differences in
the peak values of A(k, E), i e , E(L6. .) E(L6+ ). The-
theoretical predictions are shown also in Fig. 9 (solid tri-
angles) in comparison with a linear interpolation of the
experimental band gaps of PbTe and SnTe (Ref. 3) (solid
line). The theoretical uncertainty in E(L6 ) E(L6+ ) is-
—+0.02 eV for 0&x & 1. The calculated band gap is al-
most a linear function of composition x and compares
well with the experimental results.

IV. SUMMARY

The electronic structures of Pb& „Sn Te alloys, in-
cluding their parent semiconductor compounds, have
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been analyzed using the tight-binding model with spin-
orbit interaction. The densities of states were computed
for both the effective media using the virtual-crystal ap-
proximation and the realistic media employing the recur-
sion method, and the results were compared. As expect-
ed, both theories exhibited alloying effects such as band
broadening and energy shifts. However, the two
methods differed in their predictions for the cation-
derived s-like states, which experienced the greatest al-
loying effect. The alloy composition dependence of the
band gap at the L point was analyzed, and exhibits
Dimmock's band-crossing phenomenon. The above facts
show that the recursion method is a useful tool for the
study of the electronic structure of random Pb& „Sn„Te,
and in particular for the cationlike middle valence band.
However, they also show that the virtual-crystal approx-
imation provides a remarkably good description of the
electronically important top valence and bottom conduc-

tion bands. Finally, they demonstrate that the
Onodera-Toyozawa criteria can be applied to
Pb& Sn„Te, even though these alloys have their funda-
mental band gaps at I.: the cationlike s-like middle
valence bands are persistent while the top valence band
and lowest conduction band are amalgamated.
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