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Magnetoplasmons in thin films in the Voigt configuration

M. S. Kushwaha and P. Halevi

(Received 19 March 1987)

We have studied the magnetoplasrna modes of a thin film, bounded by two dissimilar dielectrics,
the applied magnetic field Bo being parallel to the interfaces and the waves propagating in a direc-
tion perpendicular to Bo (Voigt geometry). On the basis of local theory we have derived the exact
dispersion relation that governs the propagation characteristics of both surface and bulk (or
waveguide) modes. These waves are p (or TM) polarized and exhibit nonreciprocity with respect
to their direction of propagation. An analytic solution for the propagation constant q, (co) has
been found in the nonretarded limit, valid for co/c «

~
q,

~
&& 1/d, where d is the thickness of the

film. In the limit
~
q,

~

~ oo there are two surface modes whose limiting frequencies are given by
e„(co)+iE'y (cu) sgn(q, )= Ej where e;~(co) is an element of the dielectric tensor of the semiconduc-
tor, and t l and e3 are the dielectric constants of the bounding media. Moreover, in the nonretard-
ed limit as Bo is increased, the upper mode changes its behavior from monotonically decreasing to
monotonically increasing; for a simple model of e;, (co) this occurs at a critical value of the
cyclotron-frequency to plasma-frequency ratio ~, /co~ =[@i,(ez /e, —l)] ' ', where eL is the back-
ground dielectric constant and, for q, )0 (q, (0) the correct choice is j =3 (j =1). Then, for a
given propagation direction, the upper surface mode degenerates into a horizontal line, i.e., the
corresponding group velocity vanishes. We have also applied to the general dispersion relation a
thin-film approximation Pd «1. This enables us to find an analytic solution in two cases: (1) a
very thin semiconducting overlayer on a metallic substrate, giving rise to a splitting in the spec-
trum in the vicinity of the hybrid cyclotron-plasmon frequency with the creation of a gap; (2) a
very thin, unsupported, magnetoplasrna film in which case we find four polariton branches.

I. INTRODUCTION

We have recently embarked on a systematic study of
magnetoplasma modes in thin semiconducting films
bounded by dissimilar dielectric media. The propaga-
tion vector Req is parallel to the thin-film structure. In
the presence of an applied magnetic field (Bo) there are
three basic configurations, namely, (i) Bo perpendicular
to the surface, (ii) Bo parallel to the surface and to the
propagation vector Req (Faraday configuration), and (iii)
80 parallel to the surface and perpendicular to Req
(Voigt configuration). Of these we have presented a de-
tailed study of the Faraday configuration. ' In the
present work we will explore the Voigt configuration (see
Fig. 1).

The effect of an externally applied magnetic field (Bo)
on surface plasmons in metals and semiconductors in the
Voigt configuration has been studied by a number of au-
thors. For recent reviews the reader is referred to ar-
ticles by Halevi and Wallis. Although the application
of an applied magnetic field in all the geometries causes
various qualitative changes in the behavior characteristic
of plasma modes, the Voigt configuration presents some
particularly interesting features. For instance, the
dispersion relation for surface magnetoplasmons be-
comes asymmetric with respect to the direction of the
wave vector (change of sign), and the dispersion spec-
trum exhibits a magnetic-field-dependent energy gap.
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FIG. 1. The schematics of the configuration studied in the
present paper. The applied magnetic field Bo and the direction
of propagation are parallel to the interfaces and perpendicular
to each other. We refer to the cases el&e3 and el ——e3 as the
asymmetric and symmetric configurations, respectively.

An important characteristic of the Voigt configuration is
that it preserves the TM (p-polarizedi nature of the
modes, just as in the absence of Bo.

Recently a great deal of attention has been focused on
studies of surface plasmons in thin metallic films and
multilayered structures. A few workers have studied the
propagation range and the lifetime of plasmon polaritons
in thin films, in addition to their dispersion characteris-
tics. ' ' The effect of an applied magnetic field in the
Voigt configuration in an unbounded thin film was stud-
ied by De Wames and Hall. ' It will be shown later that
their numerical results for the dispersion curves are con-
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sistent with the ones that we will present here for the
special ease of the symmetric configuration. Recently,
Sarid' has studied surface plasmons in a thin metallic
film bounded by two semi-infinite identical semiconduc-
tors in the Voigt configuration. This author has shown
that the application of a magnetic field modifies the syrn-
metry of the (otherwise identical) bounding media, as a
result of which both modes, particularly the long-range
one, experience a dramatic decrease in their propagation
lengths. The configuration considered by Sarid' corre-
sponds to the symmetric strip line, a well-established
magnetospectroscopic technique in the subrnillimeter
range. ' There also exist several experimental works
that utilize the attenuated-total-reflection (ATR) method
in the far infrared, ' ' as well as in the submillirneter'
region of the spectrum. This method is particularly suit-
able in the Voigt geometry because of the simple polar-
ization (TM) of the magnetoplasma modes as compared
with configurations that involve other directions of the
magnetic field.

In the present work we will study the dispersion
characteristics of magnetoplasma modes propagating
along a lossy thin semiconducting film bounded by two
dissimilar dielectric media; the waves propagate in a
direction perpendicular to the applied magnetic field, it-
self parallel to the surface. It should be pointed out that
in the absence of an applied magnetic field, all the three
media constituting the geometry depicted in Fig. 1 are
isotropic.

The remainder of the paper is organized as follows.
In Sec. II we present the derivation of the general
dispersion relation. In Sec. III we study this relation in
the nonretarded limit (choo). The slope of the upper
surface mode exhibits an interesting dependence on Bp,
this behavior is also analyzed in Sec. III. In Sec. IV we
subject our general dispersion relation to an approxima-
tion valid for very thin films and investigate two cases of
interest: (A) surface polaritons modified by a magnet-
ized overlayer, and (B) a magnetized film bounded by
two identical dielectric media. It is worthwhile mention-
ing that our accomplishment lies in presenting analytic
solutions and thus physical insight into a rather complex
problem. The detailed numerical calculations are de-
ferred to a future work.

where qp
——co/c is the vacuum wave vector, co being the

angular wave frequency, and c the velocity of light in
vacuum. We assume that spatial and temporal depen-
dence of the fields is of the form of -e'~' ". In the
present configuration (80~~x) the dielectric tensor is
simplified by the symmetry requirements that eyy
E'zy E'yz &

and eely 6'y& E'zz e~ =0. Consequently,
Eq. (1) may be rewritten as follows:

qpe —
qy

—q,
2 2 2

2 2qp6 —q
2—qp&yz+qyqz

0
2

q p~yz+qyqz
2 2

q p&zz —
qy

Ey ——0.

(2)

Equation (2) is a set of three linear homogeneous equa-
tions satisfied by the electric field in the dispersive aniso-
tropic semiconducting medium II. The same set of three
equations also give valid solutions of Maxwell's equa-
tions in the isotropic media I and III, if we just take
e», =0 and e»»=e„=e; (i =—1 and 3, respectively, for
media I and III). The nontrivial solution of such a set of
three linear equations requires the vanishing of the
determinant of the coefficients. As such one obtains

(3)

in the semiconducting medium [note that (q» +q, )

=qo(e„+e», /e„) is simply the dispersion relation for
the bulk modes in the Voigt geometry] and

—
qy

—e; =q —qpe;, i =1,32 — 2= 2 2

in the dielectric media. In Eqs. (3) and (4) p (=+iq»)
refers to the decay constant in medium II and a;
( =+iq» ) to those in media I (i = 1) and III (i =3).

Because of the TM character of the magnetoplasma
waves, we choose to solve the wave field equations in
terms of the nonvanishing transverse magnetic field com-
ponent H . We write the field distributions in the three
media in the form (see Fig. 1)

to Maxwell's curl field equations. After eliminating the
magnetic field variable (H), we obtain the following
wave equation for the macroscopic electric field (E):

V X (V X E)—qoe. E=0,

II. DERIVATION OF GENERAL
DISPERSION RELATION H„(r, t ) =H„(y )e (5)

We consider a semiconducting film (medium II) of
finite thickness characterized by a dielectric tensor Z

which is assumed to be independent of the propagation
vector (q). The semiconducting film is asymmetrically
bounded by two semi-infinite dielectric media I and III,
their dielectric constants being e& and e3, respectively.
The magnetostatic field (Bo) is assumed to be oriented
parallel to the interfaces which are perpendicular to the
y axis. The three media constitute the geometry shown
in Fig. 1. The direction of Bp is parallel to the x axis
and perpendicular to q which is parallel to the z axis,
i.e., we are concerned with the Voigt configuration.

For the derivation of the dispersion relation we resort

where H„(y ) for regions I (y & —d ), II ( —d &y &0),
and III (y & 0) is expressed as follows:

H,'(y ) =H„'e

H "(y ) =H„,e @'+H e~»,

and

H III( ) H III ~3»

Analogous solutions can be written for the electric field
E in the three regions.

Since we are considering TM waves, the nonvanishing
field components are H, Ey, and E, . It is noteworthy
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y= —d:

H e ' =H»e~"+Hx2e

where

&]
g

—aidH e
E')

k pd

(mezz iqz eyz )

k

( —Pe„iq, e~,)— (12)

that E„+0 and E~ =E,=0 (i.e., —
q~ =q, —qoe„)

would lead to TE (s-polarized) waves. However, carriers
drifting parallel to the applied field do not experience a
magnetic force. The situation is identical to the field-
free case, and will not be pursued further. The bound-
ary conditions in the present configuration are the con-
tinuity of the tangetial field components H and E, . Us-
ing Maxwell's curl field equations and Eq. (2) we can ex-
press E, in terms of H in the three media. Employing
the boundary conditions at the two interfaces (y =0 and
y = —d ) yields the following relations:

y=0:
)+H

2

e3
" (Pe„—iq, e~ ) ( —Pe„—iq, e~ )

(10)

positive root of f3, in view of our field solutions, Eq. (7)].
This corresponds to polariton or surface modes decaying
away from both the interfaces, inside as well as outside
the film.

(ii) P is pure imaginary (one may choose ImP&0).
These are waveguide (WG) or bulk modes with an oscil-
latory field dependence inside the film.

This classification of the modes into polaritons and
waveguide modes is valid only if the dissipation is
neglected (i.e., the carrier collisional frequency v=0).
With finite absorption (v&0) q„ai, a3 are P are, of
course, all complex quantities. In the present paper we
will assume v=0, where e„and e „are real and e~, is
pure imaginary. Effects of absorption will be dealt with
in a future publication.

We have checked Eq. (14) by subjecting it to various
special limits, viz. , d=0, d~~, and Bo ——0. It is found
that within these limits our general dispersion relation
reproduces exactly the results previously reported for a
single interface (Ho&0) (Refs. 3, 4, 6, 8, and 9) and for a
thin film with' and without" ' an applied magnetic
field.

Our numerical results are based on the following mod-
el for the dielectric tensor elements (e;i ) relevant to our
geometry (Fig. 1):

2
Q)p

yy Fzz CL + 2 2
(CO~ —CO )

1 2 2 2=qz —qo&zz (13)
2

COp Cuc

3'z 2 2
CO( CO~ —CO )

(15)

Equations (9)—(12) are four homogeneous equations in
terms of four unknowns —H', H'", H„~, and H 2. This
system of equations admits a nontrivial solution only if
the determinant of the coe%cients vanishes. This leaves
us, after some algebra, with the following relation:

[ ,aa( 3„e+,e) +k e, e,

+iq, e~, (a3ei —aie3)]tanh(Pd )+Pe„(a3ei+aie3) =0 .

(14)

Equation (14) is the dispersion relation for the TM mag-
netoplasma waves in the Voigt configuration. One notes
immediately from Eq. (14) that the dispersion relation is
nonreciprocal —i.e., positive and negative values of the
wave vector q, are not equivalent.

We are interested in the propagating-wave solutions of
Eq. (14), i.e. , q, must be real in the absence of damping.
Then ai and a3, given in Eq. (4), are either real or pure
imaginary. The latter ease of certain interest in
waveguide theory ("substrate modes" and "air
modes"). 0 In the present work we will limit our atten-
tion to solutions which decay exponentially away from
both the interfaces of the film. Such solutions are
characterized by both a& and o.3 being real and positive.
The real magnetoplasma modes with real q„a&, and a3
may be further classified according to the nature of P,
given by Eq. (3). Depending upon the spectral range in
the (co —q, ) plane the following possibilities may arise.

(i) P is real and positive [we may always choose the

2
Mp

xx 6L 2
CO

where co~ =(4~ne Im*)' and cu, =e
~
Bo

~

Im*c are,
respectively, the unscreened plasma frequency and cyclo-
tron frequency; e, m*, and n being, respectively, the
electronic charge, effective mass, and free-carrier con-
centration in the semiconducting film (region II in Fig.
1). However, it should be pointed out that most of the
analytic results in the present paper are independent of
any particular model. For instance, we can always in-
corporate the effects of the carrier collisional frequency
(in order to account for the absorption) and the frequen-
cy dependence of the background dielectric constant
(eL ) which, in other words, allows the coupling of mag-
netoplasmons to optical phonons.

III. NONRKTARDED LIMIT

In the nonretarded (NR) limit we assume
~ q, ~

&&qo
which is, mathematically, equivalent to taking choo.
Then ai ——a3 ——k =P=

~ q, ~, since by definition a;
(i—:1,3) and P are positive. In order to account for the
nonreciprocity of the dispersion relation we substitute
q, =

~ q, ~
sgnq, in Eq. (14). Consequently it becomes

[(e„+e~,+eie3)+ sgn(q, )(ie~, )(e, —e3)]

)& tanh(
~ q, ~

d )+e„(e,+e3)=0 . (16)

This is the dispersion relation for the magnetoplasma po-
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A simple factorization of the left-hand side of Eq. (17)
leads to two possible solutions:

and

e„+sgn(q, )(ie~, )+e3 0, — (18a)

—sgn(q, )(i e» )+e,=0 . (18b)

In the case Bo——0 and hence e~, =0 and e„=e(n),iEq.
(18) reduces to e(co)= —e; (i =?,3) as it should be.
Equations (18) represents the asymptotic solutions corre-
sponding, respectively, to the II-III and II-I interfaces.
Substituting e„and F~, from Eq. (15) in Eqs. (18) gives,
after some algebraic steps,

2
COp

E'L +63
+ —,

' sgn(q, )co, , (19a)

laritons in the NR limit for an arbitrary thickness of the
semiconducting film. The presence of the off-diagonal
element e~, indicates that the dynamical Hall effect plays
a significant role even in the NR limit —unlike the case
of the Faraday configuration. ' On the other hand, the
element e„„has dropped out. We will analyze Eq. (16)
in the following two cases.

The case
~ q, ~

d~oo. First we consider the case
~ q, ~

&&1/d; taken together with
~ q, ( &&qo this im-

plies that
~ q, ~

—moo. As a result, Eq. (16) assumes the
form

E„+@~,+e,@3+ sgn(q, )(it~, )(e& e3)+—e„(e&+e )&=0 .

(17)

spectively, for the upper and the lower modes

and co =0 for q, =0,
where

(21)

coH = (coq + cop /el ) (22)

is the well-known hybrid cyclotron-plasma frequency at
which e„v anishes. Note that the other pole of e~, (co),
namely m„ is also a pole of e„; then it is not diFicult to
show that right-hand side of Eq. (20) is finite. One
should not equate the denominator of Eq. (20) to zero
while looking for the asymptotic frequencies, because we
know that the correct asymptotic frequencies are given
by Eqs. (19). The apparent discrepancy is hardly
surprising since the present approximation is limited to

~ q, ~
&& 1/d. Similarly, Eq. (21) does not give true

values of co(q, ~0) because we must satisfy
~ q, ~

&&qo.
We have computed q, as a function of co, Eq. (20),

with the choice of the following parameters: eL ——15.7,
e&

——11.683, e3 ——1.0, and m, /~z ——0.5. These values
specify our layered structure (Fig. 1) as made up of a Si-
glass substrate (region I), an InSb film (region II), and air
(region III). The numerical results in terms of dimen-
sionless variables are shown in Fig. 2. The two curves,
represented by solid lines, are the magnetoplasma ana-
logs of the Fuchs-Kliewer modes and give valid solutions
provided that qo «

~ q, ~

&&1/d. For both directions of
propagation the lower mode starts at the origin, while
the upper mode starts at co=~H as expected by Eq. (21).
As cu increases we observe a marked difference in behav-

2
COp

EL +6)

' 1/2

—
—,'sgn(q, )co, . (19b)

--0 6--- —-- ———-- ---. -~~-- —-.
~ ~ ~

3 "04

-0 '5

-.0.2

------- —--------- —-- —---—.0 I~ ~

'~

l.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 I.O

s (19) ~~ply that there are two asymptotjc s
tions (corresponding to q, ~+ oo ) for each of the two in-
terfaces in the NR limit. Equations (19), for e, =as 1, ——
reduce to Eq. (5) of DeWames and Hall' for the sym-
metric configuration. It is to be noted that the two
asymptotic modes corresponding to a given interface are
separated by

~
~, ~. In the special case when Bo ——0,

Eqs. (19) give the solution co=co~(el +e;) ', i =1 or 3,
which is the same as Eq. (24) in Ref. (9).

The case
~ q, ~

d &&1. In the NR limit this assump-
tion is equivalent to qo «

~ q, ~
&&1/d. As a result, Eq.

(16) reduces to

ezz(&i+&i)

[e„+E~,+e&e3+sgn(q, )(is~, )(e, —e3)]

(20)

Because the NR limit requires that
~ q, ~

&&qo, this re-
sult holds only for very thin films, namely qod &&1. In
what follows, two different cases regarding the disper-
sion relation, Eq. (20), have been analyzed.

(i) e»e3 & 1. For q, =0, we must have either e„=0
or e,~ oo, as may be seen from Eq. (20). This gives, re

-q,d +q, d

FIG. 2. The normalized frequency cu/co~ vs normalized
propagation constant q, d in the nonretarded limit for the
asymmetric configuration. The two branches (solid lines) for
q, &0 and q, ~0 are solutions of Eq. (20) which correspond to
the assumption that qo «

~ q,
~

&&1/d. The dotted lines indi-
cate that our approximations fail for very small and for very
large values of

~ q, ~. The asymptotic limits
~ q,

~

~ao are in-
dicated by dashed lines. The parameters used are ei ——11.683,
63 = 1.0, eL ——15.7, and co, /co~ =0.5. This corresponds to an
InSb film on a Si substrate in the far infrared.
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~s+~ qz &0

Cus —~ qz ) (23)

ior for q, &0 and q, &0. The asymptotic limits (dashed
lines) for the lower and upper modes are given by Eqs.
(19b) and (19a), respectively, if q, &0, and the other way
round if q, &0. It is worthwhile pointing out that the
correct asymptotic limits, given by Eqs. (19), are almost
the same as those obtained (incorrectly) by equating the
denominator of Eq. (20) to zero. This is because the last
term in Eq. (17) is negligible as compared with the alge-
braic sum of the other terms in the regions of both the
upper and the lower modes. Actually it seems that the
upper branch in Fig. 2 approximates very well the exact
behavior provided that co, /co~ &~1/eL which is satisfied
for all but extremely low magnetic fields. Since, in the
NR limit, the decay constants ai, ct3, and P are all given
by

~ q, ~, both modes correspond to polaritons bounded
to the interfaces.

In Fig. 2 the upper polariton mode starts at co=cuH
and reaches the asymptotic limits to, + [for q, &0, Eq.
(19a)] and to, [for q, &0, Eq. (19b)]. Because these fre-
quencies are always greater than AH the upper (as well
as the lower) polariton branch is monotonously increas-
ing for

~ q, ~
&&qo. In this aspect the behavior of the

upper mode differs from that of the upper Fuchs-
Kliewer mode (Bo——0) and the corresponding one in
the Faraday geometry, ' in which cases the group veloci-
ty (V~) is negative for sufficiently large wave vectors.
This suggests that there exists a critical value of the
magnetic field at which V~ of this (upper) mode changes
sign from negative to positive.

We note that Eq. (20) is satisfied, for an arbitrary
value of q, (and d ), if

dent from the figure that the behavior of the lower sur-
face mode is unchanged.

Equations (23)—(25) may be readily generalized for an
arbitrary model of e;J(to, BO). The corresponding equa-
tions are

e„(co,Bo)=0,
e~, (co, Bo)=i e3sgn(ti, ),
er, (co, Bo)= —ieisgn(q, ) .

(23')

(24')

(25')

2&ot-zz
I a I

d =—,
zz+6yz+ pp

(26)

One notes immediately that in this case the dispersion
relation is reciprocal.

We have calculated the frequency spectrum, Eq. (26),
using en=1. 0 (unsupported film) with the rest of the pa-

Equations (23') and (24'), and also equations (23') and
(25'), when solved simultaneously, give the critical value
(or values) of Bo such that certain polariton branches de-
generate into lines co= const, also given by the solutions
of the above equations. These solutions are character-
ized by vanishing group velocities.

Because this behavior is independent of the film thick-
ness, it is also valid for d ~ oo, that is, for a surface. No
need to say, for

~ q, ~
-qo, when retardation is impor-

tant, Eq. (20) is not a solution [of Eq. (14)] and, for such
values of the wave vector, the group velocity does not
vanish in general.

(ii) ei ——e3 ——eo (say). In this symmetric configuration,
Eq. (20) assumes the form

Solving the last equality we get

and

[~i (~L —~3)l'"
~c

for q, &0,
Q)p

(24) ~c
= 0.28II2

43P
S-

. 05

"04
= O.OI6II

P

[~i (~k —~i ) 1
'" toe

for q, &0. (25)
"03

S+

-- 0.2 S-

We conclude that for the critical values of the magnetic
field, given by Eqs. (24) and (25), one side of the upper
polariton branch degenerates into a horizontal line
co=cuH, i.e., for this side of the branch Vg =0. Therefore
it seems that co, &co,—and co, &co,—will lead to negative
and positive group velocities, respectively. The numeri-
cal values of co+ and co, , for the parameters used in the
present work, are such that co+ /co~ =0.016 11 and
co, /cop ——0.281 12.

%'e have used the aforesaid critical values of the mag-
netic field to calculate the dispersion curves for this
asymmetric case, Eq. (20). The other material parame-
ters used for this purpose were the same as those used in
Fig. 2. The numerical results in terms of the dimension-
less variables are shown in Fig. 3. The fiat (solid) lines
designated as s+ and s, respectively, refer to
co~ ——co, +, for q, &0, and coH ——co, , for q, &0. It is evi-

Sy

i 0

I.O 0.8 0.6 0.4 0.2 O.O 0.2 0.4 0.6 0.8 I.O

-q, d +g, d

FIG 3. The di.spersion curves in the nonretarded limit for
the critical values of the magnetic field, Eqs. (24) and (25), at
which the group velocity of the upper polariton mode vanishes.
Apart from co, /co~ =0.01611 and 0.281 12, respectively, for
q, & 0 and q, & 0, the other parameters are the same as in Fig.
2. The horizontal solid lines designated as s+ and s, respec-
tively, for q, & 0 (at co/co~ =0.252 891) and q, & 0 (at
cu/co~=0. 377787) are the polariton modes for which Vg =0.
The horizontal dashed lines designated as s and s+, respec-
tively, for q, &0 and q, &0, are the asymptotic limits for the
lower dispersive (polariton) mode.
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frequency specified by Eq. (19b). The upper mode starts
at co=m~ and approaches an asymptotic limit given by
Eq. (19a). It may be noted that, like case (i), the asymp-
totic limits, correctly given by Eqs. (19), are almost the
same as those given (incorrectly) by the denominator of
the right-hand side of Eq. (26) equated to zero. This be-
havior is a consequence of a large ratio of eL to
eo ( = l.0). The noteworthy difference between the
asymmetric and symmetric cases can be attributed to the
reciprocity in the latter case.

In the symmetric configuration, too, the slope of the
upper polariton mode changes from negative to positive
as we increase the magnetic field. By Eqs. (24) and (25)
this happens when

0.0 0.2 0.4 0.6 0.8 [& (&2 &2)] l/2

FIG. 4. As in Fig. 2, for the syrnrnetric configuration,
6]—63 —1 .0; that is, an unsupported InSb film. The two
branches (solid lines) are the solutions of Eq. (26). This case is
reciprocal.

for both directions of propagation. For this value of
co, /co~ the group velocity of the upper polariton van-
ishes in the nonretarded limit.

IV. APPROXIMATE DISPERSION RELATIONS
FOR VERY THIN FILMS

rameters being the same as stated in case (i). The nu-
merical results for co/~~ vs q, d are plotted in Fig. 4.
The solid curves indicate the dispersive (ordinary) sur-
face modes and the dashed lines stand for the asymptotic
limits, for e, =@3——1 in Eqs. (19). The lower mode starts
at the origin and approaches an asymptotic limit at a

I

In this section we invoke a thin-film approximation
(TFA)

tanh(Pd ) =Pd . (27)

With this approximation the general dispersion relation,
Eq. (14), assumes the form

e«(a3e~+a&e3)+d[a&a3(e„+e», )+k e&e3+
~ q,

~
sgn(q, )(ie», )(a3e& —a~f3)]=0 .

We will analyze Eq. (28) in two different cases of interest.

A. Surface polaritons modified by magnetized overlayer

In this case we assume that medium III is air (e3 ——1.0) and that medium I is surface-wave active (i.e., e, &0). We
use an ansatz '

2 2 2
q, =qo +K&1+e) (29)

f'or a film of small thickness d. In the limit d ~0, K
&

must vanish and we are left with the surface plasmon-polariton
dispersion relation. For very small but finite d, we expect that K, is proportional to some power of d. Using Eq. (4)
and treating K& as a very small quantity, we calculate a&, a3, and K (see Appendix C in Ref. 1). Substituting in Eq.
(28) and neglecting the terms proportional to K

&
(and higher-order ones) in the coefficient of d results

Substituting K f in Eq. (29) yields
1/2

i(qod )e~
'

[(e& e„)(1 «„)+e»,—+2 sgn—(q, )e», eI ]e«(1+~, )'(1—e, )

E(

1+a)

2i(qod )ef 2 1/2K, =—, [(e, e„)(1—«„)+e», +2sg—n(q, )E» E, ] .
e'„( I +a) )' (1 —&) )

(30)

(31)

We note that —ie', = i( —
~

e',
~

—)( i
~
~,

~

' )—
=

~
e, ~, so the right-hand side of Eq. (31) is a real

quantity. Furthermore, a consideration of the behavior
of q» and q, for e, (co) &0 dictates the choices ImeI~ &0

and Im(1+@~)' &0. An inspection of Eq. (31) reveals
that the propagation constant is linear (to the lowest or-
der) in d. Equation (31) is a good approximation provid-
ed that qod « l. In the special case that Bo——0, Eq. (31)
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1//'22
2

CO~ = Q7~ +
eL —1

(32)

y0. 565

3

/
/

/

/

/

reduces to Eq. (3) of Lopez-Rios' provided that eo, the
dielectric constant of medium III in his notation, is
equal to one.

We have calculated the dispersion curve correspond-
ing to Eq. (31) using the parameters er ——15.7,
~, /co~ =0.5, and co~1 Ic =2~ X 10 (for d =2 pm this
corresponds to co~ =1.50 THz) and the magnetoplasma
model as specified in Eq. (15). For the metallic substrate
we assume a simple model e&

——1 —co &/cu and take
3

1 pl

cop& /cop 10 cop] being the plasma frequency of the me-
tallic substrate. The parameters, as cited above, corre-
spond to an InSb semiconductor film on a Na substrate.

Because co~&&&~~ and qpd &&1, the first term in Eq.
(31), corresponding to bare metallic surface, predom-
inates over most of the spectral range of interest. An ex-
ception occurs at the hybrid cyclotron-plasma frequency
AH, defined in Eq. (22). The diagonal element e„van-
ishes at AH and from Eq. (31) q, ~oo. Although our
perturbational approach breaks down, it is clear that a
splitting occurs in the dispersion curve of the magneto-
polaritons. This is shown in a narrow range in the vicin-
ity of co~ in Fig. 5. At the frequencies away from coH,
the dispersion curve closely follows the light line
(q, =qo), this is because co«co~i. We have discarded
the solutions with q, &qp, the reason being that these
correspond to the imaginary decay constant a3. For
co~i&&co& (and co, ), the correction term in the small
square bracket in Eq. (31) vanishes at a frequency ap-
proximately equal to

r

It may be concluded that, as a consequence of the pres-
ence of the thin film, a gap opens up in the spectrum.
For eL ~~1, the width of the gap is

2
COp

COB —COH =
2EL~H

(33)

B. Magnetized film bounded by identical media

Substituting z& ——e3 ——ep and hence cz& ——a3 ——exp in the
dispersion relation simplified in the TFA, Eq. (28), gives

2EpE& (10+d [Clo(e' +6&)+k Eo] ='0

In this case we use the following ansatz:

=qPEP+E 2
2 2 2

(34)

(35)

for a small thickness of the film. In the limit d~0, the
film bounded by two identical dielectric media becomes a
bulk characterized by the dielectric constant ep. In this
case the solution for q, should be qo(eo)' . For small
but finite d, we expect that q, will differ from qo(EO)'
by a small amount which is proportional to some power
of d. This is the basis of our ansatz in the symmetric
configuration, Eq. (35). Treating Kz as a very small
correction and using Eq. (34), with e;=eo and a;=ao,
we calculate ao and K (see Appendix D in Ref. 1). Sub-
stituting in Eq. (34) and neglecting the terms proportion-
al to Ez and Kz in the coefficient of d leaves us with an
expression for K2 given by

1 qp
IC2 = — Eo( eo —Ezz )

&zz
(36)

In the absence of Bp, COB =~p/6'L and the gap becomes
CO /2E L

We note that although our dispersion relation, Eq.
(31), is different from the corresponding expression in
the Faraday configuration, Eq. (38) in Ref. 1, the numer-
ical results are found to be almost the same. This is be-
cause of a considerably large ratio of co~& to cuz, and a
pole at co=co~ in both geometries. For the same reasons
the nonreciprocity, evident in Eq. (31), is hardly notice-
able in Fig. 5.

0.565 0.560 0.555 0.560 0.565

Substituting IC2 in Eq. (35) yields

2
i /2 1 q 3/2 2

q, =qp Eo +
&

Eo (Ep & )
&zz

(37)

FIG. 5. The normalized frequency co/co~ vs normalized
propagation constant cq, /co~ for surface-plasmon polaritons
modified by a semiconducting magnetoplasma overlayer. The
dispersion curve has been calculated using the thin-film ap-
proximation, from Eq. (31), with e 3 ——1, el ——1 —ep 1 /co',

Q)p /cop]: 10 67 /cop: 0 5 EL, = 1 5.7, and co~d /c =2~ & 10
This corresponds to an InSb film on a Na substrate. At the
low frequencies (co«co») the curve follows closely the light
line, except in the vicinity of the hybrid cyclotron-plasma fre-
quency ~H. The magnetized overlayer creates a gap in the
spectrum, of width -co~/(2eLcoH) just above AH. Although
Eq. (31) is nonreciprocal, this is hardly noticeable because of
the large ratio of ~~l to co~.

Note that in the symmetric configuration in the fFA, q,
is independent of the off-diagonal element ez, . We also
see that in this case the dispersion relation becomes re-
ciprocal. The necessary requirement for the validity of
Eq. (37) is qod «1. We note that due to higher symme-
try, the correction in q, is proportional to d, unlike the
linear d dependence in case 3, Eq. (31). It may be
pointed out that in the limit 80=0, Eq. (37) reduces ex-
actly to the one found by Boardman and Halevi, in the
lowest order of d, for the symmetric configuration.

We have computed the dispersion relation, Eq. (37),
for a finite value of Bp. Apart from ep ——1.0, the parame-
ters are the same as in Sec. IV A. The numerical results
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FIG. 6. The normalized frequency co/co~ vs normalized
propagation constant cq, /co~ for a very thin unsupported InSb
film. The dispersion curve corresponds to Eq. (34). Apart
from eo ——1.0, the parameters used are the same as in Fig. 5.
Above ~H up to AH a gap of the width defined in Fig. 5 opens
up in the spectrum. The dispersion relation in this case, like in
Fig. 3, is reciprocal.

in terms of the dimensionless variables are shown in the
vicinity of AH in Fig. 6. The surface mode starts from
the origin along the light line, rises towards the right of
the light line, and then approaches the limit cuH as
q, ~Do. Between coH and toH, a gap, given by Eq. (33),
opens up in the dispersion curve. This again can be as-
cribed due to a small but finite film thickness. For
co&AH, the mode starts deviating towards the right of
the light line with increasing q, . However, the devia-

tion, from AH up to co~, is so small that it is difficult to
discern it on the scale in Fig. 6. We intend to present
the detailed (exact) numerical calculations, and precise
classification of the nature of the modes (surface or WG)
in a forthcoming paper.

Although Figs. 4 and 6 deal with the symmetric
configuration (ei e3 ——eo ——1.0——), they remarkably differ
in the spectral range (in the to —q plane) that they cover.
Figure 4 is applicable only for q, »qo (NR limit), far
away from the light line, whereas Fig. 6 is valid for
q, =qo, near the light line. In spite of these limitations
and the fact that DeWames and Hall' used a set of pa-
rameters very different from ours, a coherent correspon-
dence emerges between our Figs. 4 and 6 on one hand,
and Fig. 2 of Ref. 13 on the other hand. The lower and
upper modes in Fig. 4 correspond to the lowest and
third-lowest surface (or polariton, in our terminology)
modes of the above-mentioned authors; they terminate at
frequencies co, and co, +, respectively. The lower and
the upper modes in Fig. 6 correspond to the second
lowest and the uppermost surface modes, respectively, of
DeWames and Hall; at higher frequencies both of these
modes change to "bulk" or WG character (using our
TFA it is not difficult to prove that f3 is imaginary quan-
tity for co just below coH and for co»coH). In Fig. 2 of
Ref. 13 there are three additional WG modes (dashed
lines). The absence of these in our Fig. 6 seems to be re-
lated to our choice of an extremely thin film. Thus we
may conclude that an unsupported film in the Voigt
geometry supports at least four magnetoplasma modes.
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