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Scattering states and distribution functions for microstructures
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Orthonormality and completeness relations are found for scattering states, the states used in
treatments of resonant-tunneling double barriers and other short microstructures. Explicit nor-
malized states are used to study the density matrix and Wigner distribution function of some sim-

ple but nontrivial structures. Analytic expressions describe the quantum repulsion of a sharp bar-
rier at distances comparable to a de Broglie wavelength. As a function of distance from the step,
the zero-current density approaches its constant-potential value asymptotically as a Gaussian. We
also observe that, by virtue of the exact orthogonality of scattering states, a proposed correction to
Esaki and Tsu's calculation of resonant tunneling current is rigorously zero.

I. INTRODUCTION

Development of epitaxial growth techniques has led in
recent years to microstructures —semiconductor devices
in which the electronic potential can be controlled on
practically any length scale larger than the atomic. '

Historically, slow potential variations (those with length
scales larger than an electron or a hole de Broglie wave-
length) could always be treated theoretically using a
semiclassical (WKB) approximation. Also, periodic po-
tentials could be treated using Bloch states, so long as
the lattice or superlattice was longer overall than a typi-
cal de Broglie wavelength (A, ). In the most common mi-
crostructures, however, there is a nonrepeating (one-
dimensional) potential composed of one or a few barriers
and quantum wells, all in a space comparable to A, . For
these "short" microstructures, the semiclassical and
Bloch ideas do not suffice, and a more detailed quantum
treatment is required.

Typically, these short structures are grown with Aat-
potential "cladding layers" on either side. It has been
recognized that a natural basis of quantum states for
such structures is provided by "scattering states, "
defined by boundary conditions imposed far from the
structure: on one side of the structure the state is com-
posed of an incident plane wave plus a rejected wave; in
the other cladding layer there is only a transmitted wave
moving away from the structure. Far from the struc-
ture, states are characterized completely by k-dependent
reflection and transmission amplitudes r and t.

Scattering states are particularly convenient for the
computation of transport properties; in particular, Lan-
dauer showed that the resistance of a one-dimensional
structure is an average of

~

r
~

I
~

t
~

. In general, it is
clear how to perform the sum over states that corre-
sponds to a packet initially localized and moving toward
the structure. For a known potential, this is sufhcient
for the prediction of many quantities, like the low-field
dc conductivity, which can be measured by macroscopic
probes.

In more detailed studies, one wants to know the densi-
ty matrix or the Wigner distribution function
throughout space, often as part of a scheme to determine
self-consistently the electrostatic corrections to the het-
erostructure potential. To perform these computations,
one needs orthonormality and completeness (ONC) rela-
tions for the scattering basis. In their absence, two ap-
proaches have been used: (l) the density matrix has
been evaluated in a discrete basis of localized states (e.g. ,
see Ref. 5), or (2) the distribution function has been
chosen as that sum of scattering states which gives the
correct distribution function at infinity.

A local basis is clearly inconvenient for analytical
work, and in numerical work the use of a basis of local
states defined on a grid leads to nonphysical features on
length and momentum scales defined by the grid spacing
and size. On the other hand, the usual method of apply-
ing scattering states must be considered heuristic. In
particular, current-conservation arguments give correct-
ly the probability that a state will be occupied, but they
do not yield the normalization for these states and do
not give the overlap integral between degenerate states.
Recently, Coon and Liu have noted that the usual way
of writing the current, as a simple sum of contributions
from individual scattering states, contains the implicit
assumption that degenerate scattering states are orthogo-
nal; they have proposed a correction to the resonant tun-
neling current computed by Esaki and Tsu, based on
the presumed nonorthogonality of degenerate scattering
states.

In the present paper, we clarify the situation by deriv-
ing the ONC relations in general. The ONC relations
are found by observing that scattering states are by con, -
struction solutions of the Lippmann-Schwinger equation,
and so obey the same orthonormality relations as a relat-
ed set of "unperturbed" states. Specifically, an orthogo-
nal, normalized basis is obtained when scattering states
are normalized so that the incident part of the wave
function equals the incident part of a free state with the
same momentum. This implies, inter alia, that degen-
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crate states incident from opposite directions are orthog-
onal, so that Esaki and Tsu s original calculation is
correct.

Since scattering states are eigenstates of the Hamil-
tonian, the Boltzmann factor is diagonal in this basis.
As a result, simple expressions for the density matrix
and various other quantities are recovered.

After deriving the ONC relations and some useful
scattering-state sums, we treat the simple step potential
as exactly as possible. This example illustrates how
quantum repulsion can deplete electrons from the vicini-
ty of a barrier, as an effect of electrostatic band bending.
This confirms a conjecture that has been put forward to
explain low-density regions found by numerical simula-
tion. The present results also provide a valuable test of
numerical programs, and suggest some of the analytic
results that are possible. Other examples are delay-time
calculations for isolated wave packets. These examples
utilize the Green's functions constructed from a com-
plete basis of states, and will be described elsewhere.

As noted earlier, scattering states have already been
recognized as providing a natural and useful basis for
the study of short structures. Nevertheless, a formal
theory of this one-dimensional scattering problem, analo-
gous to that which exists for three-dimensional potential
scattering, has not been developed previously. Here we
apply a single element of such a theory: the norm-
preserving property of the Lippmann-Schwinger equa-
tion. Other useful components of formal scat tering
theory are phase-shift analysis and the extension to com-
plex energies. In a subsequent paper, we will describe
how the usual treatment, based on spherically symmetric
scatterers, can be modified to apply to the short micro-
structure geometry. In the present paper, the method
used to obtain an asymptotic expansion of the density
will suggest the utility of a detailed complex energy
analysis.

II. MODEL AND SCATTERING STATES

We will treat electrons in the single-particle, effective-
mass approximation. Each electron acts under a Hamil-
tonian

V+ —— lim V(x) . (2)

The potential drop across the structure is V+ —V
For the time being, we will assume that the potential
achieves its limiting values at a finite distance from the

V +V.
2m

The potential depends on only one coordinate, x, so
motion in the remaining two "perpendicular" directions
is trivial. Henceforth, therefore, we regard V as 8/Bx,
and exclude from "energy" the kinetic contributions
from momentum in the perpendicular directions. '

Furthermore, in the usual situation of modulation dop-
ing, the carrier density is much larger in the cladding
layers than in the microstructure, so the potential V ap-
proaches a constant on either side. We can thus define

structure: i.e., there exist x,x+ such that V(x)= V
for x &x, V(x)= V+ for x &x+. Our results are
essentially unchanged if the potential approaches its lim-
iting values at positive and negative infinity sufficiently
fast. This is discussed in Sec. III.

One convenient set of solutions is given by the (incom-
ing) scattering states. Choosing a normalization prefac-
tor that will be convenient later, we write for k &0
(right-incident states),

t (k) exp(ik'x) for x &x

exp(ikx) +r ( k) exp( ikx—) for x & x +

(3a)

and for k & 0 (left-incident states),

exp(ikx)+r(k) exp( —ikx) for x &x
' t (k) exp(ik'x) for x & x+

(3b)

Here and below, k is an implicit function of k: it is the
wave vector of the transmitted wave associated with an
incident wave vector k. Thus for right-incident states,
k = —[(2m /fi )(E —V+ )]'~ and k'= —[(2m /A' )(E
—V )]'~, while for left-incident states, k = [(2m /
R )(E —V )]' and k'=[(2m lfi )(E —V+ )]'~ .

The boundary condition expressed by (3) is that the
"incoming" part of the wave function correspond to a
plane wave incident from right or left. A way to incorp-
orate this boundary condition is by using the
Lippmann-Schwinger equation. Symbolically, this is

4=4'+Go«)( V —Vo 4' . (4)

Here, g is any solution of the Schrodinger equation for
energy E and an "unperturbed" Hamiltonian

g2
Hp ——— V +Vp.

2m

Gp is a Green s function corresponding to this Hamil-
tonian. In the form given, with Vp not necessarily zero,
the solution P is chosen to satisfy the same boundary
condition that is to be imposed on the desired solution

This implies that Vo must be chosen to coincide with
V at positive and negative infinity. The practical advan-
tage of using (4) to impose the boundary conditions is
that these are imposed on states of a Vp which may be
chosen to have simple solutions. For the important case
of V = V+, one can choose Vo(x)= V, and gP of the
form (3) are pt, ——(1/v'2') exp(ikx).

It should also be noted that a range of different
boundary conditions satisfied by a single P can give rise
to a corresponding range of solutions of the Lippmann-
Schwinger equation. [For example, requiring that the
outgoing part of the wave function coincide with g gives
rise to outgoing, or advanced, scattering states
rather than the more common ingoing (retarded or casu-
al) states (3). The two are related by Pk ——(P' k')'. ] The
choice of boundary condition corresponds to the choice
of Green's function. The appropriate Green's function
for incoming boundary conditions is the Fourier trans-
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form of that time-domain Green's function Gz+'(t)
which approaches zero at large positive time.

III. QRTHQNGRMALITY AND COMPLETENESS

In a coordinate representation, the Lippmann-
Schwinger equation (4) is realized as an integral equa-
tion. We do not propose here that scattering states be
found by iterative application of the integral equation
(4). It is usually more efficient in one-dimensional prob-
lems to construct linear combinations of the form (3) by
integrating the differential (Schrodinger) equation direct-
ly. Once one has such a solution, however, it is clear
that, since the boundary condition determines the state
uniquely, it is also a solution of (4), and has any proper-
ties that can be derived formally from that equation.
The property that we wish to use is that sets of solutions

[ Pk ) obey the same orthonormality relations as do the
unperturbed set [ Pk ) to which they are related through
the Lippmann-Schwinger equation: ( fk ~ Pk )
=(gk

~ gk ). This is proven in most elementary quan-
tum texts. More specifically, we will seek a potential
Vo and a basis of states [gk j which have the same in-
cident part of the wave function as (3). Then

f dx Pj", (x)gq(x) =5(k —q) (6)

will follow when one can show that the same relation
holds with fk replaced by gk.

For the special case of V = V+ we can use plane-
wave states as defined earlier; these are well known to
satisfy (6). In the general case we define

V,(x)=V e( —x)+V e(x)+Ut(x), ~ &0,

where e is the unit step function: e(u)= l if u &0,
e(u) =0 if u &0. This is a family of "unperturbed" po-
tentials parametrized by the strength v of a 6-function
barrier at the origin. The states (Pk j corresponding to a
particular v satisfy a normalization condition that is in-
dependent of v, so we may select any U to confirm (6).
As v ~ oo, the two sides x ~0 and x &0 become decou-
pled, and gk

——i(2/m. )' e( —kx) sin(kx) satisfies the re-
quisite boundary condition. Then (6), with Pk in place
of Pk, is easily verified, completing the proof that states
of the form (3) are normalized and satisfy the ortho-
gonality relation (6).

%'e can put this result to immediate use. Coon and
Liu have redone Esaki and Tsu's calculation of the
current in a resonant tunneling structure. They per-
formed the statistical average more carefully, however,
constructing many-electron product states from degen-
erate pairs of left- and right-incident single-electron
states, and found a correction to the tunneling current,
expressible in terms of the degenerate-state overlap.
They concluded from an estimate of this overlap that
there is a significant correction. The present demonstra-
tion of orthogonality replaces this estimate with a
rigorous value of zero, showing that the original result
of Esaki and Tsu is correct.

One point emphasized by Coon and Liu illustrates the
special utility of the orthogonality relations in tunneling

problems. They noted that since the tunneling current
decreases exponentially with the barrier thickness, a
nonorthogonality that is exponentially small can still
give rise to fractionally large efFects. Thus even very
good estimates of the overlap can lead to poor results, so
exact results are particularly valuable.

We now seek a completeness relation to complement
the orthonormality condition (6). It is then necessary to
consider that for a general potential of the form chosen,
there may also be bound states. By a standard argument
using the Wronskian, it is known that these states are
nondegenerate and mutually orthogonal. Also, they all
have energies below V, the bottom of the continuum,
and so are orthogonal to all the scattering states.

The bound states and the scattering states, taken to-
gether, comprise the largest set of independent eigen-
states of H that we can construct. If the Hamiltonian
acted in a bounded space, Sturm-Liouville theory would
guarantee that its eigenstates would form a complete
basis. Because the Hamiltonian is taken over an infinite
space ( —oo &x & oo ), completeness is difficult to demon-
strate rigorously. Nevertheless, it is the assumption that
is usually and very successfully made in treating physical
problems. It is supported by the observation that an
adiabatic perturbation of the potential transforms the
complete {it ) basis continuously into the combined
basis of scattering and bound states. Taking the formal
limit of the Sturm-Liouville result for a finite space and
discrete basis, we write

g f„( x)Q„*( x)+ J dk Pk(x)gk(x')=fi(x —x') . (8)

Observe that the integrand in the second term on the left
is discontinuous at k =0 if V & V+.

In order to have a simple statement of the normaliza-
tion condition (3), the discussion of this section has been
for a potential which attains its limiting values at finite
distances from the origin (at x+ and x ). The results
hold for more general potentials, however, such as those
approaching constants exponentially fast at positive and
negative infinity. For these more general potentials the
equalities (3) need be satisfied only asymptotically.

IV. THERMAL AVERAGES

All the single-particle information about the equilibri-
um system is given by the density matrix, which is a rep-
resentation of the Gibbs operator Z ' exp( pH):—
p(x, x')=(I/Z)(x

~
exp( PH)

~

x'); Z is—the partition
function. We will consider the case of Boltzmann statis-
tics. Energy eigenstates diagonalize the Gibbs operator,
so we can write

p(x, x') = —g P„(x)g„'(x')exp( PE„)—
n

+ J" dkP ( )kg x( k)exxp[ PE(k)]—

The E„and E(k) are the energies of the bound and
scattering states, respectively. The scattering-state ener-
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The E„and E(k) are the energies of the bound and
scattering states, respectively. The scattering-state ener-
gies can be found far from the structure, where the po-
tential is constant and the wave functions are combina-
tions of plane waves. Thus E(k)=(h /2m)k + V
where o. is the sign of k.

The ordinary density is just the diagonal element of
the density matrix:

p(x)= —g i hatt„(x) i
exp( —PE„)

Z

dk k x exp —E k

The partition function Z has a physical interpretation:
Z =exp( —PF)= (exp( PH )—). Here, because of our
infinite-space normalization, the free energy F is an in-
tensive quantity. From a thermodynamic point of view,
the two cladding layers on opposite sides of the micros-
tructure can be considered separate macroscopic sys-
tems, thermally and diffusively coupled across a negligi-
bly short contact region (x (x (x+ )." In equilibrium
the free energy is the same for the two systems. In ei-
ther system, the microstructure is an edge effect, and the
free energy takes the standard bulk value. Writing

p+ ——lim„+ p(x), this implies

Z '=2&m.k, ,hp exp(PV )=2&xi,,hp+ exp(PV+ ),

2m
(12)

Boltzmann statistics are valid when the state occupancy
is low; with (11), that is A,,hp ((1.

In the asymptotic regimes x (x and x &x+, one
can express the scattering states, and thus the integral
part of the density, completely in terms of the reflection
and transmission amplitudes. For convenience we as-
sume in the following that the coordinate axis is oriented
so that V+ & V

Before writing the density as described, it is useful to
observe that at any energy, the reflection and transmis-
sion amplitudes for motion in opposite directions are re-
lated by a kind of detailed balance. To see this we note
that the question only arises when both left- and right-
incident states exist and have nonzero transmission am-
plitudes. It follows that gi, and gi", are linearly indepen-
dent, and can be combined to form the degenerate state
with incident wave vector —k'. Comparing the result
with (3),

1 —ir(k) i' k, t(k)[r(k)]*
[t (k)]* [t (k)]*

(13)

Using (13) and current continuity [k(1—
i
r(k)

i
)

=k'
i
t(k)

i ], and observing kdk =k'dk', we find

where we have introduced the thermal de Broglie wave-
length

1/2

p(x (x ) —p =—g i
P(x)

i
exp( PE„)+Re f d—k r(k) exp—[ 2ikx P—E(k)]—

0 7T
(14a)

and

p(x )x+ ) —p+ ———g i
ttj(x)

i
exp( PE„)+Re f dk— r(k) exp[ 2ikx—PE—(k)]-=1 2 1

n

ko
dk

i
t(k)

i
'exp[ —/3E(k) —2

i

k' ix]
0 277

(14b)

The third term in (14b) contains the contribution from
extended states which penetrate into x & x+ with imagi-
nary wave vector k', k0 is that positive k corresponding
to transmitted wave vector k'=0. There is no similar
term in (14a) because V+ )V, so there can be no ex-
tended states in x &x+ with imaginary wave vector in
X (X

In deriving the expressions (14), the terms p and p+
in (14a) and (14b), respectively, were obtained by using
the corresponding expressions for Z in (11). On the
right-hand sides, as x~+oo, the sums must vanish be-
cause the bound states are normalized, and the integrals
over the reflection amplitude vanish by the Riemann-
Lebesgue lemma. ' The second integral in (14b) vanishes
because

i
t(k)

i
cannot have any singularity as strong

as a 5-function at k =k0. The vanishing of the right-
hand sides confirms that p+ are in fact the limiting

i

values of the density. Since (14a) and (14b) were derived
with the use of the reciprocity relations (13), confirming
the two expressions for Z in this way demonstrates that
the second equality in (11) expresses the detailed balance
of left- and right-directed currents. Thus, for a fixed
choice of limiting potentials V+ and temperature, any
increase in reflection that tends to increase the density
on one side of the microstructure is compensated by a
reduced transmission of oppositely directed current. "

The density matrix contains all one-particle informa-
tion about a statistical system; an equivalent representa-
tion of this information is contained in the Wigner dis-
tribution function, defined'

f~(x,p) = f dy exp( ipy Imari)p(x +——,'y, x ——,'y) .
2m.A

(15)
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(6) and (8)] for a scattering-state basis. Roughly speak-
ing, scattering states have the usual k-space normaliza-
tion if they are scaled to have the same incident current
as plane-wave states. The relations are valid for the
one-dimensional potentials generally used to model
transport in microstructures. It should be noted that
they hold even when there is a potential drop across the
microstructure. In this situation, k-space normalization
holds with k labeling the incident momentum far from
the structure.

We use the newly derived orthonormality relations to
reconsider a proposed correction to Esaki and Tsu's cal-
culation of the current in a resonant tunneling structure.
The exact orthogonality of scattering states implies that
the proposed correction is precisely zero.

As a first demonstration of the utility of the ortho-
gonality and completeness relations in explicit computa-
tions, we derive general expressions for the equilibrium
density matrix and obtain some analytic results for
single-step potentials. These demonstrate clearly a num-

ber of nonclassical effects, and are also useful for testing
numerical programs.

Far from the barrier, a Maxwellian distribution is ap-
proached. We find the density matrix in closed form for
an infinite barrier and determine the asymptotic devia-
tions from this for a finite barrier.

Near the barrier, there is a nonelectrostatic quantum
repulsion and an associated broadening of the momen-
tum distribution. Our calculations confirm the explana-
tion put forward when these were first observed numeri-
cally. The detailed behavior demonstrates that the shape
of the Wigner distribution near the barrier is a function
of the form of the barrier itself, and cannot be estimated
from the boundary conditions alone.

ACKNOWLEDGMENTS

The authors would like to thank N. Teranishi for
helpful discussions. This work was funded in part by the
OSce of Naval Research.

For a comprehensive review, see the Les Houches proceedings
in The Physics and Fabrication of Microstructures and Mi
crodevices, edited by M. J. Kelly and C. Weisbuch
(Springer-Verlag, Berlin, 1986).

~R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Philos. Mag.
2i, 863 (1970).

R. Tsu and L. Esaki, Appl ~ Phys. Lett. 22, 562 (1973).
4B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984); 29,

4356 (1984).
5U. Ravaioli, M. A. Osman, W. Potz, N. D. Kluksdahl, and D.

K. Ferry, Physica 134B, 36 (1985).
D. D. Coon and H. C. Liu, Appl. Phys. Lett. 47, 172 (1985).

7N. Teranishi, A. M. Kriman, and D. K. Ferry (unpublished).

sR. G. Newton, Scattering Theory of Waves and Particles
(Springer-Verlag, New York, 1982).

9See, for instance, E. Merzbacher, Quantum Mechanics (Wiley,
New York, 1970).
It has been proposed, however to explain negative differential
resistivity in terms of electronic motion in the transverse
directions: S. Luryi, Appl. Phys. Lett. 47, 490 (1985).

~'M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys.
Rev. B 31, 6207 (1985).
C. M. Bender and S. A. Orszag, Aduanced Numerical
Methods for Scientists and Engineers (McGraw-Hill, New
York, 1978).
E. Wigner, Phys. Rev. 40, 749 (1932).


