
PHYSICAL REVIEW 8 VOLUME 36, NUMBER 11 15 OCTOBER 1987-I

Elementary electronic excitations in a quasi-two-dimensional electron gas
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The complete elementary excitation spectrum for a quasi-two-dimensional electron gas is calcu-
lated within the random-phase approximation for both single and multilayer systems. Specific pre-
dictions are made for the direct observation via inelastic light scattering of a number of new
modes and mode-coupling effects.

The subband structure in semiconductor heterostruc-
tures, arising from finite thickness of the quasi-two-
dimensional electron gas, gives rise to interesting quan-
tum effects that are completely missed by a purely two-
dimensional treatment. The intersubband transitions
correspond to charge-density oscillations perpendicular
to the plane and there is a collective mode associated
with them called the intersubband plasmon. ' Also, the
dispersion of the intrasubband plasmon, whose energy
goes as &q in the long-wavelength limit in two dimen-
sions, itself is affected by the finite thickness and by
coupling to higher subbands. These phenomena have
been studied in detail.

In this work we study the spin- and charge-density ex-
citations of a quasi-two-dimensional electron gas consid-
ering the complete elementary excitation spectrum. We
give special emphasis to the coupling of inter- and in-
trasubband charge-density modes and predict under
what conditions the mode-coupling phenomenon can be
observed by inelastic light scattering experiments. In a
recent publication an experimental manifestation of this
coupling has been observed in a single-layer silicon metal
oxide semiconductor field-effect transistor (MOSFET)
system by a far-infrared transmission experiment. How-
ever, our current work is the first detailed theory for this
interesting mode-coupling phenomenon. We also feel
that inelastic light scattering experiments or Fourier-
transform far-infrared spectroscopy on GaAs-
Al Ga& As heterostructures would be a more definitive
and cleaner way of observing the resonant coupling since
one does not need external stress to achieve resonance.
The spin-density excitation spectrum is found to have in-
teresting observable structure not reported earlier. We
also consider multicomponent systems with more than
one subband occupied. All the calculations are carried
out in random-phase approximation (RPA), which has
proven to be quite accurate in the past. '

In order to focus our attention on the physics that we
want to address, we make a number of simplifying ap-
proximations, none of which, however, affects our results
in any essential way. We model the semiconductor
quantum well by an infinite square-well potential of
width L, thus ignoring the finite-depth and band-bending
effects. This can be remedied to an extent simply by

treating the subband separation as an adjustable parame-
ter. We also ignore (i) coupling to LO phonons, because
we shall be concerned with plasmon energies that are
quite small compared to LO phonon energy; (ii) final-
state or excitonic effects, which are supposed to be small
in GaAs-AlGaAs; (iii) exchange-correlation effects; (iv)
image-charge effect due to dielectric mismatch at the
surface and the interfaces. All these approximations can
be systematically relaxed and their net effect on our final
results is expected to be less than 10% in the regime we
are working in.

The charge-density excitation spectrum is given by the
imaginary part of the dynamical polarizability (or,
density-density correlation) function, D (q, q„co):
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All the vectors (i.e. , quantities such as q appearing with
explicit vector signs) are two-dimensional in-plane vec-
tors, whereas q, refers to the z wave vector. The depen-
dence of quantities on wave-vector exchange q and ener-
gy exchange co is not shown explicitly, for the sake of
brevity. Subscripts are the subband indices. Vf;j ki,
with V =2m.e /eq (e is the background static dielectric
constant), is the Fourier transform of the Coulomb in-
teraction for the quantum well, and gj is the wave func-
tion for the jth subband. If only the two lowest sub-
bands are considered, then the only independent f's are
f]] ]] f]] 2Q f//22 f]2 ]2 f]] ]2 and f2/ ]p ~

qL, the first three are close to unity whereas the last two
are close to zero due to the orthonormality of wave
functions. For a symmetric potential well the last two
(i.e., f» ]2 and fqq ]2) are strictly zero for arbitrary q.
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D;j is the polarizability function for the i ~j transi-
tion in the absence of Coulomb interactions and is given
by expression (5), where ei(k)=iriE~+fi k /2m is the
single-particle energy in the jth subband, and f (e) is the
Fermi occupation probability. A finite value of y (usual-
ly 0. 1 —1.0 meV; we shall take y =0. 1 meV) takes care of
scattering by impurities phenomenologically. The in-
tegral in (5) can be carried out and if we assume the sub-
bands to be parabolic with the same effective mass,

r

m

D»Vf» i, ——1,0

or when

(7)

(D i2+D2i ) Vf iq iq ——1 . (8)

Equation (7) gives the dispersion of the intrasubband
plasmon which reduces to the correct 2D limit for
f»» ——l. Equation (8) is the dispersion of the intersub-
band plasmon' which, with the approximate form of D;j,
becomes

q E2i +2E2i Vf ip, i2(+ i
2 2 (9)
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co —E~+E; +i@ q

qUF, 2kF „
where kF and v~ denote Fermi wave vector and Fermi
velocity, respectively, and the square root of a complex
quantity is always chosen to be the one with positive
imaginary part. For i =j, D;& reduces to the well-known
form which can be approximated by n; q /m co for
cu»qvF;. For i&j and q~0, D;~ can be approximated
by (nj n; )/(RE,—; —A'co), where E~; =E~ E;. For—our
numerical calculations, however, we shall use the exact
expression (6), which is important for the spin-density
excitation spectrum as well as for studying the Landau
damping of charge-density excitations. Equation (3)
takes dynamic screening into account by the standard
method of summing up the ring diagrams. The spin-
density excitations, on the other hand, are not screened
because Coulomb interactions cannot Aip the electron
spin. Therefore the summation in Eq. (3) is omitted
while calculating the spin-density excitation spectrum,
which is given by ImD (q, co, q, ). Both charge- and spin-
density excitation spectra can be observed by inelastic
light scattering by looking at the scattered photon that
has polarization in the same or perpendicular direction
as the incident photon.

Let us consider only two subbands, denoted by sub-
scripts 1 and 2. By energy-momentum conservation it is
clear that spin-density excitations with in-plane wave
vector q are allowed only within the energy ranges
[O, qu~ i] and [E2i qvF i, Ezi+qUF i], w—here we have as-
sumed that q &~kF. The spectrum is shown in Fig. 1 for
two different values of q, I., and has peaks near the
boundaries qvF 1, qU+2, and E21+qv+1. For the parame-
ters we have chosen, the first two peaks are indistin-
guishable. The relative weight in the intra- and intersub-
band transitions depends on the value of q, L. For
q, L ~0 the weight in the intersubband spectrum is
zero —as is intuitively obvious, because the intersubband
transitions correspond to a charge disturbance in the z
direction —and it increases as q, L increases.

Now we come to the charge-density excitation spec-
trum. It has peaks at the poles of D;~ „which occur
when the determinant of D;~ Vf; „—5;J. „vanishes. If
only the lowest subband is occupied, then this 3 X 3
determinant (because ij and mn can take only three
values: 11, 12, 21) vanishes when
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FIG. 1. Spin-density spectrum (solid lines) and charge-
density spectrum (dashed lines) for q, L =4.0 (thin lines) and

q, L =1.0 (thick lines). All spectra are drawn on the same
scale. The sample parameters are the same as in Fig. 3,
q =7)&10 cm ', y=0. 1 meV.

(n2 is zero at the moment. ) The intersubband plasmon
energy is shifted upwards of the subband spacing E21 be-
cause of depolarization field effects.

When both the subbands are occupied, the intersub-
band plasmon is still given by Eq. (8), and the two in-
trasubband modes are coupled as

0 0D 11 ~11,11 l D 11 ~11,22

0 0 =0.
D 22 ~11,22 D 22 ~22, 22

With the approximate form D;; =n;q /mao, this equa-
tion can easily be solved for two coupled intrasubband
plasmons. Rather than writing down the dispersions, we
point out that one of the plasmons has linear dispersion
in q but is strongly Landau damped, whereas the disper-
sion of the other plasmon is approximately given by Eq.
(7) with the assumption that all the electrons occupy the
lowest subband only. This is shown in Fig. 2. Thus Eq.
(7), which includes the finite-thickness effect through
f ii i~ but ignores all subbands except the lowest one, is a
good approximation for the intrasubband plasmon even
when more than one subband is occupied.

Note that until now the inter- and intrasubband
charge-density modes have been completely uncoupled
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FIG. 2. Dispersion of the intrasubband plasmon for the
sample of Fig. 3. Two subbands are occupied. The thick solid
line is the correct RPA dispersion assuming that there is no
coupling with the intersubband plasmon. The thin line is the
finite-thickness approximation given by Eq. (7). The dashed
line is the dispersion of the pure two-dimensional plasmon,
which is given by Eq. (7) with f«» ——l.
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FIG. 3. Resonant coupling of the inter- and intrasubband
plasmons is shown. The coupled modes are shown by thick
lines and the uncoupled modes by thin ones. The shaded area
denotes the region where single-particle excitations are al-
lowed. The asymmetric semiconductor quantum well is shown
in the inset with its quantized energy levels. The various pa-
rameters are as follows: e6'ective mass equals 0.07m„
n =9&10" cm, nl ——5&10" cm, n2 ——4&10" cm
E2& ——3.3 meV, background dielectric constant e= 13.1.

as the Coulomb matrix elements f», z and fzz &z are
identically zero because of the symmetric nature of the
quantum well around its midpoint. As f» &3 and f33 ]3
are not zero, there is a coupling between the intrasub-
band plasmon and 1~3 intersubband plasmon, but it
would be difficult to see this experimentally because usu-
ally the 1 —+3 intersubband plasmon has fairly high ener-

gy and it becomes Landau damped (by entering the in-
tersubband single-particle excitation regime} much be-
fore the intrasubband plasmon may get close to it. In
actual experimental situations, however, the two inter-
faces of a quantum well are not identical and charge ac-
cumulates more near one of them. We simulate this
asymmetry in our model by elevating one-half of the
quantum well by a small amount of energy, as shown in
Fig. 3. We than solve numerically for the eigenvalues
and the eigenfunctions. To make an experimental obser-
vation of the coupling possible, it is desirable to have a
low-energy intersubband plasmon and a quickly rising
intrasubband plasmon. This can be achieved by making
the quantum well quite thick so that Ez& is small, and
having a high electron density. Notice that once the
second subband starts to fill up, the intersubband
plasmon energy does not change appreciably (in fact,
within our model it remains constant). We choose the
layer thickness I. =700 A, electron density n =9.0
&10" cm, and the potential step at the midpoint as
0.5 meV.

The dispersions of the inter- and intrasubband modes
are obtained numerically and shown in Fig. 3. Wave-
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FIG. 4. Dispersion of the plasmons for a system with two
quasi-two-dimensional electron layers. Each of the layers con-
sists of the quantum well shown in Fig. 3, and their midpoints

0
are separated by 940 A. There are two intersubband modes
and two intrasubband modes. The coupled modes are shown
by thick lines and the uncoupled modes by thin ones. Shaded
region is the single-particle excitation regime.
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vector exchange up to 3 & 10 cm ' is possible in Raman
experiments. To see the effect of coupling clearly, the
dispersions are also plotted for the uncoupled case,
where the coupling is eliminated by explicitly putting
f ~~ ~2 and f22 &2 equal to zero. The coupling results in a
sizable splitting of the energies at the resonance point.
The correction away from the resonance point is also
non-negligible. In particular, the intersubband plasmon
becomes strongly q dependent even for small q (also see
Fig. 4). At the resonance point, the Coulomb matrix ele-
ments f» & &, f» 22, and f22 22 are close to 0.9 and f &2 &z,

f»,2, and f22 &z are of order 0.06. Also notice that the
intrasubband plasmon is not damped j.nside the intersub-
band single-particle excitation regime, because a charge-
density wave parallel to the xy plane cannot excite parti-
cles across the subbands. For q =7&& 10 cm ', the
charge-density excitation spectrum is shown in Fig. 1 for
two different values of q, L. The relative intensity of the
modes depends on q, L and for q, L ~0 there is vanish-

ing weight at the intersubband plasmon energy.
Now let us briefly consider systems with multiple

quantum wells. For the sake of clarity, and also because
the physics becomes quite transparent, we consider only
two layers with their midpoints separated by 940 A.
(For a larger number of layers the calculation is straight-
forward and the results are what one would expect on
the basis of this two-layer calculation. ) The plasmons
are obtained after generalizing Eqs. (1)—(4) and are plot-
ted in Fig. 4 along with the uncoupled dispersions.

There are now two intersubband and two intrasubband
modes. For an infinite number of layers there would be
bands of inter- and intrasubband plasmons. For a finite
superlattice, the discrete intrasubband modes' have
been observed experimentally, and although the energy
separation of the discrete intersubband modes is not as
large, by closely looking at the Raman spectra their
resolution may be possible. The coupling between inter-
and intrasubband modes is clearly visible. In fact, super-
lattices are a better candidate for observing this coupling
because they have discrete plasmons with energies
higher than the intrasubband plasmon of a single layer.

In conclusion, we have outlined the conditions for ex-
perimental observation of the resonant mode coupling of
inter- and intrasubband plasmons. These are (i) aniso-
tropy of the quantum well, (ii) small E2, , (iii) large two-
dimensional density of electrons, and (iv) large q, L
(which can be achieved, for example, in a backscattering
geometry). We have indicated the possibility of the ob-
servation of discrete intersubband coupled-layer
plasmons, and of two peaks at Ez&+qUF in the intersub-
band spin-density excitation spectrum for large q, L. We
have also described systems with multiple subband occu-
pancy.
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