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The paper deals with standing issues regarding the application of deep-level transient spectros-
copy (DLTS) to the measurement of the electron states at grain boundaries in semiconductors: (i)
The relationship between the density of interface states and the associated DLTS spectra is worked
out quantitatively for the case in which the levels form a continuous distribution in energy, leading
to simple analytical expressions for the emission rate, the density of states, and the capture cross
section at the quasi-Fermi level of the trapped carriers. This treatment will also apply, with minor
modifications, to different physical systems where interface states are present, e.g., the oxide-
semiconductor interfaces. The effect of field-enhanced emission on the DLTS spectra of the
boundary states is also considered. (ii) As a practical illustration, the grain-boundary parameters
are determined for the £ =25 twin boundary in n- and p-type doped silicon bicrystals. In n-type
silicon, a single boundary level is found at E, —0.66 eV, with a density of 2.6 10!! cm~2. In p-
type silicon, the boundary levels are continuously distributed in energy, with a density on the or-
der of 102 eV~'cm™? in the energy range (E, +0.2 eV, E, 4+0.6 eV). The density of states shows
a sharp maximum at E, 4+0.18 eV, associated with a single trap level, the density of which is on
the order of 2 10! cm~2. The capture cross sections of the traps are on the order of 107" to a
few 10~'3 cm? These results are consistent with the data obtained from complementary
capacitance-voltage and thermally-stimulated-capacitance experiments. The densities of states ap-
pear to be highly dependent on the thermal history of the specimens. Microanalytical investiga-
tions are currently in progress, aimed at clarifying the dependence of the electronic properties on
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impurity segregation at the grain boundaries in silicon.

I. INTRODUCTION

A number of studies have been devoted in the past
years to the nature and properties of the grain-boundary
levels in semiconductors, both from the e:xperimental1
and the theoretical® points of view. In particular, pro-
gress has been made towards the quantitative evaluation
of the density of the boundary levels, taking advantage
of well-established techniques for characterizing the de-
fect states in semiconductors: admittance spectroscopy™>*
and deep-level transient spectroscopy (DLTS).>® Both
techniques are based on a measurement of the carrier
emission rate at the interface levels, either from the fre-
quency response of the trap occupancy to an ac-
modulated signal (admittance spectroscopy) or from the
transient response to voltage pulses (DLTS). The pur-
pose of this paper is to present new developments in the
field of transient capacitance measurements with selected
examples of application.

We shall first recall in Sec. II the principle of the ap-
plication of the DLTS technique to single boundaries in
bicrystalline samples.””® We consider next the quantita-
tive relationship between the spectra and the density of
boundary states, with an emphasis on the case where the
levels form a continuous distribution in energy (Sec. III).
A formal treatment will be given of the corresponding
nonexponential emission transients, leading to simple
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analytical relations between the DLTS spectrum and the
density of interface states. For commodity reasons, only
the basic relationships are given in the text; the detailed
derivation of the formulas is postponed to an appendix.
Capture cross-section measurements are then described,
based on coupled transient capacitance and direct
current measurements. Section III concludes with a dis-
cussion of electric field effects on carrier emission from
the grain-boundary states, as reflected in the shape of the
DLTS spectra. As a practical illustration, we shall
evaluate in Sec. IV the grain-boundary parameters (den-
sity of states and capture cross section as a function of
energy) in the case of the 3 =25 twin boundary in n- and
p-type silicon bicrystals. A more complete discussion of
the data obtained for this particular boundary and their
dependence on annealing treatments will be found in
Ref. 9.

II. THE APPLICATION OF DEEP-LEVEL
TRANSIENT SPECTROSCOPY
TO THE MEASUREMENT
OF THE GRAIN-BOUNDARY STATES

We shall consider the case of a grain boundary in an
n-type bicrystal; a similar description applying to the
case of p-type material.
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A. Obtaining DLTS spectra on single boundaries

The basic DLTS experiment consists of applying
periodic voltage pulses across the boundary in order to
vary the occupancy of the interface levels (Fig. 1). Be-
tween successive pulses, the boundary charge relaxes to-
wards equilibrium by thermal emission of the excess
trapped carriers, the emission rate from any level (E) in
the density of states being given by

e,=(0/g)N.vy, exp[(E—E.)/kT], (1)

where o represents the capture cross section and g the
degeneracy of the trap, v, the mean thermal velocity of
the carriers, and N, the effective number of states at the
bottom of the conduction band (E.).

Equation (1) is obtained by an application of the
detailed-balance principle, and is therefore valid in prin-
ciple at thermodynamic equilibrium only. Cases could
be found where the capture and emission properties of
the boundary traps are affected by the electric field at
the interface. In such cases, the emission rates measured
by DLTS will be different from those at thermodynamic
equilibrium. Means to detect an effect of the electric
field on carrier emission will be considered in Sec. IIIE
in relation to the bias dependence of the grain-boundary
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FIG. 1. (a) The pulse sequence for DLTS measurements of
the grain-boundary levels. V,, filling pulse amplitude; ¥}, bias
voltage; ¢,, pulse duration; ¢,, pulse repetition time; t,?,, gate
settings. (b) and (c) Bending of the energy bands under voltage
V. and V,, showing the corresponding quasi-Fermi-levels Ep,
and Ep,. CB, conduction band; VB, valence band. V,; and V,
represent the barrier heights on the negatively and the positive-
ly biased sides of the boundary, respectively.
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spectra.

The DLTS signal S is formed from the charge tran-
sient by means of a dual-gate correlator (boxcar averager
or two-phase lock-in amplifier):

S(tl,t;_):Q(tl)—Q(tz), (2)

where Q (t) represents the specific boundary charge at
times ¢; and t,, which are the gate settings of the corre-
lator. By recording the variation of S as a function of
the sample temperature, a spectrum characteristic of the
boundary levels is obtained.

In practice, the quantity measured is not directly the
boundary charge but rather the related geometric (high-
frequency) capacitance:

C=qeN,/ Q] , (3)

where g represents the elementary positive charge, € the
dielectric constant of the material, and N; the doping
level in the depleted region on both sides of the inter-
face. Thus the DLTS signal must be formed from the
reciprocal, rather than from the direct value of the sam-
ple capacitance. This can be achieved either by digital
or by analog processing of the capacitance transients. In
our case, an analog system was used, the capacitance sig-
nal being inverted by means of a wide-band multiplier or
divider amplifier before processing through the correla-
tor. With the proper calibration, the DLTS signal is
thus directly obtained in units of charge per unit bound-
ary area.

B. The bias dependence of the grain-boundary spectrum

DLTS spectra depend for their characteristics on the
amplitude (V,) and the width of the filling pulses, as
well as the offset voltage V, [Fig. 1(a)]. For simplicity,
we shall limit ourselves to the case where the filling
pulses are long enough that a quasisteady state is
reached at the end of the pulse. In the steady state, the
occupancy of the boundary levels is conveniently de-
scribed using the notion of a quasi-Fermi-level (QFL) of
the trapped carriers.'® Denoting by Ep, and Ep, the
QFL’s corresponding to the voltages ¥, and ¥V}, respec-
tively [Figs. 1(b) and (c)], we then obtain a spectrum of
the boundary levels in the energy range (Ef,,Eg, ). By
varying V, and V,, the energy window can be adjusted
to visualize selected parts of the density of states. An
example of this is given by Fig. 2, where a set of spectra
is presented for the case of the =25 boundary in a p-
type silicon bicrystal. The spectrum (1) (V,=8 V,
V,=0 V) just forms the envelope of the spectra (2)
(V,=4V,Vy,=0V)and 3) (V,=8V, V,=4 V), in ac-
cordance with the respective locations of the QFL’s for
the three different values of the applied voltage (0, 4 and
8 V). In this procedure we are limited, however, by the
voltage dependence of the trap occupancy. On the one
hand, only those states empty at equilibrium can be mea-
sured in a DLTS experiment. On the other hand, traps
close to the conduction-band edge can only be detected
using large-amplitude filling pulses. A case will be dis-
cussed in Sec. IV, where pulses up to 100 V must be ap-
plied in order to detect the shallower part of the density



36 MEASUREMENT OF THE GRAIN-BOUNDARY STATESIN . ..

o

)]

&~ v

W

n
T

(10"electrons cm %)

DLTS SIGNAL

T

130 170 200 230 260 290 T(K)

FIG. 2. DLTS spectra of the =25 boundary levels in a p-
type silicon bicrystal, boron doped to 8.0 10'* cm~3. Sample
annealed for 24 h at 750°C under nitrogen flow. Spectrum (1):
V,=8 V, ¥V,=0 V. Spectrum (2): V,=4V, V,=0 V. Spec-
trum (3): V,=8 V , V,=4 V. Emission rate, 20 s~'; pulse
duration, 30 ms.

of states.

Let us consider next the features of the DLTS spectra
for different forms of the density of states, starting with
the simple case where the boundary levels form a
discrete distribution in energy.

C. The spectrum obtained for discrete energy levels

In such cases, the spectrum consists of a succession of
peaks, each of them associated with a particular bound-
ary level. Figure 3(a) represents, for example, the spec-
trum obtained for the = =25 boundary in an n-type sil-
icon bicrystal:'! the spectrum reduces to one peak asso-
ciated with a single boundary level. The emission tran-
sient then has the shape of a simple exponential:
AQ(t)=¢gN, exp(—e,t) where N, represents the trap
density. As a result, it is shown that the maximum of
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FIG. 3. (a) Spectrum obtained for the £=25 boundary in an
n-type silicon bicrystal, phosphorus doped to 3.6 10" cm 3.
Sample annealed for 2 h at 900°C under argon + water vapor.
V,=20V, V, =0 V; emission rate, 28 s~!; pulse duration, 20
ms. (b) Signature of the trap, giving an energy level at
E.—0.66eV.
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the DLTS signal occurs at the temperature T" where the
carrier emission rate has the value®

e, =(t,—t) " 'In(t, /1) . (4)

The dependence of e, on T is obtained from a series of
spectra for different gate settings (¢,,2,). The activation
energy for carrier emission is then deduced from an Ar-
rhenius plot of In(e,) versus 1/T (the signature of the
trap). For a determination of N,, large-amplitude filling
pulses must be used to ensure that all states are counted.
N, is then deduced from the peak amplitude of the sig-
nal S,, using the relationship

S, =gN,[(1/m) "=V _(1/p)/r =17, (5)

where r=t,/t,;. In the case presented, the signature of
the trap [Fig. 3(b)] gives an energy level at E, —0.66 eV
with the density N, =2.6x 10" cm 2.

III. THE SPECTRUM ASSOCIATED
WITH A CONTINUUM OF BOUNDARY STATES

More frequently, the spectrum shows a smooth modu-
lation with temperature [Fig. 7(a)]. Similar features have
been observed in different systems, notably in the case of
the traps at oxide-semiconductor interfaces.!> Such
spectra depend for their evaluation on an analysis of the
nonexponential emission transients associated with a
continuum of interface states. We shall examine succes-
sively the determination of the grain-boundary parame-
ters (carrier emission rate, density of states, and capture
cross section) at the quasi-Fermi level Er, under voltage
V,.

A. Measurement of the carrier emission rate
at the quasi-Fermi-level Eg,

Let N(E) represent the density of the boundary states
as a function of energy E [Fig. 4(a)]. The boundary
charge at the end of the filling pulse (which we take as
t =0) is given by

EC
Q(0)=q [, N(E)f(E —Eg,)dE , (6)

where f(E —Epg,) represents the quasi-Fermi distribu-
tion under voltage V:

f(E —Eg,)={1+[1/g(E))exp[(E —Eg,)/kT]} ",
M

including the factor g(E) to account for the effect of
trap degeneracy on the occupation statistics. At ¢t =0
the voltage is reduced to the value ¥V, with the corre-
sponding QFL Eg,. The boundary charge then relaxes
to the new value

E(‘
Q(w)=q [, “N(E)f(E —Eg)dE . (8)

The relaxation of the charge may involve, in addition
to the direct emission of electrons into the conduction
band, a more complex redistribution of the carriers
among vacant boundary states. We shall assume for
simplicity that such transitions can be neglected, so that
the various traps relax independently. Then, the occu-
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FIG. 4. (a) The density of states N(E) as a function of ener-
gy E, showing the respective QFL’s Er, and Eg under volt-
ages V, and V,, and the density of states N(Eg,). (b) The cor-
responding DLTS spectrum for some values (¢y,t;) of the gate
settings. S, DLTS signal; 7, temperature; P;, inflection point
on the low-temperature edge of the spectrum with the coordi-
nates (7;,S;).

pancy of every single level obeys a simple law in
exp( —e,t) where e, is given by Eq. (1). As a result, the
charge transient AQ(#)=Q(t)—Q( ) is given by

EC
AQ(t)=gq fE N(E)f(E —Ep,)—f(E —Eg,)]

X exp(—e,t)dE . 9

Although the occupancy of every single level has an ex-
ponential decay with time, the net charge transient is
clearly nonexponential. Let us examine in more detail
the variation of the trap occupancy as a function of
time. Due to the sharp dependence of the emission rates
on energy, the initial part of the transient is associated
with carrier emission from levels close to Ep,. At later
times deeper states will be involved until finally a steady
state is reached with QFL Eg,. These properties are
reflected in the temperature dependence of the DLTS
signal [Fig. 4(b)]: at low temperatures the signal is zero
due to the freezing of carriers at all the boundary levels.
The initial rise of the signal is associated with emission
from the traps in the vicinity of Er,. As the tempera-
ture increases, deeper states come into play until finally
the signal returns to zero as the emission rate for all
states in the range (Ep,,Ef,) becomes larger than ¢!
At this point, we note that Eq. (9) takes no account of
the trapping of carriers at the boundary levels. For the
conditions prevailing in DLTS experiments, carrier trap-
ping is important only in the final part of the transient,
where the boundary charge reaches its steady-state value
under voltage V,. Accordingly, we shall exclude from
our discussion the final drop of the DLTS signal at high
temperatures, where the emission rate at the quasi-
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Fermi-level Ep, becomes comparable with ¢!

The formal analysis of the spectrum focuses on the
evaluation of the emission rate e,(Eg,). For this pur-
pose, let us consider the low-temperature branch of the
spectrum [Fig. 4(b)]: along that branch an inflection
point P; is met with the coordinates (7;,S;). It is then
shown (Appendix, Secs. 1 and 2) that for T=T;, e,(Eg,)
has a value uniquely determined by the gate settings of
the correlator. To express this relationship, let us define
the parameters

r:tz/tl (10)

and

u=g(Ep )t en(Ep,) , (11)

where g(Eg, ) represents the degeneracy of the level Ep,.
u is then determined as a function of r by the implicit
equation

r=h(u)/h(ru) , (12)
where

h(x)=(14+x)e*E{(x)—1, (13)
and

Efx)= [ "t~ le 'd

= [ "1 le~tdr (14)

defines Euler’s function of the first order.!> Figure 5
represents (solid curve) the variation of

[g(Ep,)t1e,(Er, )]~ " as a function of 1,/¢; as deduced
from these equations. For comparison, the variation of
(t,e,)~ " for a single level [Eq. (4)] is also represented
(dotted line). Due to the difference in the form of the
emission transients, the dependence of ¢, on ¢, and ¢, is
somewhat different for a continuum of states and a sin-
gle level. However, the procedure to obtain the signa-
ture of the traps is quite similar in both cases: starting
from a set of spectra for different gate settings, the prod-
uct g(Eg,)e,(Er,) is measured as a function of 7; and
the activation energy for carrier emission is then de-
duced from an Arrhenius plot of In[g(Eg,)e,(Eg)]
versus 1/7;.

(HIN‘1bAts
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FIG. 5. Solid line: plot of [g(Eg, )t e,(Er )]~} vs t;/t, as
given by Egs. (10)-(14). For comparison, the variation of
(t1e,)7! for a single trap level [Eq. (4)] is also represented, by
the dotted line. Dot-dashed line: variation of S;/qkT;N(Eg,)
vs t,/t, as given by Eq. (15).



36 MEASUREMENT OF THE GRAIN-BOUNDARY STATESIN ...

It will be noted that the quantity effectively measured
at T; is not simply e,(Efg,), but rather the product
g(Eg,)e,(Eg,). As far as the determination of the ac-
tivation energies is concerned, this makes little difference
as the emission rate is just multiplied by a constant (not
temperature-dependent) factor. A more basic question
arises when we consider the reason emission rate mea-
surements should involve the g factor in the case of a
continuum of states, although it does not appear in the
case of a discrete level [Eq. (4)]. As discussed in the Ap-
pendix, Sec. 3, the reason rests with the fact that the
emission rate measured at 7; is actually a weighted
average of the rates of emission of the various traps
within the width AE of the quasi-Fermi-distribution
f(E —Epg,). It then follows from the detailed calcula-
tion of the DLTS signal (Secs. 1 and 2 of the Appendix)
that the average rate [whose value in terms of ¢, and ¢,
is given by the set of equations (10)-(14)] is precisely
g(Eg,)e,(Eg,). Equation (1) shows that this is just the
emission rate expected for a level located at the center of
the distribution: E| =Eg, +kT; Ing(Eg, ).

B. The density of states at the level Er,

The relationship between the signal amplitude S; at
the inflection point of the spectrum and the density of
states N (Ef,) is derived in Sec. 1 of the Appendix as fol-
lows:

S;=gkT;N(Eg,)[Inr +e™E(ru)—e“E\(u)], (15)

where 7 and u are defined by Egs. (10) and (11). As men-
tioned before, the DLTS signal at 7T; involves the states
of energy within the width of the quasi-Fermi-
distribution f(E —Eg,). As a result, N(Eg,) as given
by Eq. (15) represents in fact an average of the density of
states over that range of energies. The proportionality
factor [Inr +e™E|(ru)—e“E(u)] is represented as a
function of r by the dot-dashed line in Fig. 5.

C. The capture cross section o (Eg; )

Capture cross-section measurements involve the dual
determination of the carrier flux through the grain-
boundary plane, and the rate of carrier trapping at the
interface states. We shall show that, providing the emis-
sion rate from the boundary levels is not dependent on
the electric field at the interface, a simple procedure ap-
plies to measure the capture cross section o(Efg,). Let
us then start with the boundary in the steady state under
voltage V,, and denote by ¢(V,) the sum of the electron
fluxes impinging from both grains on the boundary plane
[Fig. 1(b)]. The probability per unit time of an electron
being captured by the trap of energy E is given by
(1—-f)o(E)¢(V,), where o(E) represents the capture
cross section and f the occupancy of the trap. On the
other hand the emission probability is e,(E)f. In the
steady state both probabilities equalize, so that
(1—f)o(E)¢(V,)=e,(E)f. Consider in particular the
case of the QFL Ep,. According to Eq. (7), the occu-
pancy of that level is f=g(Ep,)/[g(Eg, )+ 1] and there-
fore
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0(Ep,)=8(Eg,)e,(Eg,)/¢(V,) . (16)

We shall now express ¢(V,) as a function of the current
density through the boundary. For this purpose, let us
apply the thermoelectronic emission model of conduc-
tion over a potential barrier. Thus

&(V,)=N,vslexp(qV, /kT)+ exp(gV, /kT)], (17)

where N, represents the free-carrier density in the bulk
(identified for simplicity with the doping level of the ma-
terial), and V', and V, are the barrier heights on the left-
and right-hand sides of the boundary, respectively
(V,=V,—V,). On the other hand, the current density
through the interface is given by

j(V,)=gNgvylexp(gV,/kT)— explgV,/kT)] . (18)

Combining Egs. (16)-(18), we find for o(Ef,) the ex-
pression

0(Eg,)=[qg(Eg,)e,(Eg,)/j(V,)]tanh(qgV, /2kT) .
(19)

[A similar relationship is given in Eq. (12) of Ref. 10, for
the case of a single trap level and assuming g equal to
unity.]

A practical method follows to obtain the capture cross
section o(Ef, ), based on coupled transient capacitance
and dc current measurements. Let us measure
g(Egp,)e,(Eg,) at the temperature T;, using the DLTS
spectrum of the grain boundary for an appropriate
choice of the filling-pulse amplitude (V,), bias voltage
(V,), and gate settings (¢;,¢,). Let us also determine the
current density j(V,) from the current-voltage charac-
teristics of the boundary at the same temperature. Using
these data, we then obtain o(Epg,) directly by means of
Eq. (19).

The procedure just described clearly assumes the level
Ef, has the same emission rate for two different voltages
V, and V, [at which j(V,) and g(Eg,)e,(Eg,) are mea-
sured, respectively]—a condition only fulfilled providing
e, is not affected by the electric field at the interface.
We shall consider in Sec. III E the means to detect elec-
tric field effects on carrier emission. In cases where the
emission rate happens to be field dependent, the quantity
g(Eg,)e,(Eg,) will take different values depending on
the applied voltage (V,). Capture cross-section deter-
minations then require more elaborate measurements
than considered above, based on a detailed investigation
of the kinetics of carrier trapping at the grain-boundary
levels.'*~1¢ To the author’s knowledge, this problem
still remains to be solved for the case of a continuum of
states.

To summarize, a procedure has been developed to ob-
tain the emission rate, the density of states, and the cap-
ture cross section at the quasi-Fermi level of the trapped
carriers. For a full description of the density of states
these measurements should be repeated point after point
for increasing values of the filling-pulse amplitude. We
shall consider next a simplified, though possibly less ac-
curate, method to obtain the density of states, starting
from a single boundary spectrum.



5900

D. A simplified procedure

As pointed out in Sec. II B, the DLTS spectrum is ba-
sically a representation of the density of states in the en-
ergy range (Ep,,Ep,). Let us then apply large-amplitude
filling pulses so that Eg, is shifted upwards in the densi-
ty of states, the aim being to involve in the spectrum the
largest possible fraction of the boundary levels. The re-
lationship between such spectra and the parent density
of states has been worked out by several authors on the
specific assumption that the capture cross section is a
slowly varying function of energy.'>!” It is then shown
that the DLTS spectrum is related to the density of
states by a simple axis transformation: the energy axis
(E) being changed for the temperature axis (7) and the
density-of-states axis N (E) for that of the DLTS signal
S(T). The energy-temperature relationship is given by

EC*E‘;leﬂ[(U/g)NCUth(lz——tl)/ll’l(l‘z/t})] (20)

and the DLTS signal is related to the average density of
states N (E) in an energy range of width of approximate-
ly a few kT about E (T), as follows:

S(T)=qN(E)KT In(t,/t,) . 21

Consider the energy-temperature correspondence as
given by Eq. (20): while the dependence of E on temper-
ature is approximately linear, that on o is logarithmic
only, and therefore much weaker. Thus, providing the
various traps have comparable capture cross sections,
the energy will be uniquely determined as a function of
temperature. On the other hand, the energy scale could
be strongly distorted in case ¢ has large variations with
energy. For an order-of-magnitude estimate, let us sup-
pose two different trap levels with the respective energies
E, and E, and capture cross sections o, and o,. Ac-
cording to Eq. (20), the condition that both traps should
show up at the same temperature T, is given by

02/01~exp[(E1—-E2)/kT0] . (22)

For a numerical estimate, let us take £, —E,=0.1 eV
and To=116 K: Eq. (22) then gives 0,/0,~e'°~10%
In such a case, Eq. (21) is clearly no longer valid in the
energy range (E|,E,). In practice, the capture cross
section should thus first be measured at different points
in the density of states. In case o is found to be a slowly
varying function of energy, N (E) can be obtained from a
single spectrum for large-amplitude filling pulses using
the axis transformation (20) and (21). In the opposite
case, the density of states should be determined point by
point, using appropriate energy windows as explained in
the preceding sections.

E. Electric field effects on carrier emission

The electric field at the interface is a constitutive
property of charged grain boundaries. Depending on
the magnitude of the boundary charge (typically between
10" and 10'? electrons per cm?) and the applied voltage,
the field can range from a few 10° up to some 10°
Vem~l In such conditions, an effect of the electric field
on carrier emission is not to be excluded. Transient ca-
pacitance measurements provide the means to investi-

A. BRONIATOWSKI 36

gate this possibility, as the emission rate from the
boundary states can be measured under different field
conditions. For this purpose, let us perform a set of
DLTS recordings with a given filling-pulse amplitude
(V) and different bias voltages (V,); should the emis-
sion rate at the level Er, be field dependent, a shift of
the inflection point (P;) to lower temperatures would be
expected for increasing values of V.

Figure 2 gives an example of a situation where field
effects are negligible, as spectra (1) and (3) show no
detectable shift of the inflection point for values of V,
between O and 4 V. On the other hand, field-enhanced
emission has been apparently observed in the case of a
low angle tilt boundary in germanium.'* Signatures per-
formed under different biasing conditions then showed a
decrease of the activation energy of the boundary traps
as a function of voltage V,, of up to 0.1 eV for electron
states located ~0.4 eV below the bottom of the conduc-
tion band. More experimental data will be needed, how-
ever, before definite conclusions can be drawn on this
important subject.

IV. DISCUSSION OF AN EXAMPLE

A. Sample description and preparation

The results presented have been obtained for the
2 =25 twin boundary in a p-type doped silicon bicrystal.
The geometrical parameters of the twin are as follows:
boundary plane {710}; tilt axis {001); tilt angle 16.26°.
The bicrystal is boron doped to 8.0% 10'* cm 3, corre-
sponding to a room-temperature resistivity of 16.5 € cm.
The boundary in as-grown specimens shows no electrical
activity. On the other hand, barrier effects appear fol-
lowing appropriate heat treatments.” In the present
case, the sample was annealed for 24 h at 900 °C under
nitrogen flow. The specimen for the electrical measure-
ments was cut in the shape of a parallelepiped
~3X%3x%10 mm® with the grain boundary perpendicular
to the longer dimension of the sample. Ohmic contacts
were taken at both extremities and the specimen was
then mounted in a variable-temperature cryostat
equipped with shielded wires for capacitance measure-
ments.

B. Preliminary thermally-stimulated-capacitance and
capacitance-voltage measurements

As a preliminary step, low-temperature capacitance-
voltage (C-¥) and thermally-stimulated-capacitance
(TSCAP) measurements were made in order to evaluate
the total number of states at the interface. Additionally,
these experiments also provide a useful check of the
homogeneity of the dopant distribution within the
space-charge region of the boundary.

In the TSCAP experiment,'® excess carriers are stored
at the interface levels by cooling the sample down to the
liquid-nitrogen temperature under dc voltage V,. At
this point, let us remove the applied voltage and allow
the sample to heat up gradually to room temperature;
the boundary charge then relaxes towards equilibrium by
thermal emission of the excess carriers. The emission
process is readily detected by the concomitant variation
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of the boundary capacitance. Figure 6(a) represents the
variation of the capacitance as a function of temperature
for different values of ¥, between O and 100 V: as is ap-
parent from these curves, the release of the excess car-
riers occurs in an extended temperature range between
~100 and 260 K. A detailed discussion of these curves
for different heating rates leads to an evaluation of the
density of interface states, similar to that obtained by
DLTS. However, our purpose in the present context is
only to give evidence for the freezing of carrier emission
at the liquid-nitrogen temperature.

Consider then the capacitance-voltage characteristics
measured at 77 K [Fig. 6(b)]. Starting from zero bias,
the voltage is gradually increased up to 50 V, the ramp
rate being 0.2 V/s. As the voltage increases, the capaci-
tance decreases due to a growing amount of carriers be-
ing trapped at the boundary levels [dotted line in Fig.
6(b)]. Due to the freezing of carrier emission, however,
the boundary charge does not show a reversible varia-
tion as a function of voltage. (Similar charge memory
effects were reported long ago on grain boundaries in
germanium under light illumination at low tempera-
tures.!”) This charge memory effect is simply demon-
strated by performing repeated voltage cycles between O
V and some maximum voltage V,: following its initial
decrease on the first voltage run, the capacitance
remains practically constant on further cycling, with a
value uniquely dependent on the filling voltage V. This
behavior is represented by the set of curves in solid line
[Fig. 6(b)] for values of ¥, up to 50 V. [The boundary
has identical properties for both polarities of the applied
voltage, so that the cycles can be extended to the range
(Vo, —Vy).] Clearly each curve in this set corresponds
to a fixed value of the boundary charge, uniquely deter-
mined by the filling voltage V.

T=77K

CO05Fm-2)

L,
J

P PPN a4
77 130 170 200230 260 290 -50-40-30-20-10 O 10 20 30 40 50

T(K) V(V)
@) (b

FIG. 6. (a) Thermally-stimulated-capacitance experiment on
the £ =25 boundary levels in a p-type silicon bicrystal, boron
doped to 8.0x 10" cm~3. Sample annealed for 24 h at 900°C
under nitrogen flow. Rate of temperature increase ~7°C/min.
(b) Dotted line: capacitance-voltage curve of the boundary at
77 K. Ramp rate: 0.2 V/s. On repeated cycling, the capaci-
tance takes a constant value uniquely determined by the filling
voltage V. The set of solid curves represents the C-V curves
obtained for different values of ¥, between 0 and 50 V.

The charge memory effect has an indirect application
in checking the homogeneity of the doping level in the
vicinity of the boundary.?’ For a fixed boundary charge,
the C-V curve of the boundary is clearly only dependent
on the dopant distribution in the vicinity of the inter-
face. In the present case, it is concluded from the flat-
ness of the C-V curves that the doping level is very near-
ly homogeneous within the space-charge region of the
boundary, with a value equal to the doping level in the
bulk ~8.0%x 10" cm~>.

Consider last the C-V curve (dotted line) in Fig. 6(b):
from this curve, the boundary charge can be evaluated
as a function of the filling voltage using Eq. (3). The
zero-bias boundary charge is Qo =1.4Xx 10! ecm~2. It
increases to Q,, =1.02x 102 e cm~2 for ¥;=100 V [us-
ing the TSCAP data of Fig. 6(a)]. These curves also indi-
cate the amplitude of the voltage pulses to be used in
DLTS measurements: pulses up to a hundred volts
should be applied to measure all those states detected by
the TSCAP and C-V experiments.

C. DLTS measurements

Figure 7(a) represents [curve (1)] the spectrum ob-
tained for 100 V filling pulses, V', being taken equal to O
V. The pulse width and repetition times are 100 and 500
ms, respectively. t; and ¢, are taken equal to 88 and 338
ms, respectively, giving t,/t; =2 and g(Eg,)e,(Ep, )=4
s~! (e, denotes the hole emission rate in the case of p-
type specimens). The spectrum shows a broad continu-
um with some modulation of the signal amplitude in the

high-temperature range, and a sharp maximum (P) at
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FIG. 7. (a) DLTS spectra for the same specimen as Fig. 6,
with g(Eg, )e,(Er,)=4 s~'. Spectrum (1): ¥,=100 V, ¥, =0
V. Spectrum (2): V,=16 V, V,=0 V. Spectrum (3): V,=8
V, V,=0 V. Spectrum (4): V,=4V, V,=0 V. Spectrum (5):
V,=2V, V,=0 V. (P) denotes the low temperature peak on
spectrum (1). (b) Solid line: density of states deduced from
spectrum (1), using the axis transformation of Sec. IIID. The
open circles represent the density of states at the level Ep, for
spectra (2), (3), (4), and (5), respectively.
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the low-temperature edge. Additional spectra were
made using smaller pulse amplitudes: 16 V (2), 8 V (3), 4
V 4), and 2 V (5). The coordinates (T;,S;) of the
inflection point on each of the spectra (2)-(5) were
recorded in accordance with the procedure of Sec. III B.

Figure 8(a) represents, voltage by voltage, the signa-
ture of the traps at the quasi-Fermi level Ep,. As the
pulse amplitude increases, the QFL is shifted gradually
from deep to shallower states. The shallowest level
detected is associated with the peak (P). The signature
of this trap gives an energy level 0.18 eV above the top
of the valence band. Shallower states (if any) would re-
quire for their detection still higher voltages than were
used for the present experiments.

Complementary current-voltage measurements were
made to determine the capture cross sections of the traps
as discussed in Sec. IIIC. In each case, o(Egp,) was
determined for several temperatures where both j(V,)
and g(Ep,)e,(Eg,) had been measured [Fig. 8(b)]. The
capture cross sections are on the order of 10~ to a few
10713 cm?. The error bars on these values are on the or-
der of 50% due to variations of the current density on
repeated measurements.

In order to obtain the density of states [Fig. 7(b)], the
QFL’s for different pulse amplitudes were first located
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FIG. 8. (a) (1): Signature of the peak (P) on spectrum (1)
[Fig. 7(a)], giving an energy level 0.18 eV above the top of the
valence band. (2)-(5): Signatures of the QFL’s for spectra
(2)-(5), giving energy levels, respectively, at E,+0.28 eV
(spectrum 2), E, +0.38 eV (spectrum 3), E,+0.47 eV (spec-
trum 4), and E,+40.58 eV (spectrum 5). ge, represents the
product of the trap degeneracy times the hole emission rate,
expressed in s~'. (b) The capture cross section at the level Eg,
for spectra (2), (3), (4), and (5), respectively. The circles refer
to values of o obtained for different temperatures where both
Jj(V.) and g(Eg, )e,(Efp, ) were determined.

along the energy axis in accordance with the signatures
of Fig. 8(a). N(Eg,) at these points was determined
from the amplitude of the DLTS signal at the inflection
points using Eq. (15) [open circles in Fig. 7(b)]. To com-
plete these data, N (E) was also deduced from the spec-
trum for 100 V pulses using Eq. (21). The density thus
obtained (curve in solid line) fits within 20% with the
values measured at the inflection points of the spectra.

The density of states takes values on the order of 10'?
eV~! cm~? in the energy range 0.2-0.6 eV above the
top of the valence band, with a sharp increase to ~ 10'3
eV~-!cm~? at E, +0.18 eV. The integrated amount of
traps as obtained from the area under the curve N(E) is
(9+2)x 10! cm~2, in good agreement with the value de-
duced from the C-V and TSCAP measurements (Sec.
IVB): Q,, —Qy=8.8x 10" e cm™2. It is also of interest
to estimate the amount of traps at the prominent level
E,+0.18 eV. For this purpose, we may evaluate the
area under the peak (P) in the density of states; alterna-
tively, we can also apply Eq. (5) relating the density of a
single trap level to the peak amplitude of the DLTS sig-
nal. Both methods give values on the same order of
magnitude: ~2X 10" cm~2,

V. CONCLUSION

A procedure has been developed for the quantitative
evaluation of the DLTS spectra associated with a contin-
uum of grain-boundary states. The method is based on a
formal treatment of the associated nonexponential emis-
sion transients, leading to simple analytical expressions
for the emission rate, the density of states, and the cap-
ture cross section at the quasi-Fermi level of the trapped
carriers. With minor modifications, this treatment will
also apply to different systems where interface states
form a continuous distribution in energy, e.g., the states
at oxide-semiconductor interfaces. Means to detect
field-enhanced emission are also considered, as the elec-
tric field at the interface is apt to strongly influence the
rate of carrier emission from the boundary states.

As a practical application, the grain-boundary param-
eters have been measured for the £ =25 twin boundary
in n- and p-type doped silicon bicrystals. In n-type sil-
icon, a single boundary level is found at E, —0.66 eV,
with a density of 2.6 10'! cm™2. In p-type silicon, the
boundary levels are continuously distributed in energy,
with a density on the order of 102 eV~!cm~2 in the en-
ergy range (E,+0.2 eV,E,+0.6 eV). The density of
states shows a sharp maximum at E, +0. 18 eV, associat-
ed with a single trap level, the density of which is about
2% 10" cm~2, The capture cross sections are on the
order of 107! to a few 10~'* cm? These data are
consistent with those obtained from complementary
capacitance-voltage and thermally-stimulated-capaci-
tance measurements.

The outstanding question behind these experiments is
that of the nature of the boundary states. DLTS mea-
surements on the 2 =25 boundary in silicon have shown
a definite dependence of the electronic properties of the
interface on the thermal history of the bicrystals.® The
electrical activity of the boundary correlates with the
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presence of impurity precipitates observed by transmis-
sion electron microscopy. EBIC (electron-beam-induced
current) experiments have also shown the importance of
the precipitates as recombination centers for injected
minority carriers:?! thus it might well be that the bound-
ary states detected by DLTS are actually associated with
the matrix-precipitate interfaces. It is hoped to cast
some light on this problem by a microanalytical study of
the precipitates in relation with the thermal history of
the specimens.
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APPENDIX: THE DLTS SPECTRUM
ASSOCIATED WITH A CONTINUUM
OF GRAIN-BOUNDARY STATES

1. Expression of the DLTS signal

We shall investigate the form of the DLTS spectrum
for a continuum of levels of density N(E) in an n-type

S(T)

(©)

FIG. 9. (a) and (b) The capture cross section o(E) and the
density of states N(E) as a function of energy (dotted lines),
and their schematic representation by step functions (solid
lines). & and N represent the respective averages of o(E) and
N(E) over the range (Eg,,Eg, ). E; and E; are any two levels
with Ep, < E; <Ey < Ep,. (c) The spectrum associated with the
traps in the energy range (Eg,,Er,) (solid line), showing the
inflection point P;(T;,S;). Dotted line: the contribution Sk to
the spectrum of the traps in the energy range (E;,E; ).
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doped bicrystal (Fig. 9). We start with Eq. (9) for the
charge transient

EC
AQ(t)=g [, N(E)f(E —Ep,)—f(E—Ep,)]

X exp[ —e,(E)]dE , (A1)
where Ep, and Ep, represent the quasi-Fermi-levels of
the trapped electrons under the voltages V, and V,, re-
spectively. e,(E) is the carrier emission rate at the level
E in the density of states:

e,(E)=e,o(E)exp[(E —E_.)/kT], (A2)

where the prefactor e,o(E) is given in terms of the cap-
ture cross section o(E) and the trap degeneracy g (E) by

e, ol E)=[0(E)/g(E)IN vy, . (A3)

For a quantitative evaluation of the DLTS signal we
shall approximate N (E), o(E), and g(E) by step func-
tions as pictured by Figs. 9(a) and 9(b). Let us select the
voltages ¥V, and V, so that Ep, and Ep, both belong to
the same plateau in the density of states. Let us then
denote by N, 7, and g the respective averages of N(E),
o(E), and g(E) in the energy range (Eg,,Eg, ). As ex-
plained in Sec. II B, the emission transient actually in-
volves only those states between Ep, and Ep,. Thus
there is no loss in generality in substituting N for N (E),
o for o(E), and g for g(E) in Egs. (Al) and (A3).
AQ (t) then has the simplified expression

— rE
AQ()=gN [_‘[f(E —Ez)—f(E —Eg,)]

X exp[ —te,(E)]dE . (A4)

As a further simplification, we shall take e,q to be con-
stant as a function of temperature. This approximation
is justified by the weak dependence of e, on T (in T?) as
compared with that of e,(E) in exp[(E —E_)/kT] [Eq.
(A2)]. With the variable change

u=exp[(E —Eg, )/kT] (AS5)
the emission transient takes the form
— u; 1 1
AQ(t)=gNkT —
f“u 0g+u g+u
X exp[ —ute,(Eg,)]du , (A6)
where
6= exp[ —(Ep, —Eg,)/kT] , (A7)
u,=exp[ —(Ep, —E,)/kT], (A8)
and
u.=exp[—(Ep, —E.)/kT] . (A9)
The DLTS signal is given by S(¢,t;)

=AQ(t;)—AQ(t,), which we rewrite in the form
S(tl,t2)=sl(t1,t2)—Sz(tl,tz), where Sl and Sz are
defined as follows:
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u. exp[ —utie,(Ep,)]— exp[ —ut,e,(Eg,)]
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du (A10)

Sy(t1,t2)=gNkT [

0g +u

and

S,(ty,t,)=gNkT fu' zru

Consider the upper (u.) and lower (u,) bounds of
these integrals: under usual temperature and voltage
conditions, Eg, is separated by several kT at least from
the valence- and the conduction-band edges so that
u, <<1 and u. >>1. On account of these inequalities, the
upper and lower bounds of S| and S, can be replaced by
o and O, respectively. S| and S, then reduce to a com-
bination of integrals of the form

f © exp(—ax) dx
0 x+b
Using the properties of the exponential integral,'’> we
then obtain for S| and S, the following expressions:
=gNkT In(t,/t,) (A12)
and
Sy(ty,1,)=qNkT{ exp[gt e, (E, ) E (8t e,(EF,))

- exp[thEn (EFa )]
(A13)

X E(gtye,(Ep))}
where E,(x) is defined by Eq. (14) in the text. The
DLTS signal is given by
S(t1,t,)=qNkT {In(t,/t,)+ exp[gt,e,(Er,)]
X E(gt,e,(Ep,))
— explgtie,(ER,)]
XE(gtie,(Eg )} . (A14)

The variation of S as a function of temperature is
represented by the solid curve in Fig. 9(c). The signal is
zero at low T where [ge, (Er, )]~ !>t,. It then increases
to a broad maximum at temperatures where
[Ben(Eg )] ' <(ty,ty) <[ge,(Ep,)]~'. All through that
range, S (7T) has the simple approximate expression:

S~gNkT In(t,/t,) (A15)
with a linear dependence on temperature. S finally
returns to zero at high temperatures where
[8en(Epy)] ™' <ty

2. Determination of the emission rate and the density of states
at the quasi-Fermi-level Eg,

The inflection point P;(T;,S;) on the low-temperature
edge of the spectrum is of particular interest in view of
the fact that it can be easily recognized in practical
cases. A straightforward calculation leads to

e exp[—utlen(Epa)]—exp[—utzen(Epa)]d

(A11)

d’S  kugN
ar* T

2
Ec _EFa

kT

{r[(14ru)e™E (ru)—1]

—[(1+u)e“Ej(u)—1]} ,

(A16)

where r=t,/t, and u =[gt,e,(Ep,)]. The temperature
T; is determined by the condition d2S/dT*=0. Refer-
ring to Eq. (A16), we then obtain the set of equations
(11)-(14) in the text, giving the product g(Eg,)e,(Eg,)
at T'=T; as a function of the gate settings ¢, and z,. On
account of Eq. (A14), S; then gives a measure of the den-
sity of states N(Eg,) once g(Eg, Je,(Eg,) has been deter-
mined.

3. The energy resolution of DLTS measurements

The emission transient at T; actually involves the
boundary states in some energy range of width AE about
Erp,. AE represents the energy resolution of the DLTS
measurement. To estimate AE, let us consider the con-
tribution Sj to the DLTS signal, of the traps in the
range (Ej,Ey) with Ep, <E; <E; <Ep, [Figs. 9(a) and

Ib)]. A calculatlon similar to that detailed for S(z,,t,)
gives

Sik(ty,t3) =gNKT[E(gtye,(Ey))—E (gt 1e,(Ey))

+E(811e,(E;))—E(8t,e,(E;))],

(A17)

where e,(E;) and e,(E;) are the emission rates at the
levels E; and E,, respectively. The variation of S 'k with
temperature is represented by the dotted line in Flg 9(c):
starting from zero at low T, S; jk comes in coincidence
with (T) in the temperature range where
[Be, (Ex)] ' <(21,t;) <[Ze,( (E; )]}, then returns to zero
at high temperatures. Conmder in particular the value
of Sj at the temperature T;: then, gt,e,(E;) and the
similar quantities on the right-hand side of Eq. (A17) are
small compared with unity, so that Sjx has the expres-
sion
Sik =qNKT;[g(t;—1)e,(EF,)]
X { exp[ —(Ep, —E;)/kT;]
—exp| —(Ep, —E;)/kT;1} . (A18)

For T =T; the factor [g(¢, —¢,)e,(Eg,)] is on the order
of unity. Equations (A14) and (A18) then show S will
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N(E)

]

FIG. 10. Schematic representation of the density of states
N (E) with the quasi-Fermi-levels Ep, and Ep, located on two
different plateaus (densities N and N ). Ei represents the ener-
gy level where N (E) changes from N to N'.

be negligible compared with S;, unless Eg, and E; differ
by less than a few £7;. Thus only those states in a range
of energy AE comparable with the width of the quasi-
Fermi-distribution f(E —Epg,) have a significant contri-
bution to the DLTS signal at T;.

The value just given for AE represents the basic reso-
lution of the DLTS measurement, obtained on the condi-
tion that the density of states has little variation in the
energy range (Eg,,Ep,). To estimate the effect on AE of
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large variations in the density of states, let us assume
now Ep, and Ep, belong to two contiguous plateaus
with the respective densities N and N ’, and take E, to
be the energy level where the density changes from N to
N' (Fig. 10). Consider again the boundary levels be-
tween E; and E;: by a calculation similar to that of Eq.
(A18), the contribution of those states to the DLTS sig-
nal at 7; is found to be

Sj ~gN kT, { exp[ —(Ep, —E;)/kT;]

—exp[—(Ep, —E;)/kT;1} . (A19)

According to Egs. (A14) and (A19), the condition that

S« should be small compared with S; is

N(E;)<<N(Eg,)exp[(Eg, —E;)/kT;] . (A20)
For a numerical estimate, let us take Ep, —E; =0.1 eV
and T;=116 K. The inequality (A20) then gives
N(E,)/N(Eg,)<<e'®©~10* Thus the energy resolution
will be largely insensitive to variations of the density of
states with energy, with an exception for the case where
N (E) varies by orders of magnitude in the vicinity of
EFU'
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