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Resistance of a one-dimensional qnasicrystal: Power-law growth
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Properties of the electrical resistance of a one-dimensional quasicrystal, whose structure is
governed by the Fibonacci rule, are studied by means of the Landauer formula. In particular, it is
shown that the growth of the resistance with sample length is bounded by a power law for certain
energies. More specifically, the resistance is shown to grow with sample length not as a single
power, but with a spectrum of exponents. These exact results are illustrated by examples. It is
conjectured that such behavior is typical for the entire spectrum.

I. INTRODUCTION

A quasiperiodic Schrodinger equation using the Fi-
bonacci sequence was introduced by Kohmoto, Ka-
danof, and Tang' and given independently by Ostlund
et aI. in 1983. The most striking feature of the model is
that the spectrum is purely singularly continuous—
namely, all the states are critical. (Remember that all
states are localized for disordered systems in one dimen-
sion, while other quasiperiodic systems can have states
of all three types —localized, extended, or critical—
depending on the values of the coupling constant and
energy. )

If the Fermi energy is in the region of localized states
of the spectrum (dense point spectrum), it is known that
the electrical resistance grows exponentially with the
sample size, and the rate of exponential growth gives the
localization length of the state at the Fermi energy. For
the critical states, on the other hand, the localization
length is not defined —or is effectively infinite —and it is
thus of interest to study the behavior of the electrical
resistance as the sample size is increased.

It is most common to express the resistance of a one-
dimensional system in terms of the transmission and
reAection coefficients by means of the Landauer formu-
la. In the present case of a quasiperiodic system, how-
ever, the use of the Landauer formula must be examined
carefully. Since the spectrum is a Cantor set with zero
Lebesgue measure —namely, the energy gaps are dense
everywhere in the spectrum —it is likely that the linear
response to a weak electric field cannot be defined prop-
erly.

Nonetheless, we adopt the Landauer formula as a
working definition of resistance. Therefore this resis-
tance must be thought of as a parameter which charac-
terizes the states, rather than the coefficient of a linear
response.

The outline of the paper is as follows. In Sec. II we
review the transfer-matrix method for the multiscatterer
problem, and give the Landauer formula for the resis-
tance in terms of this transfer matrix. Section III defines
the particular one-dimensional quasiperiodic system we
will investigate, built according to the Fibonacci scheme,
with two types of scatterers in the ratio of the golden

mean. Also, this part reviews the very important trace
map. Section IV discusses in some depth the structure
of the transfer matrices. First, the consequences for the
transfer matrices of the structure in the trace map are
explicitly spelled out. Second, we give a proof that the
growth of the resistance with sample length is bounded
by a power law, at a fixed point of the trace map. Final-
ly, we argue for a more general conjecture. In Sec. V we
present examples, numerical experiments, and pictures
to illustrate the general results of the previous part. Sec-
tion VI is a short summary.

II. THK TRANSFER-MATRIX METHOD
AND THE LANDAUER FORMULA

In this part of the paper the formalism for calculating
the resistance of a one-dimensional sample from the
transfer matrix through the Landauer formula is intro-
duced. This is used in the rest of the paper for our in-
vestigation of the quasiperiodic system. For a detailed
derivation of .this formalism and more extensive discus-
sions see Kohmoto.

Let us consider a one-dimensional system with n
scatters. The transfer matrix T(n) for the total system
is the product of the transfer matrices M(j) for the indi-
vidual sites j, so that

T(n)=M(n)M(n —1) . . M(j) . M(2)M(1).
The transfer matrix M(n) corresponding to the nth
scatter is of the form

M(n)=U(n)[V(n)]
with

Ret (n) 1+Rer(n)
U(n)= —Imt (n) —Imr (n)

1+Rer(n) Ret(n)
Imr (n) Imt (n)

Here t (n) and r (n) are the transmission and reflection
coefficients for the nth scatterer, and Re and Irn signify
the real and imaginary parts, respectively.

Since each transfer matrix M(n) is a real 2X2 matrix
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with determinant 1, then the total transfer matrix T(n)
of the system is also a real 2&2 matrix with determinant
1. Note that the transfer matrices will depend upon the
energy through the transmission and reflection
coefficients.

According to the Landauer formula, the resistance p
of the system is given by

where r(total) and t(total) are the reflection and transmis-
sion coefficients of the total system.

This formula is compactly written in terms of the
transfer matrix as

p(n) = [Tr['T(n)T(n)]/2 —1) /2 .

Here Tr denotes the trace of the matrix, 'T is the trans-
pose of T, and the particular combination
Tr['T(n)T(n)] —equal to the sum of the squares of the
four matrix elements of T(n) —will play a crucial role
in Sec. IV.

III. THK FIBONACCI CRYSTAL
AND THE TRACK MAP

Henceforth, we exclusively consider a system in which
the scatterers are arranged following the Fibonacci se-
quence. Consider only two types of scatterers, called A
and B. Then the Fibonacci sequence is defined recur-
sively by

Sk+ &

——Sk &+Sk

with

S, =
I A ], So ——IB I .

Addition is here understood as simply the joining of se-
quences or concatenation of symbols. Sk is an element
of the free group generated by the elements A, B, with
no further defining relations; we can read from it the en-
tire sequence of Fk elements. (Fk —the number of ele-
ments in the sequence Sk —is a Fibonacci number,
defined similarly as Fk+& ——Fk, +I'k, for k ) 1 with

Fo ——1 and F, =l.) Asymptotically, Fk~p, as kazoo,
where P is the golden mean, equal to (1++5)/2.

We shall denote the transfer matrices corresponding
to the scatters A and B by the same symbols —A and B.
This will cause no confusion. Then M(n) is either 3 or
8. Therefore, a total transfer matrix T(Fk) for the Fi-
bonacci sequence Sk, is a product of I'k matrices, each
of which is either A or B.

Let us denote the Fibonacci transfer matrices T(Fk )

by Tk for simplicity. Then one has the recursion rela-
tion for the transfer matrices'

Tk + j —Tk —1Tk

with To ——B and T] ——A. This equation can be thought
of as a six-dimensional map, since each of the matrices
Tk are specified by three real parameters. We call this
recursion relation the Fibonacci dynamics, for reasons
that will be made clear.

In fact, there is a three-dimensional submap' of the

above matrix map, which maps the traces of three suc-
cessive Fibonacci matrices. Thus, writing xk
=Tr(Tk )/2, we find the trace map to be

+k+1 =2Xk+k —1 +k —2

This map has a constant of motion (invariant) given by
2 2 2xk + 1 +xk +xk —i 2xk + lxkxk —I

The constant of motion is always positive and gives a
measure of the difference of the strength of the scatter-
ing from the two types of A and B scatterers; when
A =B, then 2=0.

The spectrum of the infinite system S, which is truly
quasiperiodic, is the set of all energies which give a
bounded orbit Ixk J of the trace map. ' ' Note that the
matrices A and B, and hence the initial point of the
trace map, depend upon the energy through the
reAection and transmission coefficients. Also, the con-
stant of motion depends upon the energy. This is a
different situation from the tight-binding models of
quasicrystals, where the constant of motion is indepen-
dent of energy.

We are interested in the behavior of the resistance
when the energy is in the spectrum, or equivalently
when the trace of Mk is bounded. Almost all of the or-
bits Ixk ] of the trace map are unbounded, escaping to
infinity exponentially fast in k, and this implies that the
Lebesque measure of the spectrum is zero. The bounded
orbits exist with zero measure with respect to the ener-
gy. There are two types of bounded orbits: periodic and
chaotic. The periodic orbits are fixed points of the Q-
times iterated trace map or Q-cycles for short. We
largely focus our subsequent analysis of the resistance of
the periodic orbits, since the chaotic orbits are difficult
to treat. We deduce some properties of the chaotic or-
bits from a knowledge of the periodic orbits.

IV. STRUCTURE QF THE TRANSFER MATRICES

This section is a rather difficult part of the paper,
since it requires close reasoning, yet it is crucial to the
entire argument of this paper. We therefore have placed
the mathematical details in a long appendix, and here
draw on the two principal results which we will need to
discuss the power-law growth of the resistance as a func-
tion of sample size. In Sec. V we provide examples and
illustrations.

The first result we need is an answer to the question:
When we have a Q-cycle of the trace map, so that
xk + Q

—xk, how are the transfer matrices Tk + Q and Tk
related? The result' we find in the Appendix is that
there exists a matrix L —a real, 2&2 matrix with deter-
minant I, independent of k —such that

T~+Q ——LT~L

Thus translation of the index j by Q, is given by a simi-
larity transformation of the transfer matrices.

The second result we need concerns the size
~

T
~

of a
transfer matrix T, defined by

i
T

i
=Tr('TT) /2 .
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(The symbol 'T denotes the transpose of T.) Then in the
Appendix we show that for two transfer matrices A and
C,

This gives as a simple corollary that

ICAC 'I &2f A
I IC f'.

With these two results, we now proceed to estimate the
growth of the transfer matrices T(n) In. general, we
can expect these matrices to grow exponentially in the
lattice index n. However, if we have a Q-cycle, this is
not the case, as we shall see, and instead we will have a
power-law growth at most.

As we found in the Appendix, and quoted above, for a
Q-cycle

Tq. +g ——I T I.
Combining this result with the previous corollary, de-
rived in the Appendix, we estimate the growth of the
transfer matrices on the Fibonacci points as

((z[L
I

')"

This, however, is not what we want. Instead, we wish to
bound the growth of

I
T(n)

I
with increasing n

We introduce the symbol
I
T J I

to denote the max-
imum value of

I
T(n)

I
for n from 1 to FJ. Then by

defi»tion
I T, I

&
I T, +k I

and
I
T(n)

I
&

I TJ I
«r

n &Fq.
For the free group —just the sequences of A's and

8's—we found that we could inAate a sequence Sk to a
sequence Sk +g by the substitution [8, A )~[Sg,S i+ g ].
Thus, we find that T(n ), with n &FJ, infiates to

T(n)~T'(n)= T(n') =LT(n)L

with n ' & Fj+&. Therefore,

I
T'(n)

I

=
I

T(n')
I

&2
I

L
I I

T(n)
I

Writing T(n + I ) =M(n + 1)T(n), after inflation we find
that this inAates to

T(n'+m) = T(m)T(n'),
with n +m &(n + I)' or m &Fg+i.

Applying the inequality once again,

[
T(n'+m)

[
(i/2

I
T(m)

[ f
T(n')

f

Now allowing n to range from 1 to Fj and m to range
from 1 to F~+&, then n'+m will range from 1 to Fj ' g.
Thus, we have the final inequality, for a Q-cycle, that

I T)+g f
&2' 2 IL I

'
I

T g+i I I
T J I

.

We may apply this inequality repeatedly. Let the
scale factor be

r =2v'2
I
L

I

'
I
T g il +.

Then we find that

I T, +kg I

&r"
I T, I

.

Combining these results with the previous expression
for the resistivity,

p(n)=[
I
T(n)

I

—I]/2,
we find the asymptotic bound for the resistivity ~t a Q-
cycle as

with
a =In(t) /In(gg),

where p is the golden mean, equal to (I + v'5)/2.
Suppose now we were to consider the other states in

the spectrum, corresponding to the chaotic orbits instead
of the periodic Q-cycles of the trace map. These orbits
lie on the two-dimensional surface defined by the con-
stant of the motion 2 fixed, and are bounded. One can
define an area on this invariant surface which is
preserved by the trace map. We make the following
conjecture.

Conjecture I. For all points in the spectrum, the resis-
tance as a function of sample size is bounded by a power
of the sample length.

On the other hand, suppose we found a point where
the resistance was bounded by a power of the sample
length: would this point be in the spectrum? By the in-
equality shown in the Appendix, the trace is also bound-
ed by a power, since it can grow no faster than the
square of the resistance. Suppose the orbit of the trace
map were to grow. Then when x~ became large enough,
the trace map would lead to exponential escape. This,
however, is a contradiction, so we conclude that the
traces at the Fibonacci points are bounded. As will be
seen in the next section, in fact we expect that when
suitably scaled, the N transfer matrices T(n) for a sam-
ple of N sites are distributed with a stationary density.
The Fibonacci points map onto the TrT'=0 surface,
where T' is the rescaled transfer matrix, and this station-
ary density does not vanish there, so the point is in the
spectrum. This leads to the following conjecture.

Conjecture II. All points, for which the resistance as a
function of sample size is bounded by a power of the
sample length, are in the spectrum.

V. EXAMPLES

In this section we illustrate the previous general re-
sults for the behavior of the resistance of a sample as a
function of the sample length. As shown previously by
Kohmoto et al. ,

' the Cantor set spectrum for these
one-dimensional quasiperiodic systems is dominated at
the center of the band by a 6-cycle of the trace map, and
at the band edges by a 2-cycle of the trace map. Many
analytic results are known for these cycles, not least of
which are explicit formulas for their location. Thus in
Sec. V A we study the 6-cycle, and in Sec. V B we study
the 2-cycle. In Sec. V C we look at other cases.

The quantity we study is the natural logarithm of the
square of the size of the transfer matrix T ( n ), which we
denote by R (n). It in turn is related to the natural loga-
rithm of the resistance p(n) through

R (n)=In[
I
T(n)

I
]=ln[2p(n)+ I])0 .
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A. The six cycle

The choice b =(0,1,0,0) and a =(cosh(8), 0, sinh(8), 0)
leads to a 6-cycle of the trace map. In fact, these ma-
trices S and A also lead to a 6-cycle of the matrix map,
so that no Lorentz transformation is needed to bring
them into alignment. And finally, the matrices 8 and 3
generate an infinite but discrete subgroup of SL(2,R).
Thus, the transfer matrices T(n) sit on the discrete
points of a lattice. In Fig. 1 we show R (n) as a function
of n, for n from 1 to 400, and 8=1. (We take 8=1 for
all subsequent examples of the 6-cycle. ) The discrete
structure is here clearly evident. We will always mea-
sure R in units of 1n(P), and the height of the picture
frame in Fig. 1 is 361n($).

We know by the previous arguments that
~

T(n) I is
bounded by a power of n, so in Fig. 2 we show R (n)
versus 1n(n). The maximum n in this picture is
N =F&8 ——4181, so that the width of the horizontal frame
is 1n(Fis)=181n(P). The marks on the horizontal axis
are at the Fibonacci numbers, so that they are spaced
approximately by 1n(P). The height of the vertical frame
is 541n(P). In this picture, and henceforth, we will
represent data values at the Fibonacci points by small
boxes.

For very large N, the spacing between the discrete
values of R (n)/ln(X) becomes small, while the max-
imum and minimum values approach constants. The
minimum of course is zero, while the maximum is given
by an exact calculation as 2/[3 1n(P)]=1.3854. . . . In
Fig. 3 we show a histogram of the logarithm of the num-
ber of times R (n)/In(X) takes the difFerent discrete
values. This again is the case where N, the maximum n,
is F&8

——4181 ~ Sutherland" ' has calculated the limiting
curve exactly, and this is shown in Fig. 4 for compar-
ison. Thus, we can say that the resistance increases not
by a single power of the distance, but instead has a spec-
trum of powers or exponents, given by the limiting dis-
tribution of Fig. 2. The analytic form is given in the pa-
per of Sutherland. '

As we mentioned, the transfer matrices T(n) for the
6-cycle are elements of a discrete group, and as shown
by Kohmoto et al. ,

' can be represented in the form
T(n)=B~A", for q =0, 1,2, 3, and r any integer. Figure
5 shows the distribution of the transfer matrices T(n)
themselves, and requires some explanation. First, the
right-hand frame simply shows R (n) versus 1 (nn); the

$0 1n($)

R(n)

I
0 I I I

0
I i T i I T i 1 7 i i r I I

1n(n ) 1sln(p)

FIG. 2. The quantity R (n) is shown as a function of ln(n)
for the 6-cycle.

B. The two cycle

We now show a similar series of pictures for the 2-
cycle, with b =(3/4, 7' ', 0,0) and a =(3/2, 3X7'~ /
17,77'~ /14, 0). En contrast to the 6-cycle, a Lorentz
transformation is needed to bring the 3 and 8 matrices
into alignment after two iterations. In Fig. 6, we show
R (n) versus n for 400 sites. The units of this picture are
the same as those of Fig. 1, so a direct comparison is
possible. The contrast is striking.

Figure 7 is the counterpart for the 2-cycle of Fig. 2,
where we show R (n) as a function of 1n(n). The values
lie within a wedge of constant angular opening about a
straight line with some average slope. This suggests we

units are as before. As we have emphasized, any
transfer matrix T ( n ) is specified by three parameters-
say ap, a&, and az. In the left frame of Fig. 5, we pro-
ject the transfer matrix T(n) down onto the ao —a

~

plane. There we use coordinates

x =[ao/(ao+a i
)' ]R (n)/1n(X),

y = [a i /( a o +a i )
' ]R ( n ) /1 n(X) .

Thus the radius is R (n)/1n(N), which is the vertical
quantity of the right frame. A visual inspection relates
the scales in the two frames. The contour lines show the
lines of constant trace with ap= —2 —1.5 —1 —0.5,
0.5, 1, 1.5, 2. One finds the highly symmetrical structure
corresponding to the discrete group, and an invariant
distribution for the matrix.

&own($)

Rfn)

, III IIIIIIII I llllllllllllll I lllllllll III IIII I II ll IIIII III III liilll llllllllllllilll I lilllll III IIIIII

n 600

FIG. 1. The quantity R (n ) is shown as a function of n for
the 6-cycle.

R(n) em(N)

FIG. 3. A histogram of the logarithm of the number of sites
with a given value of R (n)/ln(N) is shown, with N =4181
sites, for the 6-cycle.
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R(n)

400

R(n}nn(N }
FIG. 4. Same as Fig. 3, showing the exact limiting curve for

the 6-cycle.

FIG. 6. The quantity R (n) is shown as a function of n for
the 2-cycle.

examine the distribution of R (n)/ln(n), or equivalently
of R (n)/ln(N), for scaling properties. Thus in Fig. 8 we
show a histogram of the logarithm of the number of
times R (n)/in(n) takes various values. This once again
is X =F» ——4181, but an increase in N would give little
change other than smoothing out the fluctuations of the
histogram. [For the 2-cycle, we use a running rescaling
by dividing R (n) by ln(n), instead of ln(N) as was done
for the 6-cycle, because the convergence is better. We
then are not fighting the discrete structure of the 6-
cycle.] The maximum value of the slope, equal to the
upper edge of the histogram, is in excellent agreement
with an exact calculation of Kohmoto et al. '

Finally, in Fig. 9 we show the distribution of the ma-
trix itself in the ao-a

&
plane. We now perform a running

rescaling, so that the variables in the left frame are

x =[ao/(ao+a, )'~ ]R (n)/ln(n),

y =[a, /(a 0+a &

)'~ ]R (n)/I (nn) .

There is a surprising amount of structure in the scal-
ing distribution of the matrix itself. In Figs. 10 and 11
we magnify the distribution 2)& and 4X, respectively,
from Fig. 9. In contrast to this intricate structure, the
distribution of the radii of the points, given in Fig. 8, we
recall is smooth.

C. Other points

In contrast to the fixed points, we show in Fig. 12 a
10% deviation from the 6-cycle, where we take
b =(0, 1,0, 1,0) and a =(cosh(1), 0, sinh(1), 0). This
point is in the energy gap. The exponential increase of
R (n) and thus the resistance, accompanied by the escape
of the matrix, is clearly evident.

VI. CONCLUSION

We have shown that the resistance of the one-
dimensional quasicrystals based on the Fibonacci scheme
grows with sample size no faster than a power of the
sample size. In fact, there is a distribution of diff'erent
powers for the growth, leading to extremely large fluc-
tuations of the resistance. It is conjectured that this be-
havior holds as well for a11 energies in the spectrum. It
is interesting to compare the scaling behavior and fluc-
tuations of this quasicrystal with that for random sys-
tems, as developed by Anderson et al. ' and Lee and co-
workers. '

APPENDIX

Here we present all the mathematical details needed to
prove the results used in Sec. IV to show the power-law
increase of the resistivity. We break this appendix up
into easily manageable sections. Many of these tech-
niques were developed in another context by Suther-
land. "

5~1n())

R(n)

R(n)
~. ~

0 ln(n) &n(F»)

FIG. 5. The right frame shows R (n) vs ln(n), while the left
frame shows the distribution of the matrix, for the 6-cycle.
The coordinates are explained in the text.

0 1n(n) &Nn())

FIG. 7. The quantity R (n) is shown as a function of ln(n)
for the 2-cycle.
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1.5 R(n 31'1n(n 3

FIG. 8. A histogram of the logarithm of the number of sites
with a given value of R (n)/ln(n) is shown, with N =4181 sites,
for the 2-cycle.

FIG. 10. This is a twofold enlargement of the left frame of
Fig. 9.

1. Parametrization of the transfer matrices

The transfer matrices are elements of SL(2,R ), the set
of all real, 2&2 matrices with determinant one, and
hence invertible. This is a subgroup of GL(2,R).

Let us introduce a basis for the 2 & 2 matrices as

0
1

0 1

—1 0

7p= 1~ 7& =lO» 72=&7&~ 73=0&

where oj are the Pauli sPin matrices. Thus the 7, are
real. Explicitly, they are given as

The multiplication rules are

7)72 — 73 — 727]

7273 —7] 7372

737 f
—72 — 7]73

Then we can write a general matrix A in SL(2,R) as

3 =Q p 7p +a
~
7 ] +Q 2 72 +Q 3 73

Qp+Q2 Q3 +Q )

a3 —a& ap —a2

The condition that the determinant is one translates
into the following condition on the coefficients:

1 0
72 0 1 y 73

We note

Tr(ro)/2= l,
while

'0 1
apap+a &a &

—a2a2 —a3a3 —1

This suggests that we parametrize the coefficients as

ao =cosh(8)cos(p), a, =cosh(6)sin(y),

aq ——sinh(I9)cos(f), a3 ——sinh(8)sin(tt ) .

Tr(r~ )/2=0, j = l, 2, 3 .

Also,

The range of parameters can be chosen as either
—n & y & n, —Ir & p (a, 0 & 0, or n& p & vr, 0 &—(I'j & m.

The set of four coefficients a~, subject to the constraint

1=ap+a
&

—a2 —a32 2 2 2

R(n)
la(n)

I ~
f'-

ee

0 I I I I I I I I I I I I I I
0 ln(n) 1n(F&& )

FIG. 9. The right frame shows R (n) vs ln(n), while the left
frame shows the distribution of the matrix, for the 2-cycle.
The coordinates are explained in the text.

FIG. 11. This is a fourfold enlargement of the left frame of
Fig. 9.
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(8, A)t. (——8, A)g —(B,I)g(I, A)g =b, a, b—zaz —b, a3

is invariant.
We thus call such a transformation

A ~ A'=CAC

a Lorentz transformation of A by C. We write a general
element A with parameter a as A (a). Then for a
Lorentz transformation C, we will have

A (a)~A'=C(c)A (a)C '(c)=A (a')=A(L(c)a),
where L (c) is the three-dimensional Lorentz transforma-
tion on the a&-a2-a3 subspace, with parameter c. The
mapping from C(c) to L (c) is two-to-one, since either
choice +C(c) leads to the same Lorentz transformation
L (c), much as the relation between SU(2) and the rota-
tions O(3) is two-to-one. The Lorentz transformations
include one-dimensional rotations about the a& axis, as
well as boosts along a two-dimensional velocity vector in
the az-a3 plane. (One might like to consult Fig. 14
again to see the local geometry. )

4. The set of Lorentz invariants

(Bk+g» Ak+g ) L (Bk» Ak )L

Since the matrix dynamics is invariant under Lorentz
transformations, we emphasize that the Lorentz trans-
formation is the same for all k.

Therefore, an invariant set of the matrix map corre-
sponding to the Q-cycle of the trace map is the set of all
distinct pairs of matrices L "(Bk, Ak )L ", for all integers
n, and k =1 to Q. These sets lie within the Q one-
parameter submanifolds L "(Bk,Ak )L ", where the pa-
rameter n is now any real number. More-complicated
invariant sets of the trace map than Q-cycles can like-
wise be treated.

5. Determining the I.orentz transformation

We now show how the Lorentz transformation is
determined. Suppose we have a matrix pair (8, A ).
Apart from an arbitrary Lorentz frame, they are
specified by the set of three Lorentz invariants, which we
take to be (Tr(8)/2, Tr(A)/2, Tr(BA)/2) and denote
collectively as r. We choose our Lorentz frame to bring
the matrix pair into a standard alignment, which we
take as

We have estabhshed that the scalar product ( A, B)t is
invariant under Lorentz transformations. For a single
matrix A, (A, A)t is the only Lorentz invariant. How-
ever, for a pair of matrices A, B, the Lorentz invariants
are (A, A)t, (8,8)t, (A, B)t. Equivalently, we could
take as the invariants (I, A )g ——ap (I 8)g =bp, ( A B)t .

The traces of the matrices for the Fibonacci dynamics
previously introduced in this paper have a simple rela-
tionship to these Lorentz invariants, for

Tr( A)/2=ao, Tr(8)/2=ho,

while

Tr(BA)/2=aobo —a ib&+azbz+a3b3

=apbp —(b a)t

Furthermore, these three invariants are a complete set
of invariants for the ordered inatrix pair (8, A). Thus, if
we have another matrix pair, (8', A') with the same in-
variants, then there exists a unique Lorentz transforma-
tion J which will bring the two pairs into alignment:

(8', A')=L (8, A)L

We make use of this observation in the following way.
Suppose we find a Q-cycle of the trace map. Since the

traces of three consecutive matrices repeat, this means
that the Lorentz invariants of two consecutive matrices,
say B&+&——T&+& &

and A&+& ——T&+&, repeat as well.
Thus the Q-times iterated pair (Bk+&, Ak+&) is
equivalent by a Lorentz transformation to the original
pair (Bk, Ak ), or

A =apwp+a]~] if A is timelike,

A =a&~o+a2~2 if A is spacelike,

B =&p&p+b
&

v &+ b2%2, 6), 62 & 0

We write this initial pair, in standard alignment, with
parameter r as (8 [r], A [r] ).

We now iterate the matrix map once to give the new
matrix pair (8', A')=(A, BA) with parameter r', which
is the old parameter r iterated once by the trace map.
This new matrix pair is not in standard alignment. It
can, however, be brought into standard alignment by a
Lorentz transformation S, to that

(8', A ') =S [r](B[r'], A [r'] )S [r)
The notation is as follows: A pair (8 [r], A [r]) will

always denote a matrix pair, in standard alignment, with
parameter r'. We start with a pair (8 [r], A [r]) in stan-
dard alignment, so that after iteration, the pair (8', A ')
is completely determined by the parameter r; in particu-
lar, the parameter r' is determined by r through the
trace map. However, the orientation of the pair (8', A ')
is also determined uniquely by r, so the Lorentz trans-
formation S needed to bring the pair (8', A') into the
standard alignment (8 [r'[, A [r'] ) is uniquely deter-
mined by r. We write this dependence of S on r as S [r].
It is not a Lorentz transformation S(r) with parameter r;
that is why we denote it by the symbol S[r] instead of
S(r).

Now, by repeating this procedure each time, as we
iterate the matrix map k times, we obtain

(Tk+i, Tk)=S[r, ) . S[rk](8[rk+, ], A [rk+, ])S[rk] '. S[r, ]
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The orbit of the trace map is (. . . , rk, rk „.. . , r2, r, ).
Thus if we have a Q-cycle of the trace map, so that
r&+] ——x], then we can make the identification

I.=5[r, ] . S[rg] .

This expression must be invariant if we translate along
the orbit of the trace map.

and

I

A
I
)(I A)=(I A)G ao)

7. Growth of a product

6. The Euclidean metric

Although the scalar product

aobo+a&b& —a2b2 —a3b3

=(a, b)G =(A, B)G =Tr( A '8)!2
is very natural and useful, since it is invariant under the
group action, and the Lorentz metric

a]b] —a2b2 —a3b3

=(a, b)L =( A, B)1 ——( A, B)G —( A, I)G(I,B)G

is even more useful, since it is invariant under the
Lorentz transformations, which are a symmetry of the
Fibonacci dynamics, neither of these are useful for es-
timating the size of a matrix. For instance, ( A, A)G ——I,
while (A, A)I is not positive definite. On the other
hand, if we try to use [(A, I)G] =ao ——[Tr(A)/2] as an
estimate of a size of a matrix, we find tliat we can multi-
ply two matrices, each of which have zero trace, to get a
product which has a trace arbitrarily large. As such an
example, take A =[1+a ]' ri+arz. Then
Tr( A)/2=0 and Tr('A )/2=0, while Tr('A A )/2
= 1+2a .

Clearly, what is needed for estimating the size of a
matrix is a Euclidean scalar product, which is positive
definite, and has the triangle inequality for estimating
the size of a product from the sizes of the factors. How-
ever, as we have seen, such a scalar product cannot be
invariant under the same Lorentz symmetry as the Fi-
bonacci dynamics.

The manifold (A, A)G ——1=(a,a)G is embedded in the
fourth-dimensional Euclidean space, and this provides us
with the scalar product

aobo+a]b]+azb2+a3b3

=(a, b) =( A, B)=Tr('AB)/2=(B, A ) .

This gives us our definition for the size
~

A
~

of the ma-
trix 3 as

~

A
~

=( A, A ) =Tr('A A )/2=a o+a &
+a q+a 3

=(a,a)='aa .

We easily establish that for A in SL(2,R )

~

A
~

=1+2(a2+a3)=cosh(20)&1,

We now wish to establish the important result that
given A, C in SL(2,R),

C =exp(0r, ),
a pure "boost." Then R (C) is easily evaluated as

cosh(0) sinh(8)
0 0

R C =
sinh(0) cosh(0)

0 0

0
cosh(8)

0
—sinh(8)

0
—sinh(8)

0
cosh(8)

and

cosh(28) 0 sinh(28) 0
0 cosh(28) 0 sinh(28)

sinh(28) 0 cosh(28) 0
0 sinh(28) 0 cosh(28)

The eigenvalues are clearly doubly degenerate, and equal
to exp(+28). Thus

A =exp(28) &Zcosh(28)=2
~

C
~

This establishes the result.
We note that if we take C = A, then the inequality

gives

i
A

~

=cosh(48)=2cosh (28) —1

&2
i

A
i

=2cosh (28),
which approaches an identity for large

~

A
~

.
As a corollary, we also have

First, let 8 = AC. Then, we can write right multipli-
cation by C as b =R (C)a, where R (C) is a 4&&4 matrix
representation. Now,

j
8

~

='bb='a 'R(C)R (C)a &'aaA =A
~

A
~

where A is the maximum eigenvalue of the symmetric,
positive definite matrix 'R ( C)R (C).

By orthogonal rotations of the form O(1) )&O(1) on the
ao-a] and a2-a3 subspaces, which will not change the ei-
genvalues of 'R (C)R (C), we can put C in the standard
form
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