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We derive the equations governing the nonlinear dynamics of one-, two-, and three-dimensional
lattices in a close to continuum condition (i.e., a dense lattice). The described method correctly
captures all terms to a given order in discreteness and, unlike previous approaches, leads to well-

behaved partial-differential equations for these problems. In general, the dispersion born out of
discreteness counteracts the steepening of waves caused by the nonlinearity and leads to the for-
mation of permanent nonlinear structures.

I. INTRODUCTION

In considering the problem of lattice vibrations one
distinguishes two conceptually different spatiotemporal
limits. In the first limit the phenomena considered de-
pend crucially on interlattice spacing, e.g. , the theory of
dislocations. At the other end, which is our main in-
terest here, the characteristic length of the considered
phenomena is macroscopic. This scale contains hun-
dreds of not thousands of elementary cells and the natu-
ral description of such phenomena appears to be via the
continuum approach. While on the continuum level
things appear much simpler than on the primordial,
discrete level, this simplicity has its price. Firstly, cer-
tain long-wave phenomena, as compared with the micro-
scopic unit length, completely disappear. Secondly, the
continuum level is described typically by the wave equa-
tion

y =[T(y. )l. ,

u„„=[T(u„+,)+T(u„, ) —2T(u„)]/h

where h is the equilibrium interparticle distance,

yn —yn —
&

(1.2)

where y and x depending on the model considered, may
be scalar or vectors. But quite generally when T is a
nonlinear function of its argument, the smooth solution
breaks down after a finite time. This is in sharp contrast
to the discrete lattice that vibrates smoothly for all
times. This catastrophe as predicted by the continuum
theory makes it clear that a direct or, should we say,
naive approach to continuum leaves out an important
effect carried by the discreteness of the system. This
effect is, of course, the dispersion borne out of discrete-
ness that is sacrificed when the continuum approach is
taken, and it is this dispersion that must be somehow re-
stored in order to counteract the steepening effects
caused by the anharmonicity of the interparticle poten-
tial. As a first step toward this restoration, consider the
vibration of a simple one-dimensional (1D) lattice as
given by

and y„ is the displacement of the nth particle from equi-
librium. Expanding the right-hand side,

h 2

u„„=[T(u„)]„„+ [T(u„)],„„„+O(h ) .
12

(1.3)

If, following Kruskal and Zabusky, ' one assumes T to be
only weakly nonlinear, setting u:—u„one obtains [up to
O(h )]

h 2

u„=[T(u)] „+ u „„12
(1.4)

and the last term in (1.4) represents the dispersion effects
due to discreteness, with h being the trace of the micro-
scopic system. However, the system (1.4) can hardly be
considered as a savior from the continuum catastrophe.
Firstly, the new term necessitates an additional bound-
ary condition at each end of the chain beyond what is
required and supplied by its discrete predecessor.
Secondly, the initial-value problem for Eq. (1.4) is ill
posed. In fact, with x~iK and t+ ice the dispersion re-
lation for the linearized version of (1.4) reads

c 2m~ =K 2 — K4h
)12

where c is the speed of sound. And though Eq. (1.4) was
derived with long-wave phenomena in mind, short wave-
lengths are imminently present and will cause the explo-
sion of the solution to Eq. (1.4) in a finite time. One way
around the difficulty of properly incorporating the effects
caused by discreteness was devised by Kruskal and Za-
busky. They further reprocessed Eq. (1.4) by considering
only one directional propagation and thus derived (for T
being a quadratic function of u) the Korteweg —deVries
(KdV) equation. While this approach allowed study and
understanding of many phenomena associated with the
vibration of a lattice, many other phenomena, like
wave-wave interaction, are beyond the realm of the KdV
equation.

Our approach outlined next meets the problem head
on by regularizing the expansion in the discreteness pa-
rameter h. To this end we return to Eq. (1.3) and
rewrite it as
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u„=L„[T(u)]„„, (1.6)

where

h h

12
(1.7a)

Observing that Lz up to 0(h ) is a Schrodinger opera-
tor, and thus invertible, we write

The first of these approximations yields the KdV equa-
tion, the second its regularization. It is clear that for
high K's the KdV equation diverges significantly from its
discrete predecessor while the regularized equation
preserves its proximity to the original. With this point
in mind we derive now the regularized version of the
KdV equation. To this end we rewrite Eq. (1.6) as fol-
lows:

h 2L„'=1— 8„+O(h ),
12

which when applied to (1.6) yields [up to 0 (h )]

h
uu = [T(u)]-+ unix12

(1.7b)

(1.8)

(L„' 8, —B„)(L„' 8, +B„)u =F[f(u)]„„,
where

T =u +sf (u), e«1
was assumed to have a dominant linear part and

(l. loa)

which is the desired equation of motion. Note that Eq.
(1.8} was derived without any assumption being made on
the form of T. The new term in (1.8) is only twice de-
rived in space, thus Eq. (1.8), like its discrete origin or
the continuum limit, uses only one boundary condition
at each end of the lattice. Its linearized dispersion rela-
tion reads

a'o(a') .h

24 x

Now, since e && 1, (1.10a) implies that

a, u =+a„u,
which in turn when properly used in (1.10) and integrat-
ed once implies

C Q7
—2 2= E

1+K'h '/l2
K (1—K h /12), Kh «1
12/h, Kh ))1 . h

u, +[T*(u)]„= u,„, , (1.10b)

c co = sin (Kh/2) .-22 4
h

(1.9b)

The standard, direct approach consists of a polynomi-
al expansion of the right-hand side of (1.9b). Such an ex-
pansion, however, is meaningful only for finite K. On
the other hand, expanding (1.9b) as a rational function,
the simplest expression of which is given by the right-
hand side of Eq. (1.9a), preserves its boundedness for all
K. This distinction is crucial because partial-differential
equations like Eqs. (1.4) or (1.8), even though derived for
small E's actually can be said to employ all E's. And
though one does not want to use this high-K part of the
information, it is there. It is exactly the blowoff at high
K's that ruins Eq. (1.4).

On the contrary, it is the bounded nature of Eq. (1.8)
for short wavelengths that makes it a proper tool to
study the dynamics of a lattice in a close-to-continuum
condition. The dispersion generated by the last term in
(1.8) will counteract the steepening caused by the non-
linearity of T, and generate a spatially nonlinear struc-
ture of which the solitary wave is the most notable one.
For more details regarding this equation, we refer the
reader to Refs. 2 and 3.

It is worthwhile at this point to introduce the regulari-
zation of the one-sided wave equation namely, the KdV
equation. From (1.9b)

+co/c = —sin(Kh /2)
2
h

=K —K h /24= E
1+% h /24

(1.9a)

This should be compared with the dispersion relation of
the linearized discrete system that reads

where T'=u +(E /2)f (u), and + ( —) refers to waves
propagating to the right (left). Note that for f (u)=u2,
Eq. (1.10b} was postulated in Ref. 4 as an approximation
that is better than the KdV equation to describe the dy-
namics of shallow-water waves. In contrast, here this
equation is derived in the context of lattice dynamics.
In any case the derivation of (1.10b) was not meant to
provide a substitute to Eq. (1.8) to which it is inferior on
two accounts. Firstly, it describes only a one-sided
propagation and secondly, the interparticle potential had
to be weakly nonlinear. Rather, it was derived as an al-
ternative to the KdV-type equations, particularly for
those cases when the KdV-type equations are not exactly
solvable (i.e., when f is neither quadratic nor cubic in u).
In a similar fashion in Sec. III, we shall introduce a reg-
ularized version of the Kadomtsev-Petviashvili equation
(RKP), namely,

d, (U, +U„+aU U —PU,„,)+Uyy ——0, ag=c osnt

(1.10c)

and as before the + ( —) sign refers to waves propa-
gating to the right (left).

The main body of this paper is devoted to the applica-
tion of the regularized expansion method, as outlined
above, to one-, two-, and three-dimensional lattices. For
the 1D lattice we consider an N-neighbor interaction
when the lattice parameters are either homogeneous or
inhomogeneous. This is followed by a study of trans-
verse vibration of a 2l3 lattice without and with periodic
substrate potential. Finally, a 3D model due to Batteh
and Powell is reconsidered and their equations-of-
motion obtained by a direct expansion in h are regular-
ized. We believe that the value of the models presented
extend beyond pedagogical interest and will serve to
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propagate the use of the presented methodology to study
lattice dynamics. I., =1+ B.+ B„+-2(ih) z 2(ih)

41
(2.4)

II. 1D LATTICE

A. N-neighbor interaction

Consider first the Hamiltonian
2

d3'n

dt

3'n + i
—3'n+I',

3'n +2—3'n
+

which describes the interaction between two closest
neighbors with h being the equilibrium spacing between
two adjacent point masses [see Fig. (1)], and P; (i =1,2)
being the interaction potentials. The equations of
motion are

2

L„=P,L, +P L =1+ i3„+O(h ),xz~
12

(2.5a)

where

C2P;=, i =1,2
C +C

(2.5b)

In what follows the index n will be dropped. Now we

have two operators L& and L2 as candidates for inver-

sion if the procedure outlined in the introduction is to be
repeated. Actually there appear to be infinitely many

ways to blend h& and hz and invert them. The one

selected is chosen requiring consistency in the sense that
the present problem should reduce to the basic lattice
(i.e., interaction with adjacent neighbors only) described
in the introduction if second-neighbor interaction van-

ishes. To this end define

3'n 3'n + ]
—3'nd

Po 1
h Yz ——So/(Ci +Cz ), So =Ci +4C2 (2.5c)

3'n +2—3'n
+— T2

3'n —3'n —2

2h

As before, L„, up to O(h ), is a Schrodinger operator.
Thus, Eq. (2.3) reads

y =Lay +h 'Ll[f1(y )].
(2.1) +h 'Lz[fz(y»)]„+O(h '+h ') . (2.6)

T;(u)=C;u+h; 'f;(u), 0&a;, i =1,2 .
Po

(2.2)

The actual form of f is assumed to be known but need
not be stated. The right-hand side of (2.1) is now Taylor
expanded around y„ to obtain (y—:y„)

yig =L 1 [Ti ]»+Lz[Tz]»+O(h '+h '),
here

(2.3)

T;=T(y ), i=1,2

and

where T;=B„P;(u)/h, i =1,2, is the tension function
and po

——m/h is the uniform density of the continuum.
Unlike the first neighbor-interaction problem, in what
follows it is necessary to assume that T; has a dominant
linear part (i.e., it is weakly nonlinear), i.e.,

Acting with L„' we then have [up to O(h '+h ')]

yahy„=[Ti(y„)+Tz(y )] + y tt12
(2.7)

which is the desired equation of motion. Note that the
direct expansion would yield

h So
y =[Ti(y. )+»(y, )].+

12
(2.8)

An equation of this type was, for instance, derived by
Peyrard, Pnevmatikos, and Flytzanis (c.f. Ref. 6 and
references therein). As in the case of the first-neighbor
interaction, an initial-value problem cannot be properly
posed for Eq. (2.8). We note also that the present results
are somehow weaker than the one obtained for the one-
neighbor interaction. Because we had to invert both L&

and L2 we had to assume that T; is weakly nonlinear.
Equation (2.7) has formally the same form as Eq. (1.8)
but with an eff'ectively new tension function and an
enhanced effect of dispersion. Note also that Eq. (2.7) is
derivable from a Lagrangian density X where

&= —,'y,' —P, (y )+ (y„, )',24
(2.9)

FIG. 1. A Schematic diagram of a 10 lattice with a two-
neighbor interaction.

aild P„=P](y )+Pz(y„). Eqllatioil (2.7), similarly to
Eq. (1.8), has as pointed out in Ref. 2, a finite number of
conservation laws.

Generalization to a mass point interacting with X
neighbors presents no difficulty. Let i =1,. . . ,N; then
defining
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and

N N

Cgr= g C, P =C /C~, YN ——g J' P, (2.10a)
j=1 j=1

done in all previous cases, and must be continued to the
next, quartic level. The simplest such expression, when
sixth order in (2.12a) is included, is

L„= g P;L =1+y~h 8„+0(h ),
j=1

we have

(2.10b)
A oK2+ A]K4

co2=A,K'+A, K4 —A2K =
1+K A2/Ao

Ao, A1, A2)0,
N y

Vn= g ~J(yx) +" V u .
12j=l x

(2.10c)

N

d*=rx/~= Q
1

N

'2

measures the effective increase in dispersion with the in-
crease in the number of interacting neighbors. As N
varies from 1 to 5, d, varies from 1.1 to 2.2.

It is of interest to point out that in Ref. 6 where Eq.
(2.8) was derived, So (ho in their notation) was taken to
be both positive and negative. A negative value of Sp
was achieved when an inverted potential for the interac-
tion with the second neighbors was used. Now while

Eq (2.8). is ill posed for So&0, it is a perfectly well-
defined mathematical object for Sp & 0. However, in
spite of being well posed even for So &0, Eq. (2.8) poorly
approximates its discrete predecessor. Indeed for Sp &0,
the dispersion relation of (2.8) yields

=(C2+C~ )K2+
~

S
~

K4 .

By assumption,

( 2+( 1 )0, So=( 1+4( 2 (0,
which predicts that for large K, co —+K and
K g oo —+co& oo. But the original, discrete version gives

co =[4C, sin (Kh/2)+Cousin (Kh)]/h

sin (Kh/2)[C~+C2cos (Kh/2)])0 . (2.11)

Evidently, in (2.11) co is bounded for all K's. Thus the
high K content is completely misrepresented.

Resolution of this somehow esoteric case is more com-
plicated because So &O~y2&0 [see Eq. (2.5c)] making
our expansion in rational functions "as is" invalid. To
see how to resolve this difficulty we expand the right-
hand side of (2.11) as follows:

co =(C +C )K —(C +4C )h K /12+0(K h )

(2.12a)

(Cf+C2)K +0(K'h') .
1+y p(Kh ) /12

(2.12b)

It is clear that for y2&0 the expression in rational func-
tions cannot be terminated at the quadratic level, as was

Notice that the increase in X causes both the increase of
yN and CN. yN is the effective measure of the overall
dispersion while CN gives the effective acoustic speed. If
all C are equal, C; =—C, , Vi, then CN ——NC, and the ra-
tio

where A o
——C f +C z, A

&

———( C
& +4C 2 )h /12, [compare

with Eq. (2.12a)] and A z
———(C f + 16C2 )h /360. (In

Ref. 6 it was assumed that C1 ——1 and C2 ———0.4. Thus
Ao ——0.6, A

&
——0.05h, and Az ——0.015h .) The result-

ing differential equation

V„=[T&(y, )+T2(y. )1.—A iy.... A2
yxxxxtt

Mp

(2.12c)

has an additional, sixth-order term.
This case will not be persued further. It was brought

forth mainly to illuminate the necessity of a careful ex-
amination of the relations between the discrete and the
quasicontinuous level.

B. Inhomogeneous lattice

m„y„=K„+&[(y„+&

—y„)/h

+A. +i(y. +i —y. ) +'/h"+'I

K„[(y„—y„~)/h—+ A„(y„—y„~) +'/h +'],
(2.13)

m„and y„are the mass of the nth particle and its dis-
placement from equilibrium, respectively. A „measures
the relative strength of the anharmonic force acting on
the nth particle and cu is a positive constant. We assume
that the variable parameters are expandable as follows:

m m m
K = K +h K +0(h ).
A n+1 A n A n

(2.14)

The slowness of variation of our parameters will be ex-
plicitly introduced as

p(x)=m/h =p [1+hM(x)], M =0(1)
K =K [1+h'+ S(x)], S=0(1), a=const

A =A [h +h'+ a(x)], a =0(1),
(2.15)

where p, K, and A are constants. We now expand in
the usual fashion, act with the operator I.z ', drop the
index n, and obtain up to 0 (h )

In this section we derive the equations governing the
propagation of waves along one-dimensional inhomo-
geneous lattice. It will be assumed that the variation of
the parameters is of the order of the variation due to the
discreteness. We start with the one-neighbor-interaction
case. Generalization to N interacting neighbors will fol-
low. It is also convenient to start with a concrete poten-
tial. We take
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p(x )y« ——IK (x )[ 1+3 (x )y„]y„I „
h p(x) h+ y„„+ K (S,y, ) . (2.16a)

12 " 2

Clearly, if a & 0, the last term in (2.16a) may be dropped.
But if a=O, inhomogeneity causes the explicit appear-
ance of an additional term that disappears only in the
homogeneous case. Thus, for a=0 we may write (2.16a)
as

%%
~v

n-I)
%F0d +0'

KA' - ~pe yy
(m, n+ i)

/

p(x)y« —— K (x) 1+—(lnK), + A (x)y" y„
h

2

h p(x)+
12 yxxi~ (2.16b)

(m+I, n)

Clearly, inhomogeneity and discreteness combined modi-
fy the effective tension of the lattice. Now from Eqs.
(2.16) generalization to an arbitrary weakly anharmonic
tension T is obvious. It is easy to generalize formula
(2.16b) to the case of N interacting neighbors. We ob-
tain (m-l, n) (m-l, n)

N

R (x)y« ——g T, (y )+—(c, )„y„
j=1

j X X

+R(x) y. „,12

X

(2.17)

FIG. 2. (a) A 2D lattice in the (x,y) plane. The lattice is as-
sumed to vibrate in direction perpendicular to its planar posi-
tion. (b) Perpendicular displacement of a typical (m, n) mass
point from its equilibrium position.

where

R (x)=p/p =1+hM(x),

cj =KJ/p =[1+hSJ(x)](c&), (c, ) =K& /p

Tj(y„)=c,y„+h 'f (y„), co, &0

and y)v similarly to (2.10a) is given as

(2.18b)

(2.18c)

We study each part of the forces separately,

F

1=+ T1+K111
COSa „+1

(3.2)

N

y)v ——g j I3, , P, =(c ) /c)v, c)v ——g (c ) . (2.18d)
j=1 j=I

A nonregularized version of Eqs. (2.16), with a random
inhomogeneity, was presented in Ref. 7.

where T1 is the tension of the springs in equilibrium in y
direction of the originally prestretched lattice, K1 is
their elastic constant, and a is the local angle between
the lattice and the y axis. Assuming a to be small we
have up to third order in a

III. 2D LATTICE: THE CASE
OF TRANSVERSE VIBRATIONS

T1 K1l1 —T1F „+)——+ + (bZ +)) hZ +),
2l1

(3.3a)

A. Analysis

Consider a 2D rectangular lattice of mass points as
shown on Fig. 2(a). We assume that the lattice is free to
execute a small but finite motion in a transverse (i.e., z)
direction to its initial position in the x-y plane. Consider
a balance of forces of a typical mass element of the lat-
tice located at the (m, n) site of the lattice as shown in
Fig. 2(b). We have

where

hZ„g) =+(Z „+,—Z „) .

Similarly in the x direction we have

r

T2 K2l2 —T2
+i „=+ + 3

(bZ +i) bZ +), (3.3b)
2l2

where
d2

m Z „=[(F +i„+F,„)dt2
AZ +i =+(Z g) „—Z „), (3.4)

+(F „,+F „+,)].e, . (3.1)
and T2 and E2 are the equilibrium tension and elastic
constant, respectively, in the x direction. Thus
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1
m Z= +Hi(Z „+i—Z „) (Z „+i—Z „)—

1

Tl
+Hi(Z „—Z „ i) (Z „—Z „ i)

1

T2
+Xi(Z +, „—Z „) (Z +i „—Z „)—

2

T2
+Aq(Z „—Z i„) (Z „—Z, „),

2
(3.5)

where

A =
1

K;I; —T;
7 L =172

2l;

In the important subcase of an isotropic lattice, the last
equation simplifies somehow and we have (C =Ci ——Cz,
1 =t, =1~)

Expanding Z +1 „and Z „+1 around Z „we obtain

B Zm B Z
2

Bz
2

—Ly 2 Cl+~ 1
Bt By By

B Zmn+L, C22+O-2
Bx

BZm n

Bx
(3.6)

where

K;l; T;l;
2 P7l m

(3.7)

and

l, B2 2 B
Ly ——1+ + I + i ~ ~

12 By2 6! By4

l2 B2 2 B
2 6t B 4

(3.8)

As in the one-dimensi. onal case, a direct use of L and
Ly renders the problem ill posed. Exploiting the as-
sumption of weak nonlinearity of the system, we invert
both L~ and Ly and note that

Lg (L Ly) L L L L

B2Z l BZ=div[(C +o
~

VZ
~

)VZ]+ V
t2 12

B4Z

Bx 'By'
l BZ

144 Bx2By2Bt2
(3.1 1)

B2Z j' 2 B2Z
=div[(C +cr

~

VZ
~

VZ]+ V
Bt 12 Bt2

(3.12)

Since the main impact of the neglected terms is disper-
sive, e pause to compare the various dispersion rela-
tions. For (3.11) the linearized version yields

CO

C2

K '+ l 'K,'K,'/6

1+l K /12+i K K /144

K2l2/12 1 K2l2/12
(3.13)

The memory of the discrete structure is carried by Eqs.
(3.10) and (3.11) in two ways. Firstly, there is the micro-
scopic characteristic length; secondly, the last two terms
in Eqs. (3.10) and (3.11), like their discrete predecessor,
are noninvariant under infinitesimal rotation. Since the
first three terms of Eq. (3.11) have an invariant form, it
seems advantageous to drop the in variance-breaking
terms and to study

B2
— 1+1

B 2+ 2+~2
By Qy x

2
8 Z
Bx

,, B',, B' B'Z
12 By

2+ 1 +

6 4—~„1il q
——„(C)1q +C~l, )

BZ . . . , , BZ
Bx 2By2Bt 2 12 Bx By

(3.10)

(3.9)

The last retained operator term, though forma11y of
higher order, is of mixed nature and its use does not
necessitate an imposition of additional boundary condi-
tions beyond what is required by the lower-order terms.
As we shall see, this term will be needed to derive a
model consistent with its discrete predecessor. Now act-
ing with L~ ' on Eq. (3.6) and denoting Z=Z „, we
have

while for (3.12) we have

2 K K =K +Ky.
C 1+l K /12

(3.14)

Like in the 10 case, we compare these results with the
linearized discrete version. For the discrete isotropic
case we have

2
=—[sin (K„l/2)+sin (K~l/2)] (3.15)

K Ky +O(K') . (3.16)
1+K 1 /12 I+Kyl /12

Comparing (3.13) with (3.16) we see that to a needed ac-
curacy Eq. (3.11) indeed reproduces faithfully the disper-
sive effects due to the discreteness. While Eq. (3.12) is
slightly less accurate [compare (3.14) with (3.13)] it
varies meaningfully from (3.11) only when both K and
Ky are very large, a wavelength domain in which we do
not expect anyway a great accuracy from a quasicon-
tinuum theory. In lieu of its simplicity Eq. (3.12) seems
more amenable to analysis than Eq. (3.11). We shall
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therefore adopt (3.12) as the quasicontinuous model of
the lattice. In passing, we note that to obtain a proper
dispersive balance both (or none) of the E„E~ terms in
(3.13) are needed. That is why the fourth-order term in
the expansion of L, z

' was originally retained; it was
needed to balance comparable terms coming from the
action of I-& ' on I.~ and L, respectively.

Making Eq. (3.12) our prime object of interest we note
that it is derivable from a Lagrangian density

C2 $2
/Vz f' ——/Vz/'+ /Vz, f'.

(3.17)

B. A weakly-dependent 2D system

q=Iy/C (3.22a)

and assume that Z =0(l) or alternatively o =I cr L. et
also

I t
s =x —Ct and

2C
(3.22b)

We consider the intermediary case between the dy-
namics of 1D and 2D lattices, wherein the changes in
the, say, y direction may be assumed to be slow. We in-
troduce

Multiplying Eq. (3.12) by 1, t, Z„VZ, and Zs, respec-
tively, and integrating by parts we have

Z,dQ=I„J Z dQ=I, t+I, ,
an an

82Z a ez az 02Z 1 e4Z
+ o + + =0;

a7.9$ Bs Bs as ()q 12 ()s

(3.23)

Z2+ C2 PZ 2

an 2 3

~
VZ, (

dQ=I3, (3.18b)

in terms of A =B,Z we have

a B~ a, 1 O'W
, =0, (3.24)

12

J VZ Z, — VZ, dQ=I4,
an ' 12

(3.18c)

I2
Zg Z, — V Z, dQ=I5,

12
(3.18d)

where

I2 —— Z x,y, t =0 dQ, Z& —=xZ —yZ„,
an

and it is assumed that the contribution of surface in-
tegrals has vanished. The first and the third constants of
motion have a clear physical meaning; the first
represents the conservation of linear momentum and the
third, the conservation of energy. No further conserva-
tion laws are known to us at this time.

Note that Eq. (3.12) supports a one-dimensional trav-
eling wave. Let

which is the cubic version of the (quadratic)
Kadomtsev-Petviashvili (KP) equation. Clearly, if the
slow variation in the y direction is completely
suppressed, Eq. (3.24) becomes the modified KdV equa-
tion which describes transverse vibration of a 1D lattice.
Unlike the KP equation, Eq. (3.24) does not seem to be
exactly integrable. Further study is needed to assess its
properties.

In addition to its nonintegrability (integrability is,
after all, the main asset of the KP equation) the modified
KP, Eq. (3.24), like the KP itself, for high K's, poorly
approximates the original system. Thus we reapply the
procedure used for the regu1arization of the KdV equa-
tion. To this end we use Eq. (3.22a) in (3.6) to obtain up
to O(l )

Z„=L„(C +o.z„)z„„+IZyy

or

(I,.-'"a, —Ca„)(L.„-'"a,+Ca„)Z =I2(V Z2Z„„+Z„),
(=K r —Q((K~ )t,

then (3.12) yields [R =Z'(g)]
j' 2

I2t2IgI» +(~2C2 II2)~ +~It 4g 3 0
12

which has a solitary-wave solution

(3.19)

(3.20)

and only the isotropic case is considered. Since the
right-hand side of the last expression is O(l ), we as-
sume that

L,.-'"a, =+Ca.
to obtain after proper substitution of this approximation
and U=Z

R =+ S sech S K.r —S t+roK

and

5 2=0—K2C2&0

is a constant.

ro ——const

(3.21)

E'(X 3 i 6C
12

a=l /2C (3.25)

which is the desired equation of motion. The + ( —)

sign refers to propagation to the right (left). It is Eq.
(3.25) that should be used to study the one-sided propa-
gation of waves in a weakly 2D system.
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+y(Z; )+i —Z;, ) + Vii[1 —cos(2m.x;, )]I .

Vo is the amplitude of the periodic potential and y is the
anisotropic parameter. As pointed by us for the one-
dimensional case there is no physical reason why the
anharmonic part of the interparticle potential should be
neglected. Dift'erently stated, motion due to the sub-
strate potential will evoke a nonharmonic part of the in-
terparticle potential. This neglect appears to be rather a
matter of habit than reason. A detailed derivation for
the 1D system with arbitrary periodic and interparticle
potentials was given in Ref. 2. Using the results of Sec.
III A we generalize the harmonic (SG) 2D system to a
2D weakly nonharmonic system with an arbitrary sub-
strate potential. Combining the results of Ref. 2 and
Sec. III A we obtain for the rectangular lattice [c.f. Eq.
(3.12)]

T

a'z = l2

Bt
=div C'+~~ VZ ~' — V'(Z) VZ

12

l 23Z+ V(Z)+ V'

12
(3.26)

where V(Z) is an arbitrary periodic function.
One observes the appearance of two new terms as

compared with the harmonic (SG) case. The first term
which modifies the effective tension by —l V'(Z)/12
prevents (3.26) from being derivable from a Lagrangian.
Since V is a bounded function this term is always smal1
compared with the linear part, and unlike the anhar-
monic part o

~

Vz i, its contribution to the effective
speed of sound can never become important. Hence-
forth, it will be neglected. Note, however, that with
neglect of this term, discreteness will have an impact
only on the dynamics of the systems; the equilibrium is
that of the continuum. Now the last term in (3.26) is
new in the SG context. Whether the periodic substrate
potential is present or not, once the anharmonic forces
have been included, the system will proceed to catas-
trophe (unbounded growth of gradients, loss of smooth-

I

C. Substrate potential

Recently, the two-dimensional Sine-Gordon (SG) sys-
tern has been extensively studied in connection with
wide applicability to realistic physical systems such as an
adsorbed monolayer. A typical Hamiltonian adopted
for such studies is'

H =—,
' g IZ, +(Z;+, , —Z;, )'

ness, and thus a solution that ceases to exist in the classi-
cal sense) unless counteracted by dispersion induced by
the discreteness. In the standard (SG) formulation
nonharmonic interparticle processes are totally excluded,
thus one can proceed to continuum. %'hile e6'ects due to
discreteness are known to modify the continuum theory,
this theory in the harmonic case can stand on its own, as
is. The addition of nonharmonic forces, even if small,
dramatically changes this picture. One cannot proceed
to continuum directly because the periodic potential is
incapable of arresting the formation of singularities. It
is here that discreteness becomes essential. In a way, in
Eq. (3.26) a balance is created between two pairs of
forces; the harmonic forces balance the periodic force V,
while the anharmonic part is balanced by the dispersion.
This competition suggests the existence of a far richer
structure than in the harmonic SG case.

IV. WAVES IN A THREE-DIMENSIONAL LA'l i'ICE

In this section we will be concerned with deriving the
equations of motion governing the propagation of distur-
bances in a face-centered-cubic (fcc) lattice in close-to-
continuum conditions. In the choice of the speci6c pa-
rarneters we follow the work of Batteh and Powell that
assumed the atoms of the lattice to interact via a
Morse-type interatomic potential. The part of their
work that is concerned with the derivation of equations
of motion in near-to-continuum conditions su6'ers from
the usual shortcoming caused by the direct expansion in
the discreteness parameter. We stress again that while
such equations can be used to calculate solitary waves
their equations cannot be used to study the dynamics or
interaction of such waves.

Before presenting the resulting regularized equations,
we summarize the assumptions leading to their deriva-
tion: (a) Only nearest-neighbor interactions are includ-
ed, (b) the fcc lattice is unbounded in the z direction and
is periodic in the x and y directions, and (c) we will be
concerned only with planar oscillations; each atom in a
plane normal to the z direction will be assumed to have
the same velocity and displacement. The velocities and
displacements have a y component (transverse) and a z
component (longitudinal), but for simplicity, the x com-
ponents will be set equal to zero. Now let S~ stand for
the displacement of plane K from its equilibrium posi-
tion. Noting that each point interacts with 12 neigh-
bors, and expanding the discrete equations of motion
with the Morse potential through second order in S, we
have (for more details see Ref. 5 pp. 1403 and 1404)

(Ss )y ——4R I(Sti+i+Ssc —i
—2$ir )i

+(1—3R)[(Sir+i —Sir)~(Sir+i —s& ), —(Sir i —Stt)~(Sti i
—Sir), ]I, (4. la)

(Ss ), =SR I(Sir+i+Sir i
—2S~ ), + —,'(1 —R)[(S~+,—Sir ), —(Sir i

—Sir ), ]

+—,'(1 —3R)[(Ss+i—Sir )y
—(Sir, —Ss )i, ]I (4.1b)
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In Eqs. (4.1) the subscripts y and z denote the com-
ponents of the displacement in the y and z directions, re-
spectively, and R is a dimensionless parameter represent-
ing the degree of nonlinearity in the Morse potential.
Before proceeding to the expansion we note that Eq.
(4.1) has been spatially normalized with respect to the
cube edge of the cell a p. Define (B&~B,)

to obtain

a(S ), a(S ),
Bz Bz

(4.2)

0 U 1 8 U
( U ~2bp UV)+

Bt Bz 12 Bz Bt

8 V (2V+bi V +bpU )+Bt' Bz' z'c)t'

(4.3)

Here t is a dimensionless time normalized by
2R (m/D)'r ap, where m is the atomic mass and D is
the dissociation energy of a single, isolated atom pair
and

bp ——(1 —3R)/2, bi ——3(1—R) . (4.4)

In terms of the original displacements Q=S~ and Q=S,
(with the index K dropped) Eq. (4.3) is derivable from
Lagrangian density (here the index letter refers to partial
differentiation)

2
—(P, )'+(g, )'+bp(P, )'tt, + (f, )'

+ —,', [(P„)'+(1t„)], (4.5)

which, as expected, reveals the existence of an energy in-
tegral. A number of other conservation laws are also
available.

In passing we note that, while at a first glance it seems
that as far as traveling waves are concerned both the un-
regularized and regularized Eq. (4.3) are equivalent,
there is a subtle difference between the two systems.
This has to do with the very different way that the width
of the solitary wave scales with its amplitude. While the
width of the solitary wave which originates from the
nonregularized equations (exactly like in the KdV case)
is inversely proportional to its amplitude, in the present
theory the width of a large-amplitude solitary wave ap-

pears to be independent of its amplitude. Further study
of Eqs. (4.3) is on its way and will be reported in a future
publication.

V. SUMMARY

This paper was concerned with the problem of how to
describe the dynamics of a dense lattice. DifFerently
stated, our aim was to exploit the proximity to continu-
um while preserving the essential features of the discrete
system. This close-to-infinity domain is exactly the op-
posite domain of the few-particle lattice studied by
means of dynamical systems techniques.

The idea of how to regularize the expansion around
the discrete parameter / as outlined in the Introduction
was then applied to more-complex configurations, each
of which necessitates the use of a variation on the origi-
nal theme. Each of the new evolution equations derived
will have to be studied separately. From the point of
view of analysis each of these equations is a convenient
vehicle to study the dynamics of a dense lattice. This is
to be contrasted with the ill-posed equations derived in
previous work by using the direct expansion. The only
use made of these ill-posed equations (apart of the singu-
lar case of the quadratic Boussinesq equation which is
exactly integrable" ) was to calculate a solitary wave.

We also mention here the Frankel-Kontorova problem
in two dimensions. If nonharrnonic interparticle forces
are included, instead of the Sine-Gordon equation, one
derives Eq. (3.22) in which dispersion plays a crucial role
in arresting the formation of shock waves into which the
system is propelled by the nonharmonic forces.

The method used in this work could further be applied
to study (a) more-complex multidimensional lattices and
(b) semiclassical systems which have a coherent state
(e.g. , Ref. 12 which deals with magnetic chains). In both
classes of problems the behavior of a dense system is of
great interest and importance.
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