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Modified method of variational calculations of Wannier functions:
The Wannier functions for d bands of Cu and paramagnetic Ni
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The method of the direct variational calculation of the Wannier functions consisting of the vari-
ation of the energy functional with respect to the trial functions in the region surrounding the lat-
tice site on which the functions are centered, and with respect to parameters describing the ex-
ponential tails of the trial functions for the remaining volume of the crystal is generalized for the
case of composite bands. The calculations are performed for d bands of copper and paramagnetic
nickel.

INTRODUCTION

The calculations of Wannier functions are still far less
developed than the calculations of Bloch functions, par-
ticularly for three-dimensional crystals. The direct cal-
culations of Wannier functions for metallic hydrogen, '

for semiconductors, and for thallous halides are the
only calculations for three-dimensional crystals based on
the variational principle satisfied by these functions.
The Wannier functions for periodic crystals can be, in
principle, obtained by the Fourier transformation of the
Bloch functions. However, the choice of an arbitrary
phase in Bloch functions makes the transformation
difficult ' and, moreover, this method cannot be used if
the translational symmetry of the system is broken. On
the other hand, the method of variationa1 calculation of
Wannier functions can directly provide interaction (hop-
ping) integrals between different orbitals localized on
difT'erent lattice sites needed in various approximate cal-
culations, and can be easily generalized for a crystal with
the surface and a crystal containing an impurity. "

The ca1culations reported in the present paper are the
first direct calculations of the Wannier functions for the
d band of transition metals. The method used in the
present work is the method applied before to the crystal
with Mathieu potential' generalized for the composite
band. The main approximation introduced consists in
neglecting the s-d hybridization. This approximation
simplifies the calculation, but the method can be easily
generalized to give the full description of s-d composite
bands of transition metals. In spite of this approxima-
tion, the results obtained give some insight into relations
between various energy matrix elements calculated for
d-band Wannier functions and allow us to estimate the
validity of two-center approximation in the calculations
of these matrix elements. The interaction energy in-
tegrals can be compared with the results of the previous
approximate calculations and with the energy matrix ele-
ments obtained by the -linear combination of atomic or-
bitals (LCAO) model Hamiltonian method. '

This paper is arranged in the following way. The
method of the calculation is described in the following
section. Section III gives the results of calculations for

copper and nickel, the comparison with the previous re-
sults, and its discussion. Section IV contains con-
clusions.

II. THE METHOD OF CALCULATIONS
OF %'ANNIER FUNCTIONS
FOR COMPOSITE BANDS

A. The basic equations

The method used in the present paper to obtain the
Wannier functions for the d band of transition metals is
the modified variational method' generalized for the
composite band. According to Kohn's suggestion we
seek for the set of Wannier functions a L which mini-
mizes the energy functional for the composite band,

M
s(a 1,L a2, L aM, L ) y (a,L (r) ~a, L (r) )

(2. 1)

where H is the Hamiltonian of the system, a„L (r) is the

Wannier function localized on the Lo=(0, 0,0) lattice
site, and M is the number of Wannier functions belong-
ing to the composite band. The Wannier functions are
in turn represented in the form of the linear combination
of the trial functions,

(2.2)
ml, Ll

where f t (r) =f (r —L) is the trial function of the
correct symmetry localized on the lattice site L and the
coefficients G 'L L are chosen so that the Wannier

functions form the orthonormal set. We follow the or-
thogonalization procedure suggested by Lowdin to ob-
tain G
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where

N =(f L(r) f t(r))

and

(2.4)

S,L, ,L, = (f,L,(r),f,t.,(r) )(1—5,„,5t.,L, ) .

(2.5}

Now the energy functional can be expressed in terms of
trial functions,

E( If~ L ) ) = g N~ 'H~ Lo ~ i.o
— g N~ 'N~ 'H~ L,,~,LS~

~
L ~ Lo

m, mI, L

—1 —1 —1

m m m2 ~mLom &L m ]L& m&L m&L2mLO
m, m l, m&, L&, L&

where

H L t ——(f „(r),Bf L (r)),

(2.6)

(2.7)

and in the derivation of Eq. (2.6) we have made use of the Hermicity of the Hamiltonian and of the fact that the trial
functions are chosen to be real.

Equation (2.6), even truncated after the first three terms, is very difficult to evaluate because of the presence of mul-
tiple sums over lattice sites. However, we can make use of the fact that all matrix elements 0 L m, L and S
can be expressed in terms of the set of independent matrix elements ' and the number of the latter is much less than
the number of the former. Thus we can reduce Eq. (2.6) to the following form:

E(If~ t, I)= gd~N„'H„L „ i —QNJ A~H~SJ+ gN„'H„L, „L,gN A S

+ g N; 'X) 'Nk 'B,jkH;S, Sk —. .

I,J, k

(2.8)

B=f'+ g V(r —L), (2.9)

where f' is the kinetic energy operator and V(r —L) is
the potential localized on the L lattice site, we will

where d is the order of the representation which is
spanned by the set of functions If„L I, f„L is one of
the functions belonging to the basis of the representation
a, Hj and SJ are the independent matrix elements of the
Hamiltonian and overlap matrices, respectively,
Nj=N' X' where mj and mJ' denote the Pair of trial

j
functions involved in the matrix element Hj oI Sj the
coefficients Aj, AJ, and B; J k are the coe%cients in-
dependent of the form of trial functions which can be
calculated only once for a given band and a given struc-
ture of the lattice (see Appendix A), and the last sum in
Eq. (2.8) does not include the matrix elements of the
Hamiltonian between the trial functions localized on the
same lattice site.

The full (not truncated) expression (2.8) is the exact
expression for the energy of the system. The calculation
of E(f} requires, however, the following approximations
to be introduced: (i) the number of terms in Eq. (2.8)
must be finite, (ii) the number of Wannier functions be-
longing to the composite band must be defined, and (iii)
the infinite summations over i,j,k, . . . must be truncated
(the interactions between only a finite number of neigh-
bors in the lattice can be taken into account). In the
present work we neglect all terms not written in the ex-
pansion (2.8) and the s-d hybridization assuming M to be
equal to S for the composite d band. Assuming the
Hamiltonian to be of the form

I

neglect all contributions from the integrals containing
the potential term localized on the lattice site other than
the lattice site on which at least one of the trial func-
tions is localized. All calculations of the energy matrix
elements show that such contributions are considerably
less than the matrix elements calculated in the two-
center approximation (or in the one-center approxima-
tion in the case when both functions are localized on the
same lattice site). Beside that, all such contributions
neglected at this stage of calculations can be included
into the final calculation of the energy matrix elements
between the Wannier functions. Assuming further that
the trial functions have a common radial part and differ
only in the dependence on angle variables, and neglect-
ing all interaction matrix elements except for those for
the nearest neighbors and the second nearest neighbors,
we can reduce Eq. (2.8) to the following form:

12 12

&(f)=5Ni Hi —Q Nj HJSJ+Ni 'Hi g N A S~
J =3 J =3

12

+ g N; 'NJ 'Nk 'B(jkH;SJSk .
i j,k =3

(2.10)

Table I explains how H1, S&, and matrix elements of
other operators appearing in the paper are related to the
independent matrix elements between the functions of a
given symmetry localized on two, in general, different
lattice sites (the relations between H; and other nota-
tions used for interaction matrix elements are given in
Appendix B). It should be mentioned that Hi H2 in-—
the approximation in which the energy functional is cal-
culated.
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f g(r)=f (r —L)=rt 'Rt(r)Y t(8, p),
where rL ——

i
r —L i, RL (r) =R (

~

r —L
~

),

(2. 1 1)

The energy functional (2. 10) is to be minimized in
respect to the trial functions f L(r). As in Ref. 16 we
assume that

TABLE I. The relations between M; and the independent
matrix elements of the operator Q for the functions of the d
symmetry. Q denotes any operator having the full symmetry
of the lattice. The functions in the first column of the table are
localized on the Lo ——(0,0,0) lattice site, the functions in the
first row of the table are localized on the L lattice site.

&15 yz
2&7r r'
&1S zx
2&7r r'
&15 xy

Ymt. (~ V»=.
2 77 r
&15 x —y
4&m r'
&5 3z' —r'

4&Fr r'

(2.12)
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RL(r; [P; I ), r„)r o

(2.13)

and Y L is the function Y L (8,g) centered on the L
lattice site. We further assume that the variations in the
function f L are confined to variations in the function
RL(r) and the function RL(r) is assumed to be of the
form

L=(0,0,2)

yz
ZX

xy
x —y

2 2

3z —r2 2

yZ ZX Xy

Mio

x —y
2 2

Mil

3z 2 2

M(2

where R L(r; I p; I ) is the analytical function dependent
on the set of variational parameters. The radius r0 of
the sphere in which RL(r) is an arbitrary variational
function will be chosen to be equal to the muffin-tin ra-
dius r of the potential. In the present work the analyt-
ical part of the function Rz is assumed to be of the form
of the Slater orbital,

RL(r, [P, I )=Porte (2.14)

Now, following the method described in Ref. 16, the
condition for the minimum of the functional (2.10) can
be written in the form of the following set of equations:

+ V(r)+A, R(r)=X(r),1 d 1 2~3
2dr 2 r

(2.15)

12

AN~+Hi —— 5+N g A, S)
J =3

12

N ' g A, (H&~SJ+H&Sj~) 2N H, g —A, SJSi~
J =3 J =3

12Ng B;,kSJ(HpS—k+2H;Sp)
ij, k =3

(2.16)

where

12

X(r)= 5+N g A, S)~

J =3 J =3

12

A [S H (r)+HJS, (r) J 2N Ht g AiS—&SJ(r)
J =3

12Ng B; i I, S&[SkH;(r—)+2H;Sk(r)]
i j,k =3

N= f R (r)dr,
0

H„(r)= f diur Y„L,(d, y)8rL 'Y„L (&,y)RL (r),

S„(r)=f dco rY& L (6,&p)rL 'Y, L (P, y)RL (r),

(2.17)

(2.18)

(2.19)

(2.20)
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H~= drR rH„r
"p

Sg= f dr R (r)S„(r),
rp

X~= dr R r
rp

(2.21)

(2.22)

(2.23)

The subscripts of the functions appearing in the integrand in Eqs. (2.19) and (2.20) are ascribed to n according to
Table I and the integration over dc@ denotes the integration over the full solid angle. In the derivation of Eqs. (2.15)
and (2.16) we have assumed that the potential has the spherical symmetry in the muffin-tin sphere, i.e.,
V(r —L)= V(&i, ).

Equations (2.15) and (2.16) together with the boundary conditions,

R L ( r o ) =R i ( r0, IP& 'l ) & (2.24)

dRi (r)
~

dR (ri. IP; I )
Ri '(rc) =RL'(ro, IP;I)

rL =rp drL rL ——rp
(2.25)

fully define the trial functions, and the method of their solution will be outlined in the following subsection.
Having calculated the trial functions we can calculate the matrix elements of 6 ' and the Wannier functions lo-

calized on an arbitrary lattice site. If we take into account only contributions to the Wannier functions from the trial
functions localized on the lattice sites up to (and including) the second nearest neighbors, it is sufficient to calculate 12
independent matrix elements,

Gp 'L, r., =5&, 5L, r.,——'S„+—' g B L,, i. (i j )S;S
l) J

——„gC„ i, , i (i&g&k)S&SJSk+ —„, g D„L, L (i&J&k&l)S;SJSkSi &

i,j,k i,j,k, l
(2.26)

where the trial functions are assumed to be normalized
and the coefficients B„ i „„(i,j ), C„ i, i (i,j,k), and

D„ i. , i (i,j,k, l) can be calculated once for a given
structure of the lattice (see Appendix A). Similarly,
there are 12 independent matrix elements of the Hamil-
tonian calculated in the basis of the Wannier functions,

12

C„L,, L(i,g, k)G; '
HJGk '

i j,k =1
(2.27)

where the superscript a in the symbol H' means that the
matrix elements of the Hamiltonian are calculated in the
Wannier function basis.

It should be mentioned that H cease to fulfill the re-
lations valid in two-center approximation even if H; are
calculated in two-center approximation. It is connected
with the fact that the Wannier functions contain contri-
butions from the trial functions localized on various lat-
tice sites.

B. Numerical details

The basic equations for calculating the trial functions,
Eqs. (2.15) and (2.16) of the preceding subsection, have
been solved by the iterative method. The iterative pro-
cedure consists of the following steps.

(i) The first step of the calculation. The radial part of
the trial functions is assumed to be given (for example in
the form of the Slater orbital for the whole crystal) or is
taken from the preceding iteration. All matrix elements
H~ and S; and the functions H„(r) and S„(r) are then

calculated. The method described in Ref. 36 is used to
get the expansions of the trial functions about a dis-
placed center,

where Fl are the spherical harmonics, 8, $ and 8,p are
the coordinates in the axis systems with L and Lo as
their origins, respectively, a~ denotes the radial func-
tions in the new axis system displaced by a distance
b =

~

L—Lo ~, the z axis in both axis systems is directed
along the vector L—Lo, and n denotes the exponent of r
in the Slater orbital. The method of calculating aI is
given in Ref. 36 and in order to get the expansion of the
trial functions about a displaced center it is sufhcient to
express the angular parts of the trial functions in terms
of spherical harmonics quantized in respect to the axis
joining two lattice sites on which the trial functions are
localized. It should be mentioned that aI is the analyti-
cal function of r because the trial functions are analytical
functions of rL outside the muon-tin sphere. The ma-
trix elements of the Hamiltonian and overlap matrices
are calculated first for the trial functions assumed in the
form of Slater orbitals in the whole region and then the
contributions from the mu%n-tin spheres surrounding
two centers in two-center integrals are calculated.

The calculation of the inhomogenous part of Eq. (2.15)
and the coefficients of Hp and Sp in Eq. (2.16) complete
the first step of the computation.

(ii) The solution of the differential equation. The solu-
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tion of Eq. (2.15) is performed by Numerov's method
starting from r =0 and from the muftin-tin radius r
Herman and Skillman's mesh for integration is adopted
with a small correction resulting from the assumption
that the region [O, r ] is divided on an integer number of
blocks. The first two values of R (r) needed to start the
solution from r =0 are obtained by two-term expansion
of R into the power series,

R (r)= Ar (1+Cir) . (2.29)

The constant C& is obtained from the equation relating
the coefticients at the lowest powers of r resulting from
Eq. (2.15). The constant A and the eigenvalue A, are
used to match the solutions obtained from the integra-
tion from r =0 and r and to fulfill the normalization
condition for R (r). The first two values for the back-
ward integration are supplied by the values of R (r, IP; I )

for r =r and r =r —Ar, where br is the step of the in-
tegration in the last block of the integration mesh.

(iii) The calculation of P, . Equation (2.16) is used as

the equation determining Pi. The Newton-Raphson
method is used to solve Eq. (2.16). The new trial func-
tions in which Po is adjusted to fulfill the continuity con-
dition R (r )=R (r IP; I ) are then renormalized and are
used as the initial trial functions in step (i) of the compu-
tations.

Steps (i)—(iii) are repeated until the eigenvalues
and the values of Pi obtained in the current and

preceding iterations di6'er less than assumed criteria of
accuracy (in the present calculation the criterion for the
eigenvalue was il i ——(A.; —I,; i )/A, ; =2.5 && 10 and
g2 ——(P&; —P, ;,)/P&; ——2.5X10, where A, ; and P&;
are the values of A, and P& obtained in ith iteration.

The matrix elements of the Hamiltonian occurring in
Eqs. (2.15) and (2.16) were calculated in two-center ap-
proximation. However, Eq. (2.28) applied to two trial
functions a11ows us to calculate the integrals of the form

I„,(L„L2,L&)= f dr V(r —Li)f„L,(r)f, „,(r) .

(2.30)

The integrals of this form were calculated to obtain
three-center contributions to the matrix elements calcu-
lated in two-center approximation.

III. THE RESULTS AND DISCUSSION

The calculations have been performed for d bands of
copper and paramagnetic nickel. The potentials were
taken from Ref. 38 and the values of the potentials need-
ed at the points of the integration mesh were obtained
by the interpolation.

The resulting trial functions allow us to directly calcu-
late the overlap matrix S and the Hamiltonian matrix H.
The number of terms in the expansion of G ' needed

TABLE II. The results obtained for the d band of copper (all values in this and following tables are
given in rydbergs). The last column of the table contains the Slater and Koster notation for the in-

dependent matrix elements of the Hamiltonian.

Two-center approx.
H; H

Three-center approx.
H; H'

Slater's
notation

1

2

3

5

6
7

8
9

10
11

12

0.404 21
0.404 21

0.004 18
—0.01009

0.01109
—0.005 18

0.004 26

0.006 90
0.002 12

—0.000 29
—0.000 29
—0.004 10

0.409 14
0.408 79
0.007 52

—0.021 18
0.020 02

—0.010 12

0.009 82

0.012 61
0.003 88

—0.000 86
0.000 05

—0.005 36

0.392 41
0.397 20

0.005 00
—0.01027

0.013 26
—0.005 55

0.004 58

0.003 58
0.004 34

—0.000 40
—0.001 02
—0.005 22

0.397 01
0.402 12

0.008 21
—0.021 12

0.021 90
—0.010 37

0.009 83

0.009 18
0.006 18

—0.000 74
—0.000 63
—0.006 30

Exy, xy (000)
E 2 p (000)

Ey y ( 1 10)
E y „y(110)
E~2 2 ~2 2( 1 10)

, z,z, z 2(11o)
E 2 2(110)
E,„y,(110)
Ey, y, (002)
E y y(002)
E 2 2 2 2(002)

(dd o. ) 1

(ddo. ),„
(ddt. )1

(dd~),„
(dd5)l

(ddt)„

—0.026 71
—0.026 84
—0.027 12
—0.026 89

0.020 02
0.020 13
0.020 08

—0.005 09
—0.004 18
—0.004 59
—0.004 45
—0.004 58

—0.026 50
—0.026 80
—0.027 40
—0.026 90

0.021 90
0.017 39
0.019 65

—0.000 97
—0.004 09
—0.004 99
—0.004 69
—0.003 69
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to achieve a good accuracy in calculating the matrix ele-
ments in the Wannier function basis was tested by
checking the orthogonality of Wannier functions 1ocal-
ized on different lattice sites. It turned out that the use
of four-term expansion in (2.26) ensured that all overlap
integrals between the Wannier functions localized on
different lattice sites were less than 2X10 and the
norms of the Wannier functions differed from unity by
less than 5& 10 both for copper and nickel.

The independent matrix elements of the matrices H
and H' are listed in Tables II and III for copper and
nickel, respectively. The values of H; in the second
columns of the tables are calculated in the two-center
approximation. The differences between H; and H are
connected with the fact that the Wannier functions cease
to be one-center functions. It causes the interaction ma-
trix elements (ddcr)„(ddt. )&, and (dd5)i for the nearest
neighbors to depend on which matrix elements H are
taken for their calculation (see Appendix B). The
differences between interaction matrix elements thus ob-
tained show to what extent the two-center approxima-
tion is valid for the nearest neighbors in the case when
the matrix elements H; are calculated in the two-center
approximation. In the two-center approximation H &0

should be equal to H~&. Since they are significantly
different the conclusion is that the two-center approxi-
mation is certainly not a good approximation for the
second nearest neighbors.

The last two columns of the tables contain the matrix

elements H; and H calculated in three-center approxi-
mation. Equation (2.30) was used to calculate the main
three-center (two-center in the case of H

&
and H2) con-

tributions stemming from integrals (2.30) containing the
potential V(r —L) localized on all nearest neighbors of
both lattice sites on which the trial functions involved
are localized, and then the matrix elements H were re-
calculated. The comparison of H; calculated in two- and
three-center approximations shows ex post facto to
what extent the two-center approximation made in the
calculation of the energy functional was valid. The
differences between most matrix elements H; calculated
in these two approximations for the nearest neighbors
are small enough to justify the validity of the two-center
approximation in the calculation of the energy function-
al. The only exception for the nearest neighbors is the
difFerence in the case of Hs. The larger magnitude of
three-center contributions in this case seems to be con-
nected with space distributions of values of trial func-
tions involved, with respect to the localization of the po-
tential. Much larger relative differences between the
values of H; for the second nearest neighbors should
affect the calculation of trial functions to a lesser extent
because their contribution to the total energy is consid-
erably less than that of the nearest neighbors.

A11 conclusions derived from the comparison of the
values listed in Tables II and III seem to be, to a large
extent, independent of the main approximation (neglect-
ing s-d hybridization) made in the calculations. The hy-

TABLE III. The results obtained for the d band of paramagnetic nickel. The last column of the
table contains the Slater and Koster notation for the independent matrix elements of the Hamiltonian.

Two-center approx.
H; H'

Three-center approx.
H; H'

Slater's
notation

1

2

3
4
5

6
7

8
9

10
11

12

0.544 95
0.544 95
0.003 94

—0.008 25
0.011 27

—0.005 01
0.002 81

0.007 32
0.003 08

—0.000 47
—0.000 47
—0.005 02

0.554 49
0.554 18

0.01050
—0.028 45

0.028 80
—0.014 31

0.012 53

0.018 64
0.006 77

—0.001 82
0.000 31

—0.007 83

0.528 14
0.534 95

0.005 11
—0.008 50

0.01440
—0.005 56

0.003 28

0.002 53
0.006 32

—0.000 63
—0.001 53
—0.006 65

0.536 93
0.544 84

0.011 42
—0.028 26

0.031 36
—0.014 61

0.012 43

0.013 60
0.010 18

—0.001 48
—0.00066
—0.009 09

Exy, xy {)
E 2 p 2 2(000)

Ey, y, (110)
E y y{110)
E q 2 p p{110)

E3z —r2 3z —r (110)

E y ( 1 10)
Ey, y, (002)
E y „y(002)
E.2 2 „2,2(002)

(ddo. ))

(dd o. ),„
(dd'7l ) &

(ddt )-
(ddt

(dd5).„

—0.035 52
—0.035 69
—0.036 01
—0.035 74

0.028 80
0.029 14
0.028 97

—0.008 15
—0.006 74
—0.007 24
—0.007 07
—0.007 30

—0.035 09
—0.035 44
—0.036 14
—0.035 56

0.031 36
0.025 02
0.028 19

—0.002 19
—0.006 73
—0.007 78
—0.007 43
—0.006 03
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bridization can certainly change slightly the values of
matrix elements between d-band Wannier functions, but
the relative values of the three-center contributions
should remain qualitatively unchanged.

The best values of the interaction energies to compare
with the present results would be the matrix elements
obtained from the interpolation scheme based on the
Wannier functions ' fitted to the band structure for
the same potential as was used in the present calcula-
tions. Since such results are not available we have
chosen for the comparison three sets of results: the re-
sults given in Refs. 30 and 31 obtained from the interpo-
lation scheme based on the Wannier functions for
copper, and the results of Johnston et al. for copper
and nickel obtained by the model Hamiltonian method,
in which the model Harniltonian was represented in the
mixed basis but the band structure fitted was calculated
for the same potential as is used in the present paper.
All these results are listed in Table IV.

As could be expected, the agreement between our
values of H

&
and H2 with the values of Johnston et al.

is much better than that between ours and the remaining
two sets of results. It is easily explained by the fact that
H I and Hz are most sensitive to the choice of the poten-
tial; for example, a change of the muftin-tin zero shifts
their values in the same way while conserving the
difference between them. However, the difference be-
tween H I and H2 as well as the other matrix elements
for the nearest neighbors are closer to the results ob-

tained from the interpolation scheme based on the Wan-
nier functions than to the results of Johnston et al.
Moreover, the relative differences between matrix ele-
ments of Refs. 30 and 31 and our results are, approxi-
mately, of the same magnitude, whereas the discrepancy
between our value of H5 and that obtained in Ref. 28 is
much greater than differences between other matrix ele-
ments. The differences between our and Johnston
et al. 's results seem to indicate that the Mueller type '

of the model Harniltonian method does not give the ma-
trix elements of the Hamiltonian calculated in the basis
of symmetry-adapted and best-localized d-band Wannier
functions. It would also explain why, in particular, the
values of (ddt ) i listed in Tables II and III differ consid-
erably from the values previously quoted (see, for exam-
ple, Refs. 21 and 29). As long as the values of (ddo )i,
(ddt)i, and (dd5), are considered to be the parameters
of an interpolation scheme used to fit a band structure,
their values can be arbitrarily chosen. However, if one
wants to consider their values or the values of the matrix
elements H as the hopping integrals between the local-
ized orbitals, our results as well as the results of Refs. 30
and 31 are certainly more suitable. The approximate re-
lations ' ' derived for integrals (ddo ), (dd~), and
(dd5) seem also to be better fulfilled by the values ob-
tained from the Mueller type of the interpolation
scheme.

The agreement between our results and the results of
Refs. 30 and 31 for the second nearest neighbors is

TABLE IV. The comparison of the present results for Cu (a) and paramagnetic Ni (b) with the re-
sults obtained by the model Hamiltonian method. The results of Johnston et al. (Ref. 28) are ob-
tained for the same crystal potential as used in the present paper but by the Mueller type of interpola-
tion scheme, the results given in Refs. 30 and 31 are obtained by the interpolation schemes based on
%'annier functions but for different crystal potentials.

Present
results Ref. 28 Ref. 30 Ref. 31

H)
H2
H
H4
H)
K6
HI
H8
H9
Hio

HI2

Hi
Hp
Ha
H
Ha
H
H7
Hs

0.397 01
0.402 12
0.008 21

—0.021 12
0.021 90

—0.01037
0.009 83
0.009 18
0.006 18

—0.000 74
—0.000 63
—0.006 30

0.536 93
0.544 84
0.01142

—0.028 26
0.031 36

—0.014 61
0.012 43
0.013 60

(a) Cu
0.4230
0.4190
0.0066

—0.0215
0.0134

—0.0081
0.0104
0.0103

(b) Ni
0.5760
0.5694
0.0089

—0.0288
0.0184

—0.0108
0.0130
0.0101

—0.579 92
—0.575 70

0.006 76
—0.01966

0.018 21
—0.009 42

0.011 12
0.012 39
0.003 90

—0.000 04
0.000 60

—0.007 25

—0.630 42
—0.630 56

0.008 35
—0.01930

0.021 21
—0.011 18
—0.008 59'

0.013 20
0.003 43
0.001 58
0.000 34

—0.004 35

'The sign of K7 for Cu in Ref. 31 is probably misprinted.
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worse than that for the first eight matrix elements H .
The values of matrix elements for the second nearest
neighbors are affected to a larger extent by all approxi-
mations made in our calculations, particularly by the as-
sumption of the analytical part of the radial function in
very simple form. However, it is worth noticing that the
two-center approximation certainly ceases to be valid for
the second nearest neighbors. This should be taken into
account in interpolation schemes if the parameters
occurring in a scheme are to have a physical meaning.

M, z, z are translationally invariant and that
&U2 2

g b, ;=L—Lp .

Let us introduce the Kronecker delta

1
5+& L L

——— dp exp ip g 6, —L+LpL—Lo Q
l

(A3)

(A4)

IV. CONCLUSIONS

The calculations reported in the present paper show
that the modified variational method can give a quite
good description of d bands of transition metals even if
the s-d hybridization is neglected. The method allows us
to avoid the calculation of the Bloch functions, the itera-
tion procedure involved con verges quickly, and the
method seems to be the easiest and the quickest way to
obtain the approximate description of the d band and to
calculate the d-band Wannier functions at the same
time.

The method can be easily extended to include the s-d
hybridization. It would result in the necessity of solving
two coupled sets of equations similar to that derived for
the radial part of the d-band trial functions. The asymp-
totic form of the radial function can also be enriched
and the only limitation of the method consists in the as-
sumption that the radial and angular parts of the trial
functions can be separated.

APPENDIX A: THE CALCULATION
OF COEFFICIENTS IN THE EXPANSIONS
OF MATRIX ELEMENTS OF OPERATORS

CALCULATED IN THE WANNIER
FUNCTION BASIS

An arbitrary sum of products,

n("' = ~ M S SpoLO pL ~ poLO piLi

(A 1)

—ip. (L—Lo)
)&Sp pe 7 (A5)

where

M„„=QM„ t „ae'(' (A6)

S~ ~ =ps„„o~(,e' '. (A7)

The matrix elements Mp p and Sp p can be in turn ex-
(7 J pizpj

pressed in terms of independent matrix elements M; and
S;,

M ~
= g M(1(((((p;p(,pj )

j

S„„=QS(P((P&P(~Pj)'

(A8)

(A9)

where yi are simple linear combinations of trigonometri-
cal functions similar to those given for energy matrix
elements in Table II of Ref. 34 for the s" lattice. For ex-
ample,

M»z»z —M1 +M3(4 COSPz COSP» +4 COSPz COSPz )

+M4(4 cosp» cosp, )+M9(2 cos2p»+2 cosp, )

where, for cubic lattices, Q=(2m ) and the domains of
integrations over p„, p», and p, are [—m. , m.]. The use of
(A4) allows us to remove the restriction (A3) imposed on
the summations over 5,; in Eq. (A2) and to rewrite (Al)
in the following form:

1
II„'"L1 „L———g J dpM„„S„,„,

Ip, I

can be reduced to the following form: +M(p(2 cos2p„) (A 10)

rr'"' S ~ ~ 0 spoLO pL ~ poLO pi5& piLozp2~2 p„Lo,phn

(A2)

where 6; =L;—L; &, provided that the matrix elements

and the remaining yI are equal to zero. In this way we
can express the coeScients A I, A~, B~, i

~(zL, UL (il i2 ) C(zL, L(ilUi2 i3 ) a d D(lL, UL 1 2 3 4

appearing in this paper in terms of simple integrals of
trigonometrical functions,

1

, f dpm((p p( p2)V ((p p»p'»''
„,„, (2m)

1

3 f dP f'((P~P1 P2)f'((p&P2ii41 ) ~(2n. )
Pl zP2

(A 1 1)

(A12)
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1
i j,k g 3 J dP Pi (P&j21&P2)Vj (P&P2&P3)V k(P&P3&P1)

p p p (21T)
(A13)

1 i p.(L—Lo)
BpL,L (ll, l2)= g 3 dPPl (P&l2 P1)9'1 (P;Pl, v)e

(2~) I 2
P]

1 i p (L—Lo)
cpL, L ( 1 2 l3 ) g 3 p pl (p Oiul )'gl (p p1 1M2)&Pl (p 1122

P1 P2

1
Dplo, UI(ll&l-2&13&14) r 3 J dPV'l, (P&P&P1)V'l, (P&P1&P2)V'1, (P&P2&P3)

p p p (2w)

ip-(I= Lo)
XVl, (p P3&U)e

(A14)

(A15)

(A16)

The summation over j21 in Eq. (A12) denotes the sum-
mation over all p& belonging to the representation a so
that

(A17)

-'H4 —-'H,
2 2

(ddcr )1 —— H4 — —H7v'3

H6 &3H—2,

APPENDIX 8: NOTATIONS USED FOR THE
INDEPENDENT MATRIX ELEMENTS

OF THE HAMILTONIAN AND THE RELATIONS
BETWEEN INTERACTION INTEGRAI. S (dd q )

AND MATRIX ELEMENTS H
and

(ddt. )1 ——~

H5

H3+Hs ~

The notation used in the present paper is explained in
Table I. The relations with the notations used by Slater
and Koster, by Fletcher' which is also used in Ref. 28,
and by Mueller ' are given in Table V.

The interaction integrals (dd21) can be expressed in
terms of the independent matrix elements H in the fol-
lowing way:

H3 —H8

H'+ &3H'
(dd5)1 —— 3Ha 1Ha

6 2 4

H;+ H;.v'3

(B3)

TABLE V. Comparison of our notation and that of Slater and Koster (Ref. 34), Fletcher (Ref. 19),
and Mueller (Ref. 21).

Notation of
Ours

H)
H2

H3

H4

H5

H6

H'l

H8

H9

H)p
H'

Slater and Koster

E y y {000) Ey y (000) E (000)
E 2 2 2 2(000)=E3 2 23 2 2(000)

E, ,(110)=E„, (011)
E y y( 1 10)

2 2 2 2(110)

2( o)

E
3 2 2 ( 1 10 )

E y ( 1 10) E y y ( 101 )

Ey, y, (002)
E„ (002)

2 2 2 2(002)

2(002)

Fletcher

Ep

Eo+6
A2

A4

4(1g +g )
3 4

2/~3W,

Mueller

p)
P2

p4

P3

Ps

P7

p6

p5
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If the two-center approximation is valid, Eqs. (81), (82),
and (83) should give the same values for (ddo ), (ddt),
and (dd5), respectively. The values of the interaction in-
tegrals calculated in different ways are listed in Tables II

and III and differences between the values thus obtained
show to what extent the two-center approximation is
valid.
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