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Resonant activation of a Brownian particle out of a potential well:
Microwave-enhanced escape from the zero-voltage state of a Josephson junction
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A current-biased Josephson tunnel junction in its zero-voltage state can be modeled as a Brownian
particle in a potential well from which it can escape by thermal activation at a rate I (0). The
enhancement y=I (I )/I (0) of the escape rate has been measured in the presence of a microwave
current of amplitude I, which represents a weak, sinusoidal force driving the particle. When the
microwave frequency is varied, lny peaks approximately at the natural frequency at which the parti-
cle oscillates at the bottom of the anharmonic potential well. At higher frequencies, lny exhibits a
sharp roll-off' that steepens as the quality factor Q of the junction is increased, while at lower frequen-
cies 1ny has a long tail with a shape which is almost independent of Q. These features are qualita-
tively consistent with the theories of Ivlev and Mel'nikov and Larkin and Ovchinnikov, which we dis-
cuss. These theories however, are not able to predict analytically the behavior of lny near the peak.
To overcome this difficulty a detailed series of computer simulations has been performed. These
simulations, together with certain scaling properties of the theories, have been used to construct an
empirical formula for lny that is in qualitative agreement with the experimentally determined fre-

quency dependence of lny. The experimentally observed dependences of lny on temperature and mi-

crowave amplitude are in good quantitative agreement with predictions.

I. INTRODUCTION

This paper describes a phenomenon which we have ob-
served in a current-biased Josephson tunnel junction'
and which we have called resonant activation. This
effect combines two physical processes of long-standing
importance:

(i) The escape of a Brownian particle from a potential
well, which is a model for the decay of metastable states
in a wide variety of physical systems, and

(ii) The pumping of energy into an anharmonic oscilla-
tor, a process which is central to a large range of non-
linear effects.

In thermal activation, a Brownian particle escapes from
a potential well over a barrier [Fig. 1(a)] under the
influence of a random fluctuating force [Fig. 1(b)]. The
escape rate I is defined as the inverse of the average time
that the particle, starting at the bottom of the well, takes
to escape. In resonant activation the escape rate of the
particle is enhanced by a weak oscillating force of ampli-
tude A and frequency Qi2rr [Fig. 1(c)] superimposed on
the random force. We define the enhancement as

In this paper we confine our attention to the regime in
which the oscillatory force makes only a weak perturba-
tion on the dynamics of the Brownian particle. The oppo-
site limit in which thermal fluctuations are small com-
pared with the amplitude of the motion induced by the
oscillatory force is an altogether different situation that
has been widely studied, particularly in the case of the
Josephson junction. ' For reasons that will become clear
later, in the weak-perturbation regime it is useful to con-
sider lny as the enhancement response, rather than the ra-
tio y.

In the weak-perturbation regime of present interest one
naively expects that when Q/2m is close to the natural
frequency of oscillation in the well, energy will be
transferred to the particle with a resulting resonan t
enhancement of the escape rate. As we shall see, general-
ly speaking, this is what is observed both in experiments
and in numerical simulations. However, the potential
from which the particle escapes is anharmonic. This
anharmonicity turns out to have a profound influence on
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paratus, and in Sec. IV we present the results of a series
of experiments. In Sec. V we discuss

briefly

several
analytical models ' for resonant activation that were
stimulated by our preliminary experiments. We also
derive in this section a sum rule and the asymptotic be-
havior of the resonance for very high and very low fre-
quencies. In Sec. VI we describe extensive numerical
simulations that we have performed to study the depen-
dence of the response on microwave frequency and ampli-
tude as well as on the Q factor and temperature of the
junction. To interpret our experimental results, in Sec. VI
we also construct an empirical formula, with scaling pro-
vided by theory and a functional form verified by the nu-
merical simulations. Section VII contains a concluding
summary.

II. THE CURRENT-BIASED
JOSEPHSON JUNCTION

(c) 2'�/ 0

We analyze the Josephson junction in terms of the
resistively shunted junction model" shown in Fig. 2(a).
The junction with critical current Io and self-capacitance
C is shunted with a linear resistance R. The microwave
source is represented by a current

I (t)=I sin(Qt+P) . (2.1)

FIG. 1. (a) Potential well U(x) from which a Brownian parti-
cle escapes over barrier; (b) random force to which particle is
subjected; (c) oscillatory driving force superimposed on the ran-
dom force to activate particle resonantly out of well.

Sr (~)=2k~ T/~R (2.2)

at angular frequency cu and temperature T; kz is
Boltzmanii's constant.

When biased with a constant current I, the junction can

The Nyquist noise current Iv (t) due to the resistor has a
spectral density

the form of the resonant enhancement, which is quite
different from the Lorentzian response of a simple classi-
cal harmonic oscillator subjected to an oscillating force.
As we shall see, the resonance curve of the enhancement
response has three striking features:

(i) It is highly asymmetric, and exhibits a long tail on
the low-frequency side,

(ii) the maximum occurs at a frequency somewhat
below the natural oscillation frequency, and

(iii) the enhancement response drops steeply to zero as
the frequency is increased above the natural frequency,
the steepness becoming more pronounced as the damping
is decreased.

As we shall see from our results and from theoretical
investigations, ' these features arise from the variation
of the oscillation frequency with the energy of the particle
in the well; in contrast, the frequency of a simple harmon-
ic oscillator is, of course, independent of energy, yielding
a simple Lorentzian response curve. The understanding
of the asymmetry of the enhancement is the main objec-
tive of this paper.

In our experiment, the position of the particle corre-
sponds to the phase difference across a current-biased
Josephson tunnel junction, while the oscillating force is
provided by a small microwave current. This connection
between the junction and Brownian motion is reviewed in
Sec. II. In Sec. III we describe the experimental ap-

Q I Q IRQ R )(IR ——C

(b)
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( c) u~si"

FIG. 2. (a) Model for Josephson junction with a constant
current I and microwave current I . Tilted "washboard" poten-
tial model with (b) particle confined to a single potential well
(corresponding to the zero-voltage state of the junction), and (c)
particle running freely down the "washboard" (corresponding to
the nonzero-voltage state of the junction).
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U(5)= Uo( —s5 —cos5) . (2.3)

be modeled as a particle moving in the one-dimensional
tilted cosine potential' shown in Fig. 2(b),

co =co (1—s')'~~
Po

where co~ =(2~Io/+oC)'~ . The quality factor is

(2.8)

Here, Uo IoC——&o/2w, s =I/Io, 4o ——h/2e, h is Planck's
constant, and e is the electronic charge. The difference 6
between the phases of the superconducting order parame-
ters on the two sides of the junction corresponds to the
position of the particle. The voltage V across the junction
is related to the velocity of the particle by the Josephson
relation'

V =(0&o/2~)5 . (2.4)

0
C

2

[I~(t)+I (t)] .
C'o 5 ~) U(5) @o

2~ R 85 2~

(2.5)

We see that C plays the role of the mass of the particle,
while 1/R represents the damping. We emphasize at this
point that both C and R may contain contributions from
the bias circuitry. ' Equation (2.5) is a valid description
of the junction provided the admittance of the bias circui-
try can be represented as a capacitor in parallel with a
resistor; in that case, C and R represent the combined ca-
pacitance and resistance of the junction and bias circuitry.

By applying a bias current I slightly less than Io one
can prepare the particle in a local minimum of the tilted
cosine potential [Fig. 2(b)]. In this metastable state, under
the inhuence of the thermal and microwave currents, 6 os-
cillates about a mean value in such a way that (5) =0,
and the junction is in the zero-voltage state. Eventually,
the particle escapes from the well by passing over the top
of the barrier; we assume that kz T ~&Ace~ so that macro-
scopic quantum tunneling' of the particle through the
barrier is completely negligible. We consider here only
the case of a junction with a hysteretic I-V characteristic
(2mIoR C »&Po) in which the damping is sufficiently low
that the particle is never retrapped in another well after
escaping from the initial metastable state. In this limit,
after escaping the particle runs freely down the tilted
cosine potential ((5) &0) [Fig. 2(c)]. One monitors the
escape by observing the onset of a voltage across the junc-
tion.

To facilitate comparison of theory and experiment we
relate the parameters of the metastable, zero-voltage state
shown in Fig. 1(a) to the electrical parameters appearing
in Eq. (2.5). The barrier height is'

b, U=2Uo[(1 —s )' —s cos 's] . (2.6)

which in the limit s —+1 appropriate to the experiments
can be approximated by"

5U = (4&2/3 ) Uo( 1 —s) ~ (2.7)

The frequency co&/2m of small plasma oscillations at the
bottom of the well is"

By applying Kirchhoff's laws to the junction model and
using Eq. (2.4), we obtain the following equation of
motion:

Q =co~RC . (2.9)

In the absence of a driving microwave current (I =0),
the escape of the particle occurs via thermal activation
over the barrier at a rate

I =a (co~/2m)exp( —AU/k~ T) . (2.10)

The value of the prefactor a is close to unity. We shall
adopt the theory of Biittiker et al. ' that yields, for Q & 5,

a BHL
——4a /[(1+ aQk~ T /1. 8b, U) ' + 1] (2.11)

where a is of the order of unity. These authors found a
best fit to numerical simulations with a = 1, although
Risken and Voigtlaender' have proposed that the correct
value of a is 1.4738. . . . In this paper we require a
knowledge of the prefactor only to check our numerical
simulations in the absence of a driving force; we believe
the value of y is insensitive to small changes in the prefac-
tor.

Thus, in the absence of an oscillating driving term, the
escape rate from the zero voltage state is a function of the
parameters AU, co~, Q, and T. We turn now to an experi-
mental investigation of the effects of an oscillatory
current, which introduces two additional parameters,
namely I and 0/2~.

III. EXPERIMENTAL APPARATUS

The purpose of the experiment is to measure the escape
rate of a Josephson tunnel junction from the zero-voltage
state as a function of bias current and microwave frequen-
cy at several values of temperature and microwave power.
The experimental apparatus is shown schematically in

Fig. 3. A very important feature is the extensive radio-
frequency (rfl and microwave low-pass filtering used to
isolate the junction from room-temperature thermal noise
and external spurious parasitic noise sources. The rf
filters, which consisted of a simple RC network with a 3-
dB point of about 1 MHz, provided more than 60 dB of
attenuation from 20 to 200 MHz. However, at higher fre-
quencies the attenuation was appreciably smaller, presum-
ably because of stray impedances across the filter ele-
ments. Consequently, we developed a novel type of mi-
crowave filter, consisting of a spiral coil of insulated man-
ganin wire inside a copper tube filled with 30-pm-diam
copper powder. Since each grain is apparently insulated
from its neighbors by a naturally grown oxide layer, the
effective surface area is enormous, and the skin-effect
losses are substantial. The measured attenuation of a
filter 0.1 m long was greater than 50 dB from 0.5 to 12
CxHz at room temperature. Two of these filters in series
were immersed in the helium bath.

The junction was mounted at the end of a third mi-
crowave low-pass filter (similar to the other two) shown
schematically in Fig. 4. The attenuation of this mount
was about 10 dB. The mount was designed to minimize
standing electromagnetic waves in the leads connected to
the junction. It is important to emphasize that at the
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of the junctions exhibited very low leakage at voltages
below the sum of the energy gaps. The mount and the
various filters were immersed in liquid helium, which
could be pumped down to 1.2 K.

IV. EXPERIMENTAL PROCEDURES AND RESULTS

A. Determination Of Io
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mount
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~
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plasma frequency the dissipation in the mount completely
dominated the intrinsic quasiparticle damping of the junc-
tion. On the other hand, the reactance presented by the
mount to the junction was a relatively small perturbation
on the junction self-capacitance. A connector at the mid-
point of the mount was used to couple microwave power
capacitively to the central conductor. The high im-
pedance of this coupling ensured that the junction was ir-
radiated with a current source.

The Nb-NbOx-PbIn tunnel junctions were fabricated
on (10&&10)-mm oxidized silicon chips in a cross-strip
geometry with a nominal area of 100 pm . The junction
was connected to the mount with indium pads in a two-
terminal arrangement. A magnetic field could be applied
in the plane of the junction by means of a solenoid in or-
der to adjust the critical current. The I-V characteristics

1-V connector

microwave
connector

OFHC Cu

junction
fabricated
on Si chip

FICi. 3. Configuration of experiment to measure the rate of
escape of a current-biased Josephson junction from the zero-
voltage state in the absence and presence of a microwave-driving
force. Components in dashed box are immersed in liquid heli-
um.

To determine the parameter s =I/Io one needs to mea-
sure Io as accurately as possible. We measure Io by
determining the lifetime of the zero-voltage state in the
absence of microwaves. In this method one applies a
current I increasing linearly in time to the junction, and
determines the value of current ( &Io) at which a voltage
appears. One repeats the procedure a large number of
times (10 —10 in our experiments) to acquire a distribu-
tion of currents P (I) at which the junction escapes from
the zero-voltage state. The escape rate is found from'

I (I)= ln g P(i)1 dI
AI dt i ) I +AI

P(i) (4.1)

I 1 I
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I I I
[

I I I0

2
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Here, dI/dt is the current ramp rate and Ll is the chan-
nel width in the analog-to-digital converter used to record
I. Typically, we measured escape rates in the range
10'-10' s-'.

Having determined I (I), we find Io by plotting
I in[co~(I)/2vrl (I)]) vs I. For the purpose of determin-
ing Io it is sufficient here to take a =1. In the limit in
which the cubic approximation is valid, we see from Eqs.
(2.7) and (2.10) that the data should lie on a straight line
with slope (Io+O2&2/3rrk~T) intersecting the current
axis at Io. Examples of our data are shown in Fig. 5 for
four different temperatures. Each set of data lies along a
straight line with a slope that yields a temperature in very
good agreement with the measured bath temperature.
The good agreement of the bath temperature and the
effective temperature measured by thermal activation to-
gether with the lack of any observable curvature in the
data constitute an important check that external noise is
negligible.

Nb wire

10 mm

r
r'

Cu powder
(-30 pm diam )

fiberglass
end plug

FIG. 4. Attenuating mount to which junction is attached.

8- 4.2 K 3.2 K 2.2K 1.7 K

10 I I I I I I I I I I I I I I I I I I r I r» I I I I

12 14 18 18

I (pA)
FICi. 5. Plots of I in[re~/2vrI (I)]I vs bias current I at four

temperatures in the absence of microwave power.
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B. Determination of resonant activation
response curve

lny=I (Q)g(&, co~) . (4.2)

The change in the enhancement when the plasma frequen-
cy is changed by Ace~, written as

Although the current ramp method provides a straight-
forward means of measuring I (I), it explores only a limit-
ed region of the resonance. To determine changes in I
due to the microwaves with greater accuracy and over a
greater range of microwave frequency, we measured the
lifetime directly at a fixed value of bias current while
sweeping the microwave frequency through the plasma
resonance. In this method, we applied a 10-kHz square
wave current, and measured the average time that elapsed
between the leading edge of the square wave and the
junction-switching pulse. The precision obtainable with
this technique was around 1% in 1 s. Figure 6 shows an
example of the time distribution of 10 switching events
for a fixed current; this distribution is exponential and its
slope provides a measurement of I in good agreement
with that measured by the first method.

The measurement of I in the presence of microwaves is
complicated by the fact that the microwave-current ampli-
tude I injected into the junction varies as the frequency
is swept. To circumvent this problem, we use a technique
somewhat analogous to lock-in detection, in which we
measure the enhancement ratio at two slightly diFerent
values of co~ while I (0) remains fixed. This we accom-
plish by adjusting Io (by means of a magnetic field) and I
simultaneously so that 1 (0) remains fixed (an example of
data obtained in this way is shown in Fig. 7). We operate
with small enough microwave power for the enhancement
to be proportional to I (see below and next section) so
that we can write

2.0—

1.5—
Vi

'i

x~~P~'
1.0

5
I

0/2~ IGHz j

b, ln(lny) =b.co
a 1~
BcoP

(4.3)

is independent of I (0). Assuming g (Q, co~ ) =g (0—co& )

we can rewrite Eq. (4.3) as

6 ln(lny ) = —b,co~
8 1ng

~ an
(4.4)

The two experimental enhancement curves intersect at a
frequency 0, ,„/2m. at which the slope of the reduced
response g(Q) is zero. One obtains a reconstructed lny
(denoted lny"') by integrating separately from 0,„ in the
direction of increasing and decreasing frequency:

FIG. 7. Measured values of the enhancement ratio y vs mi-
crowave frequency at 4.2 K for two different values of Io with
the same I (0)=0. 12 &( 10 s '. Upward-pointing triangles,
Io ——6.22 pA, I =4.39 pA; downward-pointing triangles,
Io ——5.92 pA, I =4.19 pA. Dashed line is drawn through the
mean value of y at each frequency. Other junction parameters
are listed in Table I (junction 3).
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The relation between g (Q) and iny"' is g (Q)
=g ($1,„)lny'"; g (0,„) cannot be found by this method
but is only a scale factor. We have tested this technique
on artificially generated data and found that it recon-
structs the enhancement with sufhcient accuracy. For our
experimental results, we quote the average values of I and
Ip.

The result of applying this technique to the raw data of
Fig. 7 is shown in Fig. 8(a), where we plot lny"' versus
frequency. In contrast to the raw data, the reconstructed
enhancement is a smooth function of the microwave fre-
quency.

C. Experimental results

)00
0

I

504010 20 30

t (ps)
FIG. 6. Distribution of switching events in absence of mi-

crowaves for junction 3 at 4.2 K with parameters listed in Table
I.

We have investigated the dependence of lny on three
parameters: the frequency and amplitude of the mi-
crowave current and the temperature.

Figures 8 and 9 show the enhancement 1ny"' obtained
at 4.2 K for three junctions; the relevant parameters are
listed in Table I. In Figs. 8 and 9(a) the junctions were
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we expect for a junction with a lower Q.
In Fig. 10 we plot in@ vs I for junction C at three mi-

crowave frequencies. The central frequency corresponds
to the maximum in Fig. 9, while the other two frequencies
are above and below the maximum. It should be em-
phasized that, because of the frequency-dependent mi-
crowave coupling, the arbitrary scale in I is different for
each frequency. At all three frequencies we observe that
lny scales linearly with I, that is, with the microwave
power, for lny ~ 1; at higher values of lny, the enhance-
ment rolls off. This linear dependence is the motivation
for our focusing on lny rather than y.

In Fig. 11 we show lny vs I for junction C at fixed
microwave frequency at four values of temperature and
under the following conditions that keep 4 U/kz T con-
stant: We choose values of Io and I so that both I (0) and
co~ have the same values at all temperatures; the mi-
crowave frequency is set equal to co& /2~. Since the
microwave-power and frequency settings are kept fixed,
the I axis is the same for all four temperatures. We ob-
serve that in@ increases as the temperature is lowered; in
fact, (lny)/I scales as 1/T, as indicated in the inset.

This concludes our presentation of the experimental
data. To interpret them, we now turn to a discussion of
the theory of resonant activation.

2.2 K

m 0(
c

3.2 K

4.2 K

6 8

I (a.u. )

FIG. 11. lny vs I for junction C at four temperatures. The
data were taken with AU/k~T =const and A=co~ (see text).
Inset shows (in@)/I vs 1/T at fixed AU/k& T.

V. THEORIES OF RESONANT ACTIVATION

To facilitate further discussion, it is convenient first to
cast the dynamical equations of Sec. II into dimensionless
form.

c 1

2.5 GHz

—3

A. Dimensionless equations

In the limit s~ 1 which is relevant to the experimental
situation, the potential U(6) is cubic and the equation of
motion, Eq. (2.5), can be written in the dimensionless
form

0

8.4 GHz
Bx 1 dx 0 x

Q ar ax 2
+ +

=g(r)+ 3 sin(Fr+/) . (5.1)

We have introduced the reduced position x and time ~
given by

0

2 x =(4/&6)(1 —s)' (6—6O) (5.2)

and

c 1 ~=co&t, (5.3)

0
0 60 80

(a.u. j
2

0
100 120

where the phase difference 60——sin 's is the position of
the local potential minimum. In Eq. (5.1), the barrier
height is unity, the period of oscillation at the bottom of
the well is 2~, and the spectral density of the current
noise g(r) is fixed by

FIG. 10. 1ny vs I for junction C at 4.2 K and at three mi-
crowave frequencies (solid circles). At each frequency a single
point (+ ) has been plotted corresponding to the simulations
shown in Fig. 15.

(g(0)g(r)) =(20/Q)6(r), (5.4)

where 6(r) is the Dirac 6 function. The parameters 0, A,
and F are the reduced temperature, and reduced ampli-
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tude and frequency of the driving force: absorb energy resonantly at co=co . Thus
ment will

co=co~. us the enhance-

Fi . 12(c .
wi e a Lorentzian centered at co~, as in icated in

ig. c). On the other hand, if we con 'd hwe consi er the quadra-
ic p us cubic potential shown in Fi . 12(d) th

is no ion er ionger independent of the energy E of the article
but decreases smoothl to zero
AU' a ain

y o zero as the energy approaches

quenc to re r
; again we have given a width to the 11o e osci ation fre-

of os
uency to represent a finite Q. Because of th d' 'be istn ution

oscillation frequencies due to co(F. ) th h
the resence o m

e en ancement in
e presence of microwaves is now expected to hec e o ave a

ig y asymmetric frequency dependence. The
rounding introduced by the finite Q ulls hie pu s t epeakaway
rom co~ towards low frequencies. There

'
ere is now a long

on e ow-frequency side, corresponding to the fact
that the oscillation of the particle near the top of the well
occurs at frequencies below co . The hi
on e ot er hand, cuts off more sharply than the low-

fre uenci
frequency side because the particle no longer ronger respon s to

as i is excited to en-
ergies above the bottom of the well.

We now turn toto a quantitative discussion of these
effects, returnin first tog the truncated harmonic potential
model which a'though it cannot account for the as m-
metr in the dy e ata, nonetheless yields certain scalin ro-
erties that are correct.

in sca ing prop-

(5.5)0=k~ T/AU,

A =I /(DUCE )' (5.6)

and

(5.7)F =0/mp .

B. The truncated harmonic potential

The potential for this model is shown in Fi . 12
The smoo th nonlinearity of the cubic potential i

own in ig. 12 a.

s arp iscontinuity at a single point. In the ab-
c escape rate is pro-sence of the oscillatory driving term the

portiona to the probability (in the untruncated t
'

1)

a x =xb.
ca e potentia

g, e is no direct analytical solutionTo our knowled e, there is

enhanc
o t e stochastic equation of motion E (5 1) fq, or the

ancement of the escape rate b the os 'lly e osci ating driving
erm. at er, one makes the basic assumption that y is

in e t ermal equilibri-proportional to the enhancement in the th
um pro a ility of finding the particle at the top of the bar-r', g y depletion of the populationrier. Thus, one ne lects an

y t e escape process. Under this assum tion
uired to

p ion, one is re-

q o solve the time-dependent Fokker-Planck
tion associated with

er- anc equa-
ia ed with the Langevin equation (5.1). Unfor-

tunately, even this task cannot bno e carried out exactly be-

~ ~

enhan
ape o t e resonant

1 as a
ancement response curve and cannot be treated merc-

y as a perturbation on a quadratic t
'

l.
is point, before embarking on detailed calculations of

resonant activation we ive.onsider first a quadratic potential truncated at t
arne barrier height as that in the uad

a xb tO give

potential LFi . 1

e qua ratic plus cubic
en ia [ ig. 12(a)]. The frequency of oscillation is con-

stant for all energies E up to AU ho, as s own in Fig. 12(b),
where we have given a width Ace= 1/RC to the oscillation
frequency arising from the finite Q. If one n
oscillatin force

ni e . one now applies an
a ing orce to the system, we expect the particle to

P(x =xi, ) =(1/N)exp( —x /20) . (5.&)

Truncated harrronic
oscillator potential

(a)

Quadratic + cubic
potential

Here, P(x) is the probability for the particle to be in hce o eint e[,x + xi, and 1/N is a normalization factor in-

dependent of 3 ano an" ~. In the presence of the
microwave-driving term and in th bin e a sence of noise, the
displacement x (r) is given by

QU
3 exp[i(Fr+/)]
(1 F)+iF /Q— (5.9)

h, U

(dp
Xb

(b)
h, U

(dp

(e)

The mean-square value is

(x' )y
——A '/2[(1 F')'+F'/Q']— (5.10)

4)p

where ( d enotes an average over the phase
Since the ee equation of motion is linear, its solution when

both the microwave and nois tise erms are present is

(c) ln5 ' x (r) =xg(r)+x (r), (5.11)

4) p

where x is the solution of the presence of the n
current onl and x i

o e noise

microwav
y n x is the solution in the presen f th

wave current only. The probabilit th
ceo e

a iiy atx=xb now

FIG. 12. Ske tches of U vs x, E vs co, and ln 0 f
td hharmonic-oscillator potential and {d)

cubic otential'p en ia; (b), (c), (e), and (f) are plotted for Q =30
ia an quadratic plus

or

P (x =xb ) =P (x~ ——xi, —x )b xm (5.12)
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P(x =xb)=((1/N)exp[ —(xb —x ) /20])& . (5.13)

We assume that the microwave perturbation is very small,
so that x is also correspondingly small. Expanding the
exponential in Eq. (5.13) and noting that (x )~——0, we
find, to second order in x

We now investigate the consequences of the hypothesis,
Eq. (5.18), when Sz(II) is frequency independent (white
noise). In that case, the irradiation is indistinguishable
from an added thermal noise corresponding to a tempera-
ture increase Tz of the resistor R. Using the Nyquist for-
mula we find

2
1 I &b 1P(x =x )=—exp( —x /28) 1+— —— (x )b ~ b O 2O 2 m

J

(5.14)

Combining Eqs. (5.8), (5.10), and (5.14), we find, to
second order in 2,

2 kaT~
S~(A)=-

R

which, with Eq. (5.18), yields

Inyz ——— f dF f (8,F,Q) .
4 km'
m. bU 0

(5.20)

(5.21)

P(xb, A)
lny =ln

P(xb, o)
1 1

20 0 2 (1 F) +—F /Q

On the other hand, we can compute yz directly using
Kramers's equation (2.10) for a resistor at temperature
T+T+o

(5.15)

As expected, in the weak-perturbation limit this model
predicts a Lorentzian resonance centered at the natural
frequency of oscillation. The width of the resonance
scales with Q, and for 0« 1 the height is proportional to
Q A /0 . As we shall see presently, the model does give
the correct dependence on 3 and, for O((1, on 0, but
the shape of the resonance and the dependence on Q are
incorrect.

The failure of the linear equation to produce the ob-
served shape of the resonance shows the important role
played by the anharmonicity in the phenomenon and
forces one to solve the much more difficult problem in
which the cubic term is retained in Eq. (5.1).

C. Sum rule

AU hU
in/~ =— +ke(T+ Ttc) ks T

(5.22)

dF OF, = +0
0 40 O

(5.23)

In terms of more directly accessible quantities, this last
equation becomes

SU aUf "
d fl lny ( b. U, T, II, co~, Q) =— +0

0

In Eq. (5.22) we have neglected higher-order terms in

AU/kz T arising from the prefactor in the expression of
I.

Combining Eqs. (5.21) and (5.22) and using
O=k&T/AU, we finally arrive at

Before describing the theories of resonant activation, we
derive here a general result that imposes a constraint on
the overall magnitude of the enhancement of the escape
rate in the presence of microwaves.

We have shown that in the limit of small microwave
power there is a linear relationship between the enhance-
ment and the square of the applied oscillating microwave
current. We write

(5.24)

We see that the area under the resonance curve scales
simply as EU/(k&T) and should be linear in the resis-
tance. It is interesting to note that these scaling proper-
ties, which were already displayed in the particular case of
the truncated harmonic-oscillator model, are general and
do not depend on the exact shape of the potential.

lny= 2 f(O, F, Q)

or, using the definition of 3,
(5.16) D. Theories of resonant activation

in an anharmonic potential

lny=(RI /AUQco )f(O,F, Q) . (5.17)

Iny~= f dQ f(O, Q/co~, Q)S~(Q) .
2R

hU co&
(5.18)

The factor of 2 arises from the fact that the spectral densi-
ty of I sinQ0t is

S(A)=I 5(Q —00)/2 . (5.19)

This result simply reflects the fact that the energy com-
municated to the particle in the well by the microwave
current is proportional to the microwave power.

We now propose that this linear relationship between
the microwave power and in@ remains valid in the case
where the irradiation consists of broadband Gaussian
noise with spectral density S~(fl). We then write

Grigolini and Fonseca were the first to develop a
theory for our experimental results. In their theory the
main effect of the oscillating force is to increase the
diffusion coefficient of the particle when the energy-
dependent oscillation frequency coincides with the fre-
quency of the driving force. This theory leads to a set of
differential equations that are solved numerically, but un-
fortunately do not show a pronounced asymmetry in the
resonance curve. Two other theories, each starting from a
very different viewpoint but reaching similar conclusions,
were subsequently put forward. Ivlev and Mel'nikov
(IM), starting with the classical equation of motion, obtain
a simplified Fokker-Planck equation for the energy that
precisely keeps track of the energy imparted to the parti-
cle by the oscillating force. These authors solve the equa-
tion analytically in various limiting cases. Larkin and
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lny
ng~ rug dry(E)
40 gU dE

(5.25)

where ru(E) is the oscillation frequency in the cubic poten-
tial at energy E. The subscript F implies that the deriva-
tive is evaluated where ~/2~ is equal to the microwave
frequency. We have computed de(F)IdE numerically
and plotted it in Fig. 13. At F =1, Eq. (5.25) takes the
value

lny ((F=1)=9vrg/3 50 (5.26)

For driving frequencies above the plasma frequency
(F & 1), IM and LO find

Ovchinnikov' (LO) write an equation for the evolution of
a quantum density matrix, limited to diagonal and next-
to-diagonal terms, using the eigenstates of the unper-
turbed system as a basis set. The matrix elements of the
operator x between two adjacent energy levels separated
by an energy 6 are calculated using a semiclassical ap-
proximation. The theory leads to a pair of coupled
differential equations that are solved numerically, yielding
an asymmetric response curve in qualitative agreement
with experimental data. Furthermore, in the limit of high
Q, LO provide analytical predictions that agree with those
of IM. Since these results give considerable insight into
the physics of the problem, we summarize them at this
point.

When —", «Q «36/50 and A «1, IM and LO pre-
dict' that, for F &1,

harmonic potential and in agreement with the sum rule of
Eq. (5.24); in fact, f o& dQ Iny & obeys the sum rule exact-
ly.

(ii) For F & 1, In@ has a shape that is independent of
Q, &, and 0; In@& scales with Q, compared with Q for
the truncated harmonic potential.

(iii) For F & 1, In@ & falls off exponentially in a frequen-
cy range that becomes narrower as Q increases.

E. Asymptotic behavior of the resonance curve

Bx 1 Bx 8 x
g ar ax 2

+ — + 1 —x =g(r)+ A cos((),

(5.29)

P varies slowly with time, and we can take it as constant
during the escape. We thus only need to calculate

b, U(P)
k T

It is worth noting that the analytical expressions of Eqs.
(5.25) and (5.27) are valid only for frequencies not too
different from the plasma frequency. These expressions
are not meant to predict the behavior of the resonance for
F~O or F~ ao. Both of these limits can be treated ex-
actly, however.

In the limit F~O we can rewrite the Langevin equation
as

9mg& '
1

lny 502 1 +exp[ 2vrg (F —1 ) ]

which, at F =1, takes the value

(5.27)
to obtain y. The result in the limit of small A is

Iny= ——— A (F«1),3 1 1

20 0 3
(5.30)

lny (F = 1)=9~QA /100 (5.28)

1.0

5
36

Equations (5.26) and (5.28) do not match in the vicinity of
F =1. However, Eqs. (5.25) and (5.27) make several pre-
dictions that are extremely useful above and below the
resonance:

(i) In@ is proportional to A /0 as for the truncated

which, apart from a numerical factor of order unity, is the
same result as for the truncated harmonic oscillator at
zero frequency. The enhancement does not vanish at very
low frequencies but rather takes a small frequency-
independent value, in contrast with Eq. (5.25). Taking
Eq. (5.26) as an estimate of the F = 1 value of Iny, we see
that the ratio Iny'(F = I)/Iny(F =0) is of order of 4Q. In
the rest of the paper this F =0 value of lny is negligible
except in the case Q = 5.

In the limit A~ ao, the driving force induces a rapid
oscillation of the coordinate x. The effect of the driving
force is simply to renormalize the potential,

0.6—
1 A d UU(x) ~ U(x)+-

F~ oo 4 F' dx' (5.31)

This renormalization of the potential changes the barrier
height. The enhancement is given by

0.2— A
in@ = (F»1),

20F
(5.32)

0
0

I

0.2

l

O. t

F
o.a 1.0

FICx. 13. Numerical calculation of [7.2dcg(E)/dE
~ F] ' for

"washboard" potential vs F (dotted line). Also shown is f(F)
for X= oo, 25 [Eq. (6.2)].

which is qualitatively different from Eq. (5.15) in the limit
F~ ~. This expression shows that lny cannot decrease
exponentially to zero as Eq. (5.27) would predict. One
should not therefore take the exact analytical dependence
of the sharp higher-frequency cutoff predicted by IM and
LO too literally.
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VI. NUMERICAL SIMULATIONS
AND AN EMPIRICAL EXPRESSION

FOR 1ny

1.0

o.e—
C

~ o.~—

0.2—

K

BHL (0(,'= t.47" )

We have simulated the Langevin equation for a particle
in a metastable well of the "washboard" potential, sub-
jected to an external oscillating force. We used a
discrete-time version of the equation in which the time
step was —,

' of the oscillation period at the bottom of the
well. We verified that this time step was sufficiently short
to reproduce the dynamics of the system correctly by
comparing the results with those obtained using
significantly shorter time steps. Thermal noise was pro-
duced by a random-number generator based on a shift re-
gister. The number of steps during each run was
2.4 & 10, corresponding to 2.4& 10 oscillations. During
this fixed length of time we recorded the number of escape
events as a function of the frequency of the applied force.
In addition to an increase in the number of steps, we im-
proved our previous algorithm by following each escape
event over the top of the barrier during each run instead
of simply recording the population near the top of the
well. Most of the simulations were carried out with
s =0.73 and 0= —,'„which were chosen to give reasonably
low statistical errors without excessively long computer
times. In the experiment the 8 parameter varied between

and
As an initial check on our procedures we verified that

the thermal-activation rate in the absence of any driving
force (A =0) was in agreement with theoretical predic-
tions. In Fig. 14 we plot our simulated values of rZr»
vs Q; here, I rs ——(co /2~)exp( —I/8) is the prediction ofT p

4the transition-state (TS) theory. Also shown are the pre-
dictions [Eq. (2.11)] of the theory of Biittiker et al. '

(BHL) for a = 1.4738 in the limit of high Q, and
Kramers's result, which is valid in the limit of low Q.
Given the present theoretical uncertainty in the intermedi-
ate (Q —1/8) regime, we feel that our numerical simula-
tions are entirely adequate.

We turn next to the numerical simulation of resonant
activation.

A. Resonant activation

In Fig. 15 we present numerical results for in@ vs F for
six values of Q ranging from 5 to 35. As Q was increased,
2 was reduced to keep the magnitude of the resonance
approximately constant. As in our previously published
preliminary data, the curves demonstrate the existence of
a resonance in the enhancement response when the driv-
ing frequency is close to the plasma frequency. The reso-
nance resembles the experimental data in that it is highly
asymmetric: The low-frequency side is very broad with a
shape that is almost independent of Q, while the high-
frequency side becomes steeper as Q is increased. The
curves always peak at a frequency less than the plasma
frequency (F & 1) with a height that grows with both
and Q. To within the statistical error, all the curves have
the same shape up to a dimensionless frequency roughly
1/Q below the peak. The only difference between these
new results and our preliminary results is the somewhat
more pronounced low-frequency tail which we believe re-
sults from an exact treatment of the dynamics of the par-
ticle during the escape.

To illustrate the dependence of the magnitude of the
resonance on 3, in Fig. 16 we plot in@ vs 3 for
F =0.95 and Q =10. For small values of A we confirm
that in@ is proportional to 3, that is, to the power of the
driving force. We refer to this behavior as the linear re-
gime. As soon as lny is greater than about 1, however, it
increases more slowly. For the remainder of this section
we will focus on the linear regime.

We have also investigated the temperature dependence
of Iny. In Fig. 17 we plot (lny)/3 vs 8 for simula-
tions performed at F =0.92 with Q =10. A line corre-
sponding to in@ ~O has been drawn through the data;
within the statistical errors, the points lie on this line.
Thus, our simulations confirm the IM-LO predictions that
lny o: 2 Q/8 in the linear regime.

Finally, we compare the area under the resonance curve
and the predictions of the sum rule. The results are
shown in Table II. The sum rule is well obeyed in the
mid-Q range, showing that the overall magnitude of the
resonance effect is correctly reproduced in the numerical
simulations. The discrepancy for the lower and higher
values of Q could be explained by the statistical uncertain-
ty in the baseline and by low-frequency contributions not
taken into account by the range of integration.

The scatter in the simulated curves of Fig. 15 (which
required a large amount of computer time) emphasizes the
difficulty of performing a substantial number of simula-
tions over a wide range of F to obtain a catalog of reso-
nance shapes to which experimental data can be fitted.
For this reason, we have found it desirable to construct an
empirical expression for lny that can be tested against our
simulations and then fitted to the experimental data to ex-
tract co& and Q simply and accurately.

0.0
1

I

10

Q

I

20
I

50 100

FIG. 14. Simulated values of r/r» vs g. Dotted line (BHL)
is the prediction of Eq. (2.11) with o, =1.4738. Solid line (K) is
Kramers's prediction for the moderate-damping case [Eq. (2.20b)
in Hanggi's review article, Ref. 4].

B. Fit of the simulated enhancement response
curves with an empirical function

Our empirical expression for in@ has the following
properties:

(i) it retains the proportionality to 3 Q/8,
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FICJ. 15. Numerical simulations of in@ vs F =f1/co~ for six values of Q (stepped curves). Also shown are fits of the data by Eq.

(6.1) (solid lines). The amplitude A of the driving force has been adjusted for each value of Q and is given in Table II.

Q =10
F = 0.92
Fixed hU

C:

CD
C)
C)

F = 0.95
Q=10
OH = 0. 1

I

1 x10

I

2 x100
A'

FICs. 16. Simulated values of lny vs 2 . A straight line has
been drawn through the three lowest data points to guide the
eye.

I I

0 50

1 /OH2

FIG. 17. Simulated values of (1ny)/A vs 0 for Q =10
and F =0.92. A line has been drawn through the data points to
guide the eye.
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TABLE II. Test of sum rule [Eq. (5.23)] with numerical
simulation for six values of Q. Fmin and Fmax are the
and maximal dimensionless frequencies at which data are taken
(see Fig. 15). Ideally, if I';„=0 and F,„=ao, a value of 1 in
the last column would mean that the data obeyed the sum rule
exactly. In the simulations, O,p.

Carrying out the convolution, we find

e QX

f(F)=— U1+Ux-
A. + u

AX QX

+
u —k

UX e" x(0
u —k

3 (~10-') lny dQ
~Q 3 min

(6.4)
5

10
15
20
25
35

4.0
2.0
1.5
1 ' 3
1.0
0.8

0.71
0.77
0.97
0.75
0.70
0.59

in@"'=(cA Q/0 )f(F),
where

(6.1)

(ii) it retains the universality of the low-frequency
shape, and

(iii) it contains a single shape parameter A, that depends
only on Q.

The function is the convolution product of an exponen-
tial in A.

~

F
~

with a function that describes the low-
frequency behavior of the resonance (see Fig. 18),

and

f (F)
2

1

u+k (u +A, )
(6.5)

B fitting f(A, ) to the numerical simulations below the
pea, we ceak, we chose u =9 and v = —2. To compare f(A, ) for
F 5 1 with the IM-LO theory, in Fig. 13 we have plotted
it for A, = oo and 25. The curve for k= oo agrees remark-
ably well with

(5co~ /366 U)
de(E)

F

throughout the range, while that for A. =25 departs from
it at a frequency roughly 1/A, =0.04 below the peak, as
we would expect.

We have fitted in@"' to each of the simulated curves in
Fig. 15 for the appropriate values of 3, Q, and 0 using
the values of A, and c plotted versus Q in Fig. 19. The

f (F)=fo(F) e [(X/2)exp( —k
~

F )] . (6.2)

In Eq. (6.2), e denotes a convolution product, and fo(F)
is the following function:

100

,
e" (1+vx), x =F —1 —d (0fo(F)= '

0, x=F —1 —d )0. (6.3)

The factor c is an overall scaling factor that would be a
numerical constant if the sum rule were obeyed. The
quantity d, where

~

d
~

&&1, allows us to slide the curve
bodily along the frequency axis, if necessary. Equation
(6.1) implies that the low-frequency wing will always have
the same shape up to a frequency roughly 1/k below the
peak, while the high-frequency wing will cut off exponen-
tially above the peak.

0

il

il

il~ (&)

Ia) (b)

9 m/5 ——---—----------------

f

~ e-RIFI
2

F F

0
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I
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FIG. 18. The functions fo(x) and (A, /2)exp( —A,
~

x
~

) (with
A. =40) that were convolved to fit the simulated resonant activa-
tion curves.

FICx. 19. Dependence of (a) A. and (b) c on Q extracted from
the fits of f(F) to the numerical simulations in Fig. 15. The
dashed line in (a) is a least-squares fit of the data to a linear law

Q ~ k. The IM-LO value of c =9m/5 is shown for comparison
in (b).
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value of d was zero for the three lowest values of Q, 0.005
for Q =20, 0.01 for Q =25, and 0.02 for Q =35; the
latter three values were chosen to improve the fit above
the peak. In every case except Q =5 a good fit could be
obtained. For Q =5 the simulated curve develops a very
pronounced low-frequency tail incompatible with Eq. (6.3)
but in agreement with Eq. (5.30). We see in Fig. 19 that,
within the statistical uncertainty, k scales with Q. The
coefficient c varies slowly with Q for Q & 10, but drops
markedly for Q &10. We have indicated the value 9~/5
corresponding to the asymptotic expression (5.25) for
comparison. This behavior rejects the variation of the
area under the resonance curve given in Table II. The
statistical uncertainty shown by the error bars of Fig. 19
could be reduced by continuing the simulation for longer
times.

C. Comparison of 1ny ' with experiment

We are now in a position to use our empirical expres-
sion for in@ to fit our experimental data. We scale the
height of the curve arbitrarily (since A is unknown ex-
perimentally), and adjust co~ and A, until a best fit of the
high-frequency side is obtained. The resulting curves are
shown in Figs. 8 and 9, while the values of the fit parame-
ters co& and k are given in Table I, along with the corre-
sponding estimates of Q, C, and R. It can be seen that
the fit on the low-frequency side is poor, the shape of the
discrepancy even varying from curve to curve. ' We be-
lieve that this discrepancy could come from the
frequency-dependent loading of the junction by the mount
which only crudely approaches an ideal infinitely long
transmission line. A perturbation calculation carried out
along the same lines as in Ref. 5 shows that d~/dE is
sensitive to frequency variations of C. The result of Fig.
9(b) (shunted junction), however, is remarkable. The
high-frequency side is markedly less steep than for the
unshunted junction and the value of R =8+2 0, deduced
from A, (Table I) is in good agreement with the value of
10.7 A measured from the I-V characteristic at I &~IO of

junction C. Given the discrepancy between the simulation
and fit of Fig. 15(a), the low value of Q for this junction
may explain why the low-frequency tail of the resonance
is so important. In the case of the unshunted junctions A
and 8 the resistance ( —10 II) is also consistent with an
estimated value of the admittance presented by the
mount. Furthermore, there is good agreement between
the fitted C and our a priori estimate of the junction ca-
pacitance. As we expect, C is relatively independent of
the critical current. It is worth noting that although the
resistive loading of the junction is dominated by losses in
the mount, the reactive loading due to the mount is a
small contribution to the total capacitance.

Finally, we compare various scaling properties of our
data with predictions. Both the experimental data (Fig.
10) and simulations (Fig. 16) show that lny is linear in the
square of the microwave amplitude for lny & 1, rolling off
at higher enhancements. In each of the experimental
graphs, a point from the simulations has been plotted in
the nonlinear regime. We see that the agreement between
the experimental and simulated values of lny in the non-

linear regime is quite good. Equation (6.1) enables us to
test the temperature dependence of resonant activation at
fixed microwave frequency and amplitude. The enhance-
ment factor lny is predicted to scale as A Q/0, that is,
I R reaL U /cop T In the experimental measurements lead-
ing to Fig. 11, co~ and AU/kz T were kept fixed; thus, we
expect in@ to scale as 1/T. The inset of Fig. 11 shows
that this scaling is well obeyed experimentally.

VII. CONCLUDING SUMMARY

We have presented measurements of the microwave-
induced enhancement of the escape rate of a Josephson
junction from its zero-voltage state. The measurements
were made in the limit where the microwave amplitude is
a weak perturbation on the thermal-noise amplitude. At a
fixed power level, the enhancement is a resonant function
of frequency. The resonance is asymmetric with a higher
slope on the high-frequency side that becomes less steep
when the junction is shunted with an external resistor,
that is, when the damping is more important. We find
that in@ scales linearly with I for lny & 1 irrespective of
the microwave frequency. Furthermore, lny scales with
1/T as we show by measuring y as function of tempera-
ture for fixed values of the thermal escape rate and plasma
frequency.

The above experimental features follow the theoretical
predictions:

(i) The shape of the resonance curve on the low-
frequency side should be a universal function which de-
pends only on the shape of the potential from which the
particle escapes.

(ii) On the high-frequency side the resonance curve rolls
off exponentially with a characteristic frequency varying
as 1/Q.

(iii) The height of the resonance curve should be of or-
der (9m/S)(b, U/ks T)QI R /Tco .

Because the theory does not provide analytical predic-
tions for the entire resonance curve, we have carried out
numerical simulations of the curve for several values of Q.
These simulations were used, in turn, to adjust the param-
eters of an empirical function that was constructed by in-
terpolating the analytical theoretical predictions for the
wings of the resonance curve. This empirical function is a
simple convolution product of a universal function with a
double exponential the width of which is proportional to
Q . This empirical function greatly facilitates the de-
tailed comparison between the results from the simula-
tions and the experiment.

We obtain good qualitative agreement between the ob-
servations and numerical simulations. However, the exact
shape of the resonance curve on the low-frequency side is
obtained only in one case for an unshunted junction.
This discrepancy may be due to a frequency dependence
of. the damping factor Q arising from imperfections in the
junction mount. Further experiments, with more careful
microwave engineering of the mounts and the junctions
are needed to confirm this point.

Two other puzzling features would also benefit from
further investigations both theoretically and experimental-
ly.
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(i) We observe lny to be linear in the square of the am-
plitude for lny ~ 1 at all frequencies, even well below and
well above the position of the maximum of the response.
Because of the sharp roll-off of the response above the
peak frequency, this result implies that the range over
which lny remains linear depends not simply on the am-
plitude of the driving force, but rather on the extent to
which the average energy of the particle is increased by
the driving force.

(ii) An interesting prediction of the theory is that the
sharp high-frequency cutoff should be exponential. Far
away from the plasma frequency, however, an exact cal-
culation (Sec. VE) predicts a power-law dependence on
frequency. Although both experiment and numerical
simulations are well fitted by our empirical formula,
which contains the exponential cutoff, it would be in-
teresting to perform a more precise experiment to test the
range of validity of this functional form.

We remark in passing that these two features seem to
be specific to the classical regime (fico& «kit T) and are
not observed in the quantum regime (fico~ &&kit T) when
there are only a few quantized energy levels in the well. '

It would thus be a considerable advantage to have a
theory valid for all frequencies and for powers outside the
small power range. The generalization of the theory to
take into account an arbitrary shunting admittance would
enable one to use resonant activation to characterize this
admittance experimentally.

Indeed, as we have seen, one important application of
resonant activation is the determination of the parameter
co& and Q and, hence, of C and R, for a Josephson junc-
tion. In this determination one, of course, has to assume
that the admittance can be represented by a parallel com-
bination of C and R in a wide range around the plasma
frequency. We think this approximation is crude in our
experiment due to imperfections of the junction mount.
Nevertheless, the value measured for co~ in this way is
rather precise (+2%%uo), while that for A, is much less precise
(+20%). At present, the determination of Q from k is
even less accurate because of the statistical uncertainty
arising from the simulations; extended calculations could,
of course, reduce this uncertainty. For an unshunted
junction our measurements show that the dissipation at
frequencies -co& is dominated by losses in the leads. On
the other hand, for our relatively-large-area junctions
(C —10 pF) the capacitance loading is relatively unimpor-
tant. We emphasize, however, that reactive loading is

likely to be substantial for smaller junctions (C & 1 pF).
The application of this technique to determine the values
of C and R required to interpret measurements of macro-
scopic quantum tunneling is presented in detail else-
where. '

In concluding, we would like to reemphasize that the
asymmetric shape of the enhancement response curve
reflects the properties of the response of an anharmonic
oscillator subjected to a sinusoidal perturbation. This
response is fundamentally different from that of a har-
monic oscillator to the same perturbation. As the particle
escapes from the well, its oscillation frequency is continu-
ously changing and it cannot be coherently pumped by
the applied oscillating force, whatever its frequency.
However, when the excitation frequency is below the os-
cillation frequency at the bottom of the well, there is an
energy in the well at which the oscillation frequency
matches the excitation frequency, making possible pn en-
ergy transfer between the excitation force and the particle.
The broad width of the resonance below the peak which is
observed even for low damping is a direct consequence of
the distribution of the oscillation frequencies in the well.
The damping manifests itself not in the width of the reso-
nance, but in the sharpness of the high-frequency cutoff of
the response when the excitation frequency is scanned
through the maximum oscillation frequency.
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