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Renormalization-group treatment of the long-ranged one-dimensional
Ising model with random fields
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We construct a renormalization-group theory for a one-dimensional Ising model with long-
ranged interactions and random fields with short-ranged correlations. We find recursion relations
near the zero-temperature, finite randomness fixed point, valid for o near —,', where the interac-
tion J/(r) J/r '+ . We also show that the probability distribution for the random fields becomes
strongly non-Gaussian under the scaling procedure.

One-dimensional systems in which the interactions be-
tween the spins are long ranged are often used as a testing
ground for theories of higher dimensional short-ranged
models. In recent years there has been much theoretical
interest in the random-field Ising model (RFIM). In par-
ticular, the value of the lower critical dimension d* of the
short-ranged problem has been the subject of much con-
troversy, ' settled recently by Imbrie who established
that the three-dimensional system has a phase transition.
The behavior of the system close to d =d* remains some-
what controversial, but it is clear that one should consid-
er the role of spins whose orientation is pinned by the local
random field. This motivates us to consider the one-
dimensional Ising model with long-ranged interactions,
for which the mathematical description of domains is
straightforward. We construct a renormalization-group
(RG) approach for the zero-temperature random-field
problem.

The long-ranged problem without random fields was
treated using the method introduced by Anderson and
Yuval to develop recursion relations valid for small fuga-
city. In this method, the configurations of the system are
described in terms of the positions of 2n domain wa11s
r i, . . . , r 2„, with

~ r; —rt ~
& r. One then considers in-

creasing the short-distance cutoA to z+dz, and by mak-
ing small changes in the parameters of the system, one can
include the eA'ects of the close pairs of domain walls, giv-
ing the desired recursion relations. If the Ising spins in-
teract with a strength J(r) =J/r'+, where r is the sepa-
ration of the spins, it is found that the value cr = 1

separates a regime with a finite critical temperature from
one with a critical temperature of zero. The renormaliza-
tion-group calculation in Ref. 4 is valid near o =1, which
is analogous to the lower critical dimension d* of the
short-ranged model.

For the model with random fields, the critical value of o.

is —, . This can be seen by extending the familiar Imry-Ma
domain argument to the long-ranged case. Consider flip-

ping a block of spins of linear dimension L in an otherwise
ordered state. The energy gained due to the fluctuations
in the random fields, which have a distribution character-
ized by a width of h~, will scale as h&L ', while the ener-

gy lost due to the interactions will scale as JL' . Thus
for o ) 2, the ground state is unstable against the forma-
tion of domain walls, and there is no long-ranged order,

from which we have

rico = —( ——a) co
Bl

(3)

with ro =htt/J. The quantity w, thus, scales up or down'
depending on whether one is above or below the critical
valueof 2.

For the short-ranged problem near two dimensions,
Bray and Moore find corrections to Eq. (3) due to the
roughening of the domain walls which are cubic in w.
Since we expect that no domain roughening occurs in our
problem, we need to calculate the exponentially small
terms which arise physically from the eAects of domains
within domains, and were ignored in that work.

We use the same Hamiltonian as in Ref. 4 with the ad-
dition of a random field:

Jn;n,H= —Y'
, , a(1 —a)

2n—hgn;

—1 +2np

r.+ i r. 2n—gn;„
i 0

dx h(x),
i 0

where r~, . . . , r2„are the positions of the domain walls
and satisfy ~r; —rj ~

& r. n; =( —1)', re=0, and r2„+i
=L, and h is a uniform external field. We assume that
the chemical potential p is large to ensure a low density of
domain walls. The random fields h(x) are defined as the
sum of the fields at the lattice sites inside a block of size z,
which are, thus, already smeared out over length scales of
size z. While our general procedure holds for any distri-
bution of random fields with short-ranged correlations, we

while for o & —,
' long-ranged order is expected to occur at

T =0, and to persist up to a nonzero critical temperature.
In our model we follow Bray and Moore and assume

that the critical behavior is governed by a fixed point at
zero temperature and finite randomness. The above
Imry-Ma scaling ideas can be interpreted as scaling rela-
tions for J and hg as functions of I =lnL:

J
Bl

=(1 —a)J,
rlhtt
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will work initially with a Gaussian distribution satisfying

I

h(x)h(x') =8 h~ .
z

(5)

We now consider an eff'ective Hamiltonian defined with a cutoff z+dz, which allows for the possibility of a close pair
of walls whose separation lies between z and z+ dz.

H, tr(ri, . . . , r2„,z+dz) =H(r;, . . . , r2„)+ AE+2n; J h(x) 8 —&F. —2n; J h(x)I
&'dx x

r r Z

2n 2Jn1.7g

AE =2@+2hn; —g
, cr 1 —o

(7)

in which r&, . . . , r2„have a minimum spacing z+dz, and ~F. is the change in energy of the system, neglecting the
random-field contribution, due to the addition of the close pair:

1 —cx i —cr'
IJ r

Since we are working at zero temperature, the small pair
can only appear if it lowers the total energy; this accounts
for the step function in Eq. (6). We are, thus, expressing
the fact that the ground state of the system must be stable
against the flip of any set of spins. Here we restrict our
attention to some block of neighboring spins of size in the
range z to z+dz, which will flip if there is a favorable net
random field in the block of suf5cient size. Thus, the
small pair will occur only in regions of extreme random
fields of opposite sign to the spins in the background
domain. The parameters J, p, h, and h~ include the
effects of all the possible flips of blocks of spins of size less
than z. Since p/h~ is large, the probability of a small
domain is small, and to first order in J and h, we may
write

8( —AF. —2n;h„) =8( —2p —2n;h, )
+ (2p AF) li( —2p——2n; h, ),

where h„=f; (dx/z)h(x).
To calculate the recursion relations for J, p, and h, we

average the effective Hamiltonian (6) over the random
field, and absorb the term proportional to dl =dz/z into
the first term whose average is the Hamiltonian of the
pure model. Note that the averaging process includes in-
tegration over the position and length of the small domain.
This gives us a Hamiltonian of the same form with renor-
malized parameters J, p, and h, apart from a constant
shift in the ground-state energy which we shall drop.

To obtain the recursion relations for h~, we return to
the unaveraged expression (6) and antisymmetrize it with
respect to the sign of the spins in the background domain
that contains the proposed small block. We now subtract
off the mean which isolates the terms which contribute to
the random field on the new length scale, and the variance
of this field lets us calculate the recursion relation for hn.
This gives

h'(x) = h(x) —dlJ~ [(h„+p —6/2)8( —h, —p)+(h, —p —6/2)8(h, —p)+68(h, —p)1,dx " dx ~ dr
a z+dz a

(9)

where h, —:2p —hE and the term proportional to dl ac-
counts for the possible presence of the small block of re-
versed spins.

We work to linear order in the field h, and first order in
the efl'ective fugacity defined by

Let us define co =h~/J, and v =h~/p, then

c)co

81
-co(cr —+2y '—)2

h~y'- exp( —p'/2h~2) .
42xp

Bu 1
V8! 2

2y

J 2 Bh~J(1 —cr —4y ), hz(2 —2y2)

Bh -h(1 —2y'), J
ai col cr

(1O)

Since p/h~ is assumed to be large, this expression is sim-
ply the probability that a random field will fall in the tail
of the Gaussian probability distribution P(h)

(42rthg) 'exp( —h /2htt), and is our small parame-
ter. We find recursion relations

which has a fixed point at 2y* =t. = —,
' —a, which fixes

v*, and co =4v*. Linearizing around the fixed point we
find exponents 8 —,

' —e=cr, v=v* /e —(2elne) ', and
Xg =

2 + o. Here 8 is the exponent that enters the
modified hyperscaling equation (Refs. 6, 9, and 11)
(d —8) v =2 —a, and characterizes the scaling of all ener-
gies at the fixed point, e.g. , J=Je'. These three ex-
ponents are the only independent ones in our theory.

We now use the scaling relations that are derived in
Ref. 6 to find the other exponents of interest. The ex-
ponents ri and rT are defined in terms of the connected and
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disconnected correlation function as follows: '

(s.s, ) —(s,)(s,) - „„„,T
d —2+q

(12)

field for a distribution that is sufficiently close to a Gauss-
ian. We then use this approximate probability distribu-
tion to calculate the averages needed in the procedure that
we have described. We find the following recursion rela-
tion for the cumulants'

(s,)(s„)
d —4+ j

We use the relations g =4+d —2A, I, which gives
r1=4 —2cr, and r1=8+rl —2 which gives rl=2 —cr= j/2.
We also find that p=( —21ne/2) ', y=av, 8=(2E)
and a=2 —2P —y.

The result @=2—a agrees with the value found by
Bray, and is expected to be valid in all systems with
long-ranged interactions. The violation of hyperscaling
exponent 0, which takes the value cx in our calculation,
agrees with the results of Bray at a =

2 and —,
' . When o.

is near —,', we find that the exponent 8 is modified by the
presence of the small walls, to become 0=

2
—e, where

the first term is the naive value. This is to be contrasted
with the results of Bray who finds further corrections in a
1/n expansion of the form 8= —,

' —e+(1 —2o)/n, for o.

near 2 where n is the number of spin components. This
value for the exponent 0 is in agreement with that found
in Ref. 13; however, 1/n expansions cannot be relied upon
in the Ising system. Note also that the exponent 0 obvi-
ously satisfies the relation 8 ~ d/2, which is intuitively ob-
vious in a domain-within-domain picture, and was ob-
tained by Villain, and Berker and McKay. " Bray notes
that 8 "will in general take on nontrivial (i.e. , different
from a) values at intermediate dimensions" that is for
3 + o. & —,', however, we find that this is not the case in

the Ising model to order t. . Schwartz' has derived an ex-
act inequality g ~ 2g, which, as in Ref. 6, we find is
satisfied to order e as an equality. This leads immediately
to 0 =2 —g, and a hyperscaling relation of 2 —a
= (d —2 —q) v. "' The exponent il also satisfies the in-
equality g ~ 4 —d. '

So far we have assumed that the random field distribu-
tion at the fixed point is Gaussian. We now go on to dis-
cuss the non-Gaussian distribution that is generated by
the renormalization group. This consequence of the RG
Aow close to d* or o* does not appear to have been dis-
cussed previously.

We calculate the higher even moments of the random
field on the new length scale from Eq. (9), and from this
we can find the renormalization-group equations for all
the cumulants. We work to linear order in the higher cu-
mulants, but allow any power of the variance. This lets us
explicitly calculate the probability as a function of the

I

C2n

l
C—,„(n —1)

—4ny x " (1+C4x /4!+C6x /6! ) (13)

where we have kept only the highest power of x=—p/hz.
The quantities C are the cumulants scaled by the ap-
propriate power of the variance:

C„=

heal

Cn

Cn/2
2

Note that the central limit theorem tells us that all the cu-
mulants above the second are irrelevant when y =0,
which in terms of the scaling of C means that

BC2,
aI

" =C,„(1 n)—,
this accounts for the first term in the above.

To illustrate the difficulty of dealing with all the cumu-
lants, we can look for a fixed-point distribution where we
restrict our attentions to the subset of distributions in
which only some finite set of cumulants are nonzero.
Equation (13) can then be recast in the form of a matrix
equation, which can then be solved to yield '

C„*= 4n y2XR 2

n 2

with n & 2, and x large. When we substitute the value of
y (or x) at the fixed point of Eq. (11),' we see that for
fixed e, the high-order cumulants become very large, and
our approximation of linearizing in the cumulants be-
comes inappropriate. This clearly shows that the distribu-
tion is becoming very non-Gaussian. Note that we cannot
solve the problem with an infinite set of cumulants, as the
asymptotics used in the above would then be valid only at
x =~, where we know that the Gaussian distribution is
unchanged.

We have also studied a functional renormalization
group for the full distribution in an attempt to see how the
distribution develops under the renormalization group.
For any distribution for which all the cumulants are finite,
we find

QP (z ) C2„82"P(z )
Bl „,(2n)! 8z z" Bz

+P [zP(z)) P(z)8 —z + [B(—p/h +z)+8( —p/h +z)1 P(z')dz',
A

4 p/Ag

(14)

where we have defined

P(z)—=h, P(h), z—= 8 lnhg

hg
'

Bl

The first two terms again come from the naive scaling of

I

the cumulants, and the last two terms account for the
small change in the probability due to the presence of the
small block. If we restrict our attention to probability dis-
tributions close to Gaussian, this equation gives the same
flows for the cumulants as previously. Equation (14) is a
nonlinear diftusion equation containing drift and rescaling
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as well as higher derivatives. An apparently innocuous
simplification, as far as the higher cumulants are con-
cerned, is to drop the terms involving C2„with n & 1 in
the first term removing the higher derivatives and the non-
linearity, except where it enters implicitly through p. This
corresponds to replacing n —1 by n in the first term in Eq.
(13) since the —1 comes from the term with 2n deriva-
tives. It would be interesting to study the renormal-
ization-group flow described by Eq. (14) numerically.

We can readily see from this equation that an initial
Gaussian distribution is unstable under the
renormalization-group procedure. This may be a signal
that, in fact, the transition is first order. If the flow was
such as to cause the weight in the tails of the distribution
to grow sufficiently under the RG, taking one out of the
region of validity of our small fugacity expansion, this
would indicate that the system has become disordered be-
fore the correlation length has diverged, and would be a
first-order transition driven by fluctuations.

In conclusion, we have derived recursion relations for
the long-ranged random field Ising model in one dimen-
sion in an expansion around a =

2 under the assumption
that the distribution of random fields is Gaussian. The ex-
ponents derived in their theory satisfy all the strict in-
equalities for the exponents of random field systems. This
theory, however, incorrectly neglects the non-Gaussian
eA'ects generated by the renormalization procedure which
may produce corrections to the exponents. We claim that
the non-Gaussian efI'ects are not negligible, and may even
indicate the presence of a first-order transition in the
problem. We have given a functional formulation of the
field distribution renormalization problem, and this should
be useful in the further treatment of both long- and
short-ranged interaction problems.
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