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Stability analysis of special-point ordering in the basal plane in YBa2Cu307 —h
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It is shown that the Cu-0 basal plane of YBa2Cu307 —& can undergo three types of ordering
wave instabilities at the k points &0,0&, & —,', 0&, or & —,', —,

'
&, depending on the values of the effective

pair interactions between filled and empty oxygen sites. The (0,0) instability gives rise to the ob-
served chains of oxygen atoms along either the a or the b axis of the crystals. The ( —,',0) and
& —,', —,

'
& instabilities produce doubling and quadrupling of the unit cell, respectively. Comparison

with experiments suggests the necessity for interactions beyond nearest neighbors.

The structure of the high-temperature superconductor
YBa2Cu307 —z has recently been refined in a series of neu-
tron powder diA'raction analyses. ' This structure, as re-
ported also by x-ray diffraction, consists of a stack of
three perovskite cells with a Ba-Y-Ba sequence along the c
axis. Of crucial importance in the neutron refinement is
the presence of ordered chains of oxygen atoms along the
b axis of the basal plane with oxygen vacancies along the a
axis to give an orthorhombic cell of a=3.822 A and
b=3.885 A with c=3b=11.68 A.

The importance to superconductivity of the ordered 0-
Cu-0 chains along (010) has been discussed by Massidda,
Yu, Freeman, and Koelling, and has been demonstrated
by Schuller et al. who showed, via x-ray scattering, that
there is an orthorhombic-tetragonal phase transition at—750'C presumably associated with a disordering of the
oxygens between the two chains along with a possible oxy-
gen loss. When a powder sample was rapidly quenched
from above 750'C the tetragonal state was preserved and
the superconducting T, was reduced from 92.5 to —50 K.
This work has recently been extended by Jorgensen and
co-workers ' who studied in detail the chain disorder and
oxygen loss (on both chains) and the attendant conse-
quences for superconductivity. At the orthorhombic-
tetragonal transition 8=0.5.

We present here a stability analysis of the ordering in
the Cu-0 basal plane of the YBa2Cu307 q structure.
Our objective is to assign to the possible two-dimensional
(2D) ordered states stability boundaries based on the rela-
tive strengths of the relevant pairwise (Ising) interaction
energies and thereby to investigate the energetics of the
ordering transition in this material.

Consider the Cu-0 basal plane of the perovskite-based
structure in Fig. 1. There are two types of oxygen sites,
O(4) and O(5), ' occupying two interpenetrating sublat-
tices, say a and P, respectively. Although drawn as
squares (dashed outlines) these sublattices have rectangu-
lar symmetry mm. The formation of 0-Cu-0 rows can be
considered as an ordering reaction of filled (0) and vacant
(&) sites on the oxygen framework. Our problem can
then be treated as an Ising model with oxygen sites in-

teracting by eff'ective pairwise forces.
The strongest interaction is expected to be the nearest-

neighbor one, V~, which couples the two sublattices. It is
also necessary to include two second-neighbor-interac-
tions, V2 which is mediated by the Cu ion, and V3 which is
not. Both V2 and V3 connect sites on the same sublattice
as in Fig. 1. The signs and strengths of the effective pair
interactions will, of course, depend on the electronic struc-
ture of the full three-dimensional crystal. We adopt the
usual convention that V, & 0 favors "ordering" of the rth
pair (unlike site occupation), and V„(0 favors "cluster-
ing" (like-site occupation), where

V, —,
' [V,(O —0)+V„(O—a) —2V„(O —O)] .

We may then perform an ordering stability analysis of
the 2D Ising problem by formally expanding the free ener-

gy to second order in the configuration variables. In a

t
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FIG. 1. Oxygen sublattices on the basal (a b) plane of the-
YBa2Cu307 —~ structure. The effective pair interaction energies,
Vl, V2, and V3, are indicated. V2 and V3 are both second-
neighbor energies with V2 mediated by Cu.
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The second step consists of a lattice Fourier transform
over N sites of a suitably large region:

y =—g g V„„(k)o„(k)a„(—k)
N

& nn'
(4)

in which V„„(k) is the Fourier transform of the eA'ective
pair interactions, v„„, and o„(k) is the amplitude of an
"occupancy wave" on sublattice n. In the third step, the
diagonalization is completed by defining "normal modes"
r(k).

mean-field approximation the configuration entropy is site
diagonal in the configuration variables so that all structur-
al eff'ects are determined by the pair interaction term writ-
ten in its most general form as

y= —,
' g g v(R +p„—R —p„)o(R +p„)

nn'mm'

x o(R +p„), (2)

where R designates a lattice vector and p„a position in-
side the unit cell. The interaction parameters depend on
the distance between lattice sites and the configuration
variables o denote site occupancy, i.e., +1 is filled, —1 is
empty. The summations extend over all pairs of sites,
compatible with the limited range of interactions v con-
sidered. The correspondence between these interactions
and the more familiar V~, V2, and V3 introduced above is
established in Fig. 1.

The quadratic form (2) must now be diagonalized.
This is done in three steps: As originally suggested by
Khachaturyan, ' translational symmetry is restored to the
interactions by converting v to a matrix of elements v„„,
the order of the matrix being equal to the number of sub-
lattices considered, here equal to two. Equation (2) thus
becomes

(where all concentration amplitudes vanish) is p4m and
the SP are (0,0), ( 2,0), and ( —,', —,

' ) with indices given by
k=[k~k2] =2x[h~h2]/an, an being the lattice parameter
of the square (disordered) sublattices. The search for
minima in k space will be limited here to those three SP.

The Fourier transforms of the interaction parameters
are given by

V~~(k) =2V2cos(2xh ~)+2V3cos(2xh2),

V22(k) =2V3cos(2nh ~)+2V2cos(2xh2), (7)

V~2(k) =V2~(k) =2V~[cos[m(h~+h2)]+cos[x(h~ —h2)]j.
In these equations, the V, parameters are those defined in
Fig. 1.

At the SP, the eigenvalues take on very simple forms:

(0,0): A ~ (0,0) =2 (V2+ V3) + 41 V]

&-',»: & (-',0)=+21 V2 V31,

(2, 2): A+. (2, 2 )= —2(V2+V3) .

In the search for minimum eigenvalues, only the upper
sign needs to be considered. Depending on the relative
values of V~, V2, and V3, one SP eigenvalue will be lower
than the other two. Following earlier work on the fcc and
bcc lattices ' ' and the hcp structure, we may divide
Eqs. (8) by V&. Normalized interaction parameters x= V2/V~ and y = V3/V~ can then be used as coordinates in
an "ordering instability map" which indicates the regions
in interaction parameter space where a given SP wave will
be most unstable. Boundaries between such regions are
obtained by equating diferent SP eigenvalues. The re-
sulting map is shown in Fig. 2 for the case V~ & 0.

It is seen that the (0,0) instability is favored for order-
ing first-neighbor and clustering second-neighbor interac-
tions. Conversely, the ( —,', ~z) instability is favored by

n'

where U is a unitary matrix diagonalizing V. Let the ei-
genvalues of V be A„. The fully diagonalized expression is
thus

c1/2, 0%

&1/2 1/2)

n

Instability will occur for that normal-mode wave vector k
which will give the minimum A„ its lowest value.

As argued by Lifshitz, " any k-space function, such as
V„„.or A„, must have certain symmetry —dictated extre-
ma at points at which symmetry elements intersect. It
was shown elsewhere that, for any of the 230 crystallo-
graphic space groups, the group pertinent to the deter-
mination of these "special points" (SP) satisfying the
Lifshitz criterion can be constructed as follows: Take the
point group of the structure, include the inversion if it is
not already present, and form the direct product of the re-
sulting point group with the translation group of the re-
ciprocal lattice. The SP are the Wyckoff positions' with
fixed coordinates for the new space group. In the present
case, the two-dimensional group of the disordered state

c0 0~ (1/2, 0%

FIG. 2. Ordering instability map for V& &0 (ordering first-
neighbor interaction). Coordinates are the ratios x=V2/V~,
y =V3/V&. While this map is appropriate for all co, the actual
ground-state structure in each regime, at a particular
stoichiometry, requires careful consideration (Ref. 15).
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large ordering second-neighbor interactions, and ( —, , 0) is
favored by Vz and V3 diA'ering in sign.

When a given "ordering wave" (that with lowest eigen-
value) becomes unstable, the corresponding normal-mode
amplitude will increase, thereby modulating the sublattice
site occupation. Since the normal mode I ~ (correspond-
ing to A+ ) will always have lowest energy, we have by Eq.
(5), with I =0,

01(k) =uii(k)r/(k),

02(k) = u 2i (k)r+ (k)
(9)

b (
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E (per Cu) = 4(V —V —V )b 1 2 3

FIG. 3. Ground state (V~ & 0) corresponding to the (0,0) in-
stability at co —,

' (h=0). Included also is a schematic depic-
tion of a twin boundary along the 2D [1 ll, or 3D [110],direc-
tion across which the two ordered domains I and II with ortho-
rhombic axes a eh are matched. Note that the [11]directions in
both domains are parallel and that "wrong" pairs of first and
second neighbors are created across the boundary. The (posi-
tive) boundary energy Eb is noted, as is the tilt angle,
8 (6 —a)/a, between I and II.

where uii and u2i are the components of the eigenvector
corresponding to A+(k). At the (0,0) SP, the eigenvec-
tors are

[uii, u2i] = [1, —sgn(Vi)],
1

2
(10)

sgn(Vi) =
~

Vi ~/Vi .

For the Brillouin-zone center instability, infinite-wave-
length modulations will be placed on the a and P sublat-
tices; for Vi & 0 the two waves will be out of phase, i.e.,
there will be maximum concentration of filled sites on one
sublattice and minimum on the other. For V~ & 0, the two
waves will be in phase. In the former case, the resulting
structure, for average concentration of filled sites, co= —,

'

(8=0), will have the observed' unit cell as depicted in
Fig. 3. (This figure also shows a twin boundary as dis-
cussed below. )

For the zone-boundary instabilities ( —,', 0) and ( —,', —,
' )

intrasublattice modulations are produced, leading to dou-
bling and quadrupling of the original unit cell, respective-

ly. For both cases, as a result of the vanishing of the oA'-

diagonal element Vi2(k), the eigenvectors are [1,0] and
[0,1]. Hence, by Eq. (9), we have for the ( —,', 0) case,
~, (k) =r+(k), ~,(k) =0. The resulting structure may
be interpreted as consisting of one sublattice modulated
by a ( 2,0) wave, with the other sublattice containing a
random distribution of filled and empty sites. Actual
ground-state structures corresponding to this SP instabili-
ty will be described elsewhere. ' For the ( —,', —,

' ) case (for
compositions near co= 2 ), since A~ =A-, both sublat-
tices will be modulated by a ( —,', —,

' ) wave, producing a
structure with [1,1] rows populated alternately by filled
and empty sites.

At stoichiometries other than —,', more complicated
structures, made up of superpositions of ordering waves, '

may be obtained which include secondary ordering on the
depleted sublattice. Of course, significant deviations in
oxygen content from co= 2 will also lower the transition
temperature for ordering and may lead, as in many 3D or-
dering alloys, to a stabilization of the disordered state on
cooling. This is particularly important in these oxides be-
cause of the oxygen volatility at elevated temperature and
the sensitivity of superconductivity to oxygen content.

Below the ordering transition, the eff'ect of the ob-
served' (0,0) wave is to enrich one sublattice in filled
sites (composition co+5, where A is some appropriate
concentration wave amplitude) and delete the other sub-
lattice correspondingly (composition cp d). In another
region of the sample, the opposite ordering process may
have been initiated. Between these two ordered regions
(d, WO) there will be a domain wall or twin boundary as
depicted in Fig. 3 along the [11] direction. The twin-
related domains are at an angle of 8=(b —a)/a and are
seen as rotationally split spots along (110) in a single-
crystal diAraction pattern. '

It is clear from Fig. 3 that first- and second-neighbor
pairs are reversed across the twin boundary which is
thereby an energetically costly interface, however favor-
able it may otherwise be in terms of lattice matching. It is
straightforward with Eq. (1) to estimate the energy Eb of
this boundary per Cu atom as Eb/4Vi =[1—(x+y)].
From Fig. 2 we note that, over the entire regime of (0,0)
instability, Eb must always be positive because, for
Vi & 0, this regime lies below the line (x+y) =1. The
(110) twin boundaries in YBa2Cu307-b therefore always
cost energy and may attempt, should they not anneal out,
to assume a (metastable) configuration that minimizes the
total boundary energy. For example, because the atom
pairs across the boundary are unfavorable, the pairing can
be thought of as repulsive; the (110) planar separation at
the boundary may thus increase slightly over the normal
(110) planar spacing and be modulated by the alternating
O-O and O-& pairs. If the two boundaries are sufficiently
mobile they will also, under this repulsive interaction, tend
to arrange themselves in a regularly spaced twin lattice.

We note finally that a detailed electron microscopy/
diAraction study of YBa2Cu307 —z by Zandbergen et al. '

shows, on rapidly cooled specimens, ' diA'use ( —,',0,0, )
and (0, 2,0) spots in the [001] zone pattern. This evi-
dence for a ( —, ,0) instability is intriguing because a recent
calculation' has predicted the stability of a ground-state
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structure at co =
4 (8=0.5) which consists of a cell dou-

bling along the [100l direction. Jorgensen and co-
workers find that the chain disordering of
YBazCu307-s takes place at b 0.5; rapid cooling of such
a structure could thereby produce the observed ordering.
We must, however, distinguish here between an ordering
ground state which has superstructure spots at ( —,', 0,0)
[or (0, —,',0)] and the actual ( —,',0) regime in Fig. 2. In
fact, if V„~f(co), the (0,0) instability must prevail at all
co. The combined observations ' then require a cell
doubling structure for co= ~ within the regime (0,0) in

Fig. 2 and this in turn requires appreciable values of V2

and V3 of opposite sign, i.e., higher neighbor eff'ective
oxygen-oxygen interactions are important in these com-
pounds.
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