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We have carried out extensive computer simulations of the dynamic critical behavior of L X L g-
state Potts models for ¢ =2, 3, and 4. We fit the equilibrium relaxation functions for energy and or-
der parameter to a sum of exponential decays and use the finite-size dependence at T, 7« L?, to ex-
tract estimates for z. We find for the longest relaxation time for both energy and for order parameter
that z =2.17+0.04 describes all three values of g. Our results support the dynamic generalization of
the “weak universality”” hypothesis proposed by Suzuki.

I. INTRODUCTION

Extensive research carried out over the past several de-
cades has led to a fairly complete understanding of static
critical phenomena in simple lattice models. The same
degree of knowledge does not exist about the time-
dependent properties of these models in the vicinity of the
critical temperature T,.. Various theoretical approaches!
have been taken with an emphasis on the determination of
a dynamic critical exponent z which describes the critical
slowing down. A characteristic relaxation time 7 is ex-
pected to describe the decay of time-displaced correla-
tions, and as T, is approached the relaxation time is ex-
pected to diverge as
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where £ is the correlation length. If the correlation length
diverges as
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where A=zv. We wish to emphasize that this describes
only the linear, or equilibrium, relaxation time. The non-
linear relaxation time which describes the approach to
equilibrium diverges with a different exponent A; which
is related to A by AM=A—p3 for the order parameter and
AE=A_—(1—a) for the internal energy.? Thus, a precise
knowledge of the dynamic exponent z is needed to charac-
terize the dynamic behavior and to allow comparison with
theory. The conventional theory of critical slowing down
predicts that z=2-—7. In contrast, e-expansion
renormalization-group theory combining results in
d=1+¢€ dimensions and d =4—¢€ dimensions predicts
that z=2.126 for the two-dimensional Ising model.}
These two results predict small deviations from 2 but are
clearly incompatible with each other. In a more general
sense, we are still searching for the criteria which deter-
mine not only dynamic exponents for particular systems
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but also dynamic universality.

The g-state Potts model offers a good opportunity to
study dynamic critical behavior in closely related systems
with different static critical exponents. Since Potts origi-
nally proposed this model* in 1952, substantial informa-
tion about the static properties has been accumulated.® In
two dimensions, we know that a second-order phase tran-
sition occurs for ¢ =2, 3, and 4 and that the transition be-
comes first order for g >4. For q <4, the critical temper-
atures are known and static exponents assume different
values for each gq. A broad range of numerical estimates
exist for z, from series expansions, Monte Carlo (MC)
studies, and Monte Carlo renormalization-group studies,
but as shown in Table I, they are scattered and to a large
extent incompatible with each other. [A more complete
list of numerical estimates prior to 1981 for g =2 (the Is-
ing model) is given in Ref. 18.] To further complicate
matters, we note that a high-resolution inelastic-neutron-
scattering study!® of the two-dimensional Ising-type anti-
ferromagnet Rb,CoF, yielded a value of z=1.69%0.05.
The variation in the results is particularly pronounced
since the deviation from 2 is really the quantity of in-
terest. Due to the lack of accurate estimates for z for the
different g values, it is not yet possible to unambiguously
answer some fundamental questions such as whether the
concept of universality in dynamics has the same impor-
tance as in statics; and if so, is there an intrinsic relation-
ship between static and dynamic critical behavior.

In this paper, we present results of an extensive Monte
Carlo study of two-, three-, and four-state Potts models
carried out at the critical temperature of each model and
analyzed using dynamic finite-size scaling. In the next
section, we describe the model, simulation, and methods
of analysis used. In Sec. III, we present results and
analysis, and in Sec. IV, we discuss the implications of
this work. We summarize and conclude in Sec. V.

II. MODEL AND METHOD

The Hamiltonian of the Potts model is defined as
H({U})=—K§50,aj , 4)

where the spins o; and o; may have g-different values.
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The inverse temperature factor B is absorbed in K, and
the index i,j runs over all nearest-neighbor pairs. We as-
sume K >0 so that in the ground state all spins align
parallel via a ferromagnetic interaction.

The kinetic evolution of the model is governed by a
master equation for the probability function P({o};t)
which gives the probability that a spin configuration {o}
occurs at time . The master equation can be written as?°

Ma%m: S [P{o}50)W({o)'—{o})
o}’

_P(o}; W (o} —{a})]. (&)

Here W({o}'—{o}) is the transition probability per unit
time for a spin configuration to transfer from {o}’ to {o}.

In our Monte Carlo simulation, the master equation is
discretized by a Markovian chain. We have used a
“checkerboard”?! scheme to update a total spin sublattice
of a square lattice in order to utilize the vector feature of
the CDC Cyber 205 supercomputer. The choice of
W(lo}—{o}")is

W({o}—{o})=1[1— tanh(AH)] , (6)

where AH=H({o}')—H({o}). The transition probabili-
ty is symmetric and satisfies the condition

W{ol—{o})  _am
Wiloy —lo]) ¢ @

With this spin-update scheme and the above transition
probability, a finite system will decay to a stationary state
with the desired Boltzmann distribution no matter what
the initial configuration is.?° If we rewrite Eq. (5) in a
matrix form, then

dP({a};t) o~ .
3 =LP({c};t), (8

where L is the Liouville operator whose matrix elements
are given by

Wto}—{a}), {o)#{o})

The fact that P({o};t) decays to an equilibrium distribu-
tion P, means that all the eigenvalues of L are negative
except for Py, which is zero. For a finite system, the spec-
trum of eigenvalues is discrete and results in exponential
decay of time-displaced correlation functions for a finite
system even at the critical temperature. Though we did
not use the more conventional single spin-flip scheme, we
expect that the universal properties, such as the value of
the dynamic critical exponent z, will not be affected by
different spin-update schemes. Support for this expecta-
tion comes from Monte Carlo calculations on the Ising
model by Williams.?*> Although the relaxation time 7
may actually vary, the change is assumed to happen only

TABLE 1. Survey of estimates for the dynamic exponent z
previously made for g-state Potts models.

Q
Ref. 2 3 4
6 2.2
7 2.2
8 2.13
9 2.0 2.8 4.0
10 2.7
11 1.90 2.28 2.85
12 2.24
13 1.819 1.922 2.0
14 2.0
15 2.125
16 1.90
17 2.0
This work
“‘best estimates’ 2.13 2.17 2.19

in the irrelevant factor which affécts the entire time scale.
The magnetization, or order parameter, is defined as'!

) (10)

where g is the number of substates (¢ =2,3,4), N is the
number of spins, and N, is the number of spins in a sub-
state. Note that in this definition, the magnetization is al-
ways non-negative. All our simulations are performed at
the critical temperature of an infinite system, but this tem-
perature is a little below the temperature where the
specific heat shows a peak for the finite system, so in fact
our finite system is under its “critical” temperature. Be-
cause we deal with a finite system in extremely long simu-
lations, eventually the system will shift from one free-
energy minimum, where a substate dominates, to another
free-energy minimum (minima) where another substate
dominates. Of course it is just an alternative statement to
saying that there is no true symmetry breaking in a finite
system. By defining magnetization according to Eq. (10),
we sample the relaxation time of the magnetic fluctuation
rather than calculate the time characteristic for the free-
energy-minimum —shifting process mentioned above.

From the magnetization, its time-displaced correlation
function

t

1 ™7 MM — (M )?

()= > (11)

tmax*t t'=0 <M2>—<M>2
is calculated. In practice, we take two sets 4,B of MC
sequences of the magnetization data from the same simu-
lation. A and B have the same number of data, but while
the MC sequence of set A starts from a time assigned as
zero, the MC sequence of set B begins at time which is ¢
in the time reference frame of set 4. So every entry of set
B is corresponding to an entry of set 4 through a retard-
ed time ¢. Then ¢(¢) is given by standard definition of
correlation between two data sets,
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where N is the number of total data in set 4 or B. ¢(2) is
assumed to have a form used by Kretschmer et al.?® for a
Glauber model with nonconserved order parameters,

t/

N —t/r
¢(Z)= 2 A,«e !

i=1

(try>73> " >71,>0), (13)

where the 7; are determined by the eigenvalues of the
Liouville operator. The largest 7 is singled out as the re-
laxation time which is used to determine z. A corre-
sponding process may be carried out for the internal ener-
gy-

We have considered L XL systems with periodic
boundary conditions. According to the hypothesis of dy-
namic finite-size scaling, in the dynamic critical region the
time-dependent magnetization is scaled as**

M(e,L,t)=L ~BVg(eL 1V 1L ~7) , (14)

where €= |T—T, | /T,. This implies that at T, the re-
laxation time is given by

T=alL’ (15)
for sufficiently large L.

The general features which we found for ¢(¢) are shown
in Fig. 1. There apparently are three time regions where
the behavior of ¢(¢) is different. The first region (region I)
starts from ¢(z)=1 and ends at about ¢(¢)=~e ™ In
this region we see a fast decay of ¢(¢). More than one 7
gives non-negligible contributions to this fast decay so the
data analysis is a little complicated in this short-time re-
gion. The second region (region II) extends from
d(1)=~e %3 to ¢(t)=e ~ 1%, where an exponential function
Ae ~'/ gives an acceptable fit. Beyond the second region,
the quality of statistics is deteriorated by the weaker
correlation of magnetization when the time displacement
is longer than the characteristic relaxation time. The MC
data begin oscillating and meaningful information is
difficult to extract from them. The values of ¢(z) which
mark the boundaries to these regions are valid only for

¢ (t) o5t

Region
11

t

FIG. 1. Characteristic behavior of the time-displaced correla-
tion function ¢(z).

these models; in other models the regions may be distri-
buted differently.
To ensure the accuracy of the analysis of data, we used
both a two-exponent fit
f(t): A 1€

—1/7y —t/7,

+Aze (16)

to approximate the “long-time” behavior of ¢(¢) as well as
a single-exponent fit (~ Ae ~'/7) and compare the results.
The use of Eq. (16) allows us to extend the range of ¢ over
which accurate information can be obtained to smaller ¢
and, most importantly, to provide a first-order correction
to the estimate of the longest relaxation time 7,. The two
methods yielded results which only differed slightly from
each other.

We performed Monte Carlo simulations® on a series of
L X L lattices with periodic boundary conditions with L
ranging from 12 to 64. For every lattice size, multiple
simulations were performed, and for each individual MC
simulation, 10° Monte Carlo steps/site (MCS) were first
discarded and then 3.8X10° MCS were retained for
determining ¢(z). For smaller lattice sizes, such as L =12
and 16, we performed 4—6 MC simulations; for larger lat-
tice size, L =50 or 64, we carried out 10 MC simulations
to average out increased fluctuations. We then calculated
the time-displaced correlation function of magnetization
and extracted the relaxation time 7 using a standard non-
linear least-squares-fitting method.?® Finally, we made a
log-log plot of 7 versus L to find the value of z.

25

III. RESULTS

As one check of our Monte Carlo approach for the dy-
namic problem, we calculated static critical exponents
from our data. The equilibrium magnetization is expected

to satisfy the scaling relation?’
M=bL A" (17

In Fig. 2 we show a log-log plot of magnetization versus

0.8
m
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FIG. 2. Log-log plot of the magnetization M vs lattice size L
for g-state Potts models at their respective values of T,.. Data for
g =2 and 4 are essentially identical and are shown by closed cir-
cles. Data for ¢ =3 are shown by open circles. The solid lines
have the known asymptotic slopes equal to 3/v.
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lattice size L. As we can see, the accuracy of our Monte
Carlo data is very high regarding the static behavior of all
three Potts models. In addition, Fig. 2 shows that within
the accuracy of our data, the asymptotic finite-size scaling
regime is reached for the lattice sizes studied. (Of course,
this does not guarantee that we have the same quality of
data or that the asymptotic size regime has been reached
for the dynamic behavior.)

Figures 3 and 4 display typical pictures resulting from
the data-fitting procedure for g=4 on a lattice with
L =64. Figure 3 is for a two-exponent fit of the magneti-
zation relaxation data in region I. Note that though the
parameters of the fitting function are derived from region
I, the curve calculated from those parameters fits the data
quite well in part of region II, until ¢(¢z) approaches about
e !5, (In a smaller lattice, the fit is even better.) The
same MC data are shown in Fig. 4, but this time the fitted
curve is the result of one-exponent fit in region II. The
difference in the estimates for the longest relaxation time
71 is less than 2%.

Using this procedure we obtained estimates for 7; and
7, for all lattice sizes for all three g values. We show a
log-log plot of 7, versus lattice size L in Fig. 5. Within
the accuracy of our data, we find that a single power law
[see Eq. (15)] describes the results for all lattice sizes. The
slopes of linear fits to the data give estimates for z which
are 2.14+0.05 for g=2, 2.18+0.05 for ¢g=3, and
2.211+0.06 for g=4. The value of the amplitude @ in-
creases monotonically for increasing g.

As shown in Fig. 6, the second relaxation times for the
magnetization are usually about 10% of the correspond-
ing longest relaxation time. Their error bars are too large
to give a truly accurate estimate of scaling exponent asso-
ciated with 7,; however, it appears that the exponent is
close to z, and larger than y/v. The value of y /v is the
scaling exponent of the initial (short-time) relaxation time
7, characteristic of the dynamics of small domains whose
size is much less than the correlation length?®. In this
time regime, the conventional dynamic theory holds;'
therefore, ¥ /v is a lower bound for the dynamic critical
exponent.

0.8}

02

o 4000 BC;OO
t(MCS)

12 000

FIG. 3. Two-exponent fit to the magnetization correlation
function ¢(z) for the four-state Potts model on an L =64 lattice.
The bold curve shows the data and the light curve is the result of
the fit routine. Data were fitted from =100 to 2600 MCS.

b (1)

o] 4000 12 000
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FIG. 4. One-exponent fit for the four-state Potts-model data
shown in Fig. 3. The bold curve shows the data and the light
curve is the result of the fit routine. Data are fitted from
t=2600 to 9000 MCS.

Though it is also straightforward to obtain energy data
from MC simulations, and the energy data are supposed
to yield the same dynamic critical exponent z as given by
magnetization data, we found that extracting z in this way
is difficult. The energy time-displaced correlation decays
much faster than the magnetization time-displaced corre-
lation as shown in Fig. 7. The dynamics of small clusters,
which have a larger ratio of surface to volume, may not
significantly affect the decay of magnetization correlation,
but they are the reason for the faster short-time decay of
energy correlations. If we write the energy time-displaced
correlation in the form of Eq. (13), it means that the am-
plitude A; for the shorter relaxation times may be compa-
rable to 4, the amplitude for the longest relaxation time.

104~

z=2.21
Z=2.18
z=2.14
103}
T
2
105} q
ol 4
o|3
al2
10! . .
10! 102

L

FIG. 5. Log-log plot of the longest relaxation time 7, for the
magnetization vs lattice size L.
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FIG. 6. Log-log plot of the second longest relaxation time 7,
vs lattice size L. Note the difference in vertical scale as com-
pared to Fig. 5.

This effect becomes more pronounced when the lattice
size gets larger because the larger lattice can contain more
small clusters. Using a two-parameter fit for the energy
time-displaced correlation, we find A4, is about 0.5 and
A, is about 0.3; whereas, in the magnetization case, 4, is
at least 0.9 and A, is close to 0.1 for all the lattice sizes
we used. Thus, for the energy time-displaced correlation
data, in the short-time region, to get a reasonable data fit,
one has to use a sum of many exponential terms. If we fit
the data from ¢(z)=1 to e "> by the two-exponent
method, the fitting quality is displayed in Fig. 8. Al-
though the fit seems quite reasonable, when we look care-
fully at short times (see the inset), we see systematic devi-
ations from the data. This difference is attributable to the
truncation of Eq. (13). In contrast, the magnetization
data are well described by a two-exponential fit almost to
t=0. We therefore carried out two-exponent fits begin-
ning with ¢(¢)~0.6 and then extending to smaller values
(longer times). The longest relaxation times and exponent
z derived from energy data are presented in Fig. 9.
Within the errors, the relaxation times are the same as for
the magnetization and yield the same value of z. The
second relaxation time for the energy is imprecise, see Fig.
10, but suggests a value of z which is less than 2.

IV. DISCUSSION

If we combine the exponent estimates for magnetization
and energy, we obtain “best estimates” of 2.13 for ¢ =2,
2.17 for ¢=3, and 2.19 for g=4, with an error of
~3-49% on each. The value for g =2 agrees quite well
with the recent large-scale Monte Carlo renormalization-
group study of Williams.® Although these estimates in-
crease slightly as g becomes larger, the variation is well

[¢] 4000 8000

t (MCS)

FIG. 7. Comparison of the time-displaced correlation func-
tion for the magnetization ( ) and the internal energy
(— — —) for the four-state Potts model on an L = 64 lattice.

within the error bars. We therefore believe that our re-
sults strongly suggest that the dynamic exponent z which
governs the long-time relaxation is the same for all three
values of ¢q. This finding is in contrast with the static be-
havior of these models which shows distinctly different
critical exponents for each g value. Suzuki’s idea?® of
“weak universality” places ¢ =2 and 4 in the same class
since “‘reduced” critical exponents (2—a)/v, ¥ /v, etc (or
equivalently the exponent 8) are the same, but the ¢g=3
model has slightly different reduced exponents, e.g.,
Y /v=1.733 instead of 1.750. However, the dynamic ex-
ponent z is already a reduced exponent since z=A/v;
thus, the idea of weak universality appears to be stronger
for dynamics than for statics. A second extension of
weak universality would be to assume that § determines
the dynamic class. In this case, we would expect that
g =2 and 4 would have the same value of z, but that for
q =3 the value would be about 7% smaller (i.e., =14 for
g=3 and 6=15 for ¢=2,4). The data do not seem to
support this scenario.

According to Kretschmer et al.,?’ there should be an

$(1)

9 2000 8000

t(MCS)

12 000

FIG. 8. Two-exponent fit to the time-displaced correlation
function for the internal energy for the four-state Potts model
and an L =64 lattice. The bold curve shows the data and the
light curve is the result of the fit routine. The inset shows a
magnified view of the short-time behavior.
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FIG. 9. Log-log plot of the longest relaxation time 7, for the
internal energy vs lattice size.

entire spectrum of relaxation times 7;, but all of them
should scale with the same exponent. In contrast, we find
a second “effective” relaxation time 7, which seems to be
described by an exponent z’ <z. The errors in our esti-
mates are sufficiently large that we cannot be certain if z’
is the same for all g values.

Our results of the value of z are quite far from those
predicted by Domany (see Table I), who proposed a scal-
ing relation’

z=2+4a)/v, (18)

which implies that z is 2, 2.8, and 4 for two-, three-, and
four-state Potts models, respectively. Our results give
much smaller values of z, and although we cannot ensure
that we have calculated the exact relaxation time, we do
not believe that the values of z could be consistent with
Eq. (18).

If we look at the master equation [Egs. (5) and (8)], we
realize that the spectrum of the Liouville operator'? is
nearly continuous. For the 4-state Potts model on an
L =64 lattice, the operator is a 4*°® 4% matrix, and it
is very difficult to single out a particular eigenvalue.
From intuitive physical grounds, we can argue that due to
the finiteness of the system, there may be a cutoff in the
spectrum of eigenvalues, which limits the dynamics of the
domains commensurate to the correlation length in size.
The cutoff value of A~ ! should scale as L? and the tail
which characterizes the dynamics of small clusters should
scale as LY’". All other A are assumed scale by an ex-
ponent less than z but larger than y /v. A more appropri-
ate form of ¢(¢) than Eq. (13) would be

b(t)= fowe—)‘D‘P(k)qSkZAdA, (19)

where D is a factor relevant to the dimension of a cluster’s
volume (for magnetization) or surface (for energy), 1/DA
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FIG. 10. Log-log plot of the second longest relaxation time 7,
for the internal energy vs lattice size L. Note the difference in
vertical scale as compared to Fig. 9.

is the actual relaxation time we calculated, ¢, is a func-
tion related to probability function P,({c}), which is an
eigenvalue of the Liouville operator, and 4, is an average
over the coefficients of the eigenvector P,({o}) obtained
by decomposing the initial probability function P({o};t)
with respect to the eigenvector set of the Liouville opera-
tor. By carrying out an inverse Laplacian transformation
on ¢(t), we could obtain the product P(A)$; 4;, and see
how it is scaled with respect to lattice size L. Our pro-
cedure simply uses two “‘effective’ relaxation times to de-
scribe the behavior given by Eq. (19).

V. CONCLUSION

Using large-scale Monte Carlo simulations of the linear
(equilibrium) relaxation, we find that more than one ex-
ponential decay term is needed to accurately describe the
relaxation function out to rather long times. We obtain
essentially the same value for z for energy and magnetiza-
tion for all three g values. This result suggests that an ex-
tension of weak universality applies to dynamic critical
behavior.

Note added in proof- We have just learned of two re-
cent simulation studies of the nonlinear relaxation of these
models. O. F. de Alcantara Bonfim (unpublished) used
dynamic scaling arguments together with Monte Carlo
data and obtained estimates for z which are quite close to
ours. L. de Arcangelis and N. Jan [J. Phys. A 19, L1179
(1986)] found much larger values using a dynamic Monte
Carlo renormalization-group method.
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