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Accelerated dynamics in simulations of first-order phase transitions
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We show that the method of Fourier acceleration can be used to speed up tunneling between
degenerate and near-degenerate minima of the eA'ective action in Langevin simulations of statisti-
cal systems. Acceleration factors of two orders of magnitude are attained. Such improvement is
important for the study of weak first-order phase transitions, for simulations of spin glasses, and
for the method of simulated annealing in optimization problems.

"Fourier acceleration" is the name given to a method
for speeding up various iterative numerical methods. It
was introduced' as a means to defeat "critical slowing
down" in the simulation of Langevin diffusion processes,
that is, the divergence of autocorrelation times as a criti-
cal point is approached. Since then, it has been applied to
matrix inversion in the simulation of fermionic effects in
quantum chromodynamics, to the minimization prob-
lem posed by gauge fixing, to relaxation on a fractal lat-
tice, and to microcanonical simulations. In this Brief
Report, we demonstrate the usefulness of the method for
speeding up tunneling between degenerate and near-
degenerate ground states. While our focus is on the be-
havior of a statistical system near a first-order transition,
it will be apparent that studies of a variety of complex sta-
tistical systems will benefit from adaptations of the tech-
nique.

Two related problems are frequently faced in the simu-
lation of such systems. One is how does one evade local
minima of the effective Hamiltonian and find the global
minimum. This, of course, is the central issue when one
employs simulated annealing in the solution of optimiza-
tion problems. The other problem is how does one
efficiently sample the states close in energy to that global
minimum, including near-degenerate local minima
separated from it by potential barriers~ This is the prob-
lem plaguing simulations of disordered systems such as
spin glasses; it is closely connected to the large dynamical
exponents characteristic of these systems, which cause
critical slowing down to be particularly severe.

Both problems appear in the numerical study of first-
order phase transitions. ' Consider the two methods often
used to pin down the location of weak transitions. In the
hysteresis method, one alternately heats and cools the sys-
tem past the transition point and watches for tunneling
from the metastable phase to the stable one; the more
easily such tunneling may be brought about, the smaller
the hysteresis loop, and the higher the precision of the
determination of the transition temperature. In cases
where the gap is too small to observe directly in the Auc-
tuations, one studies instead the distribution of some field
as the system evolves at constant temperature. A histo-
gram of this distribution will show two peaks, one for each
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The probability distribution P ((pl, z) approaches as
~ the equilibrium distribution Po~e . This ap-

proach is governed by the Fokker-Planck equation, ' the
solution to which is, in general, an eigenfunction expan-
sion:
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where e; & 0, and the coefficients C; depend on the initial
conditions. The eigenvalues e; determine both the rate of
approach to equilibrium and the autocorrelation times of
the equilibrium Auctuations. It was argued in Ref. 2 that
the lowest eigenvalues correspond to fluctuations in the in-
frared modes of the theory, and hence these modes have
the longest autocorrelation times. Near a critical point,
the lowest s; approach zero and cause critical slowing
down.

There is an infinite number of stochastic processes
which lead to the same stationary distribution Po~e
In general, these processes will possess different Fokker-
Planck spectra. In particular, Eq. (I) may be generalized
to

By(x, z)
t d g BSfyl +g)12 ( )y b~( )

rl y. (4)

phase, and the relative population of these peaks indicates
which side of the transition the system is in. Here it is
essential to have rapid tunneling between the two phases,
since only thus does one build up the statistics necessary
for reliable comparison of the populations. " The solution
to both these problems lies in the acceleration of tunneling
through potential barriers.

We now describe the method of Fourier acceleration
as applied to the Langevin equation. In the simplest
Langevin process, the evolution of a scalar field p in
"simulation time" z is described by
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S is the action of a d-dimensional field theory, and the
Gaussian noise g satisfies
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where Q~» is a positive delinite matrix. The eigenvalues
and eigenfunctions in (3) are now dependent on the choice
one makes for Q„» (with the exception of Po, correspond-
ing to ao 0, which is guaranteed to be unchanged).
Fourier acceleration consists of setting Q„»~h(x —y),
where 6, is the propagator corresponding to the lowest-
mass particle in the theory. [The kernel Q is local in
momentum space, so the convolutions in (4) are evaluated
using Fourier transforms. ] It is easy to show in perturba-
tion theory that the autocorrelation time then becomes
independent of the momentum scale; effectively, the
Fokker-Planck spectrum has been modiiied to speed up
the evolution of the infrared modes. Since all features of
the time evolution of the theory are governed by (3), it
follows that equilibration times, autocorrelation times,
and tunneling times for the infrared modes will all be re-
duced.

The theory we have studied is the scalar field theory in
two dimensions with the Euclidean action

For po greater than some critical value pg'(A, ), the symme-
try p~ —

p is spontaneously broken. In this regime,
there is a first-order transition as h is varied through zero
at constant k and po, with limy o~(p) a&(A, , po). At
h 0, the curvature at either minimum of the classical po-
tential gives the tree level mass via m Xpo/6, and this is
the mass we use in d (x) for Fourier acceleration.

We discretize the continuous process (4) via the simple
Euler method, with the index i replacing i:
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where the Gaussian random variables g;(x) are normal-
ized according to
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The kernel for Fourier acceleration is

(7)
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i.e., the lattice propagator on an N XN lattice, normalized
so that lim Q„» =6„» and so that the minimum value
of the summand is 1. For both the accelerated and the
unaccelerated algorithm, a Gnite d~ introduces a sys-
tematic error which may be characterized as a correction
to the effective action, so that Po~exp( —S,a), with

S„=S+drS,+(dr)'S, + .

In order to compare the two algorithms, we shifted po in
order to eliminate the O(dr) correction. Thus runs with
equal parameters should represent comparable physics.
(Detailed comparison of observables requires rescaling of
p as well, but this is irrelevant to our purposes. )

We simulated the theory on a lattice with 16x 16 sites,
setting dr-0. 1. We show in Fig. 1(a) the time evolution
of the volume-averaged Geld when h =0, in the accelerat-
ed method. Note the frequent tunnelings between the P(0 and the p )0 vacua, which allow rapid accumulation
of the histogram in Fig. 1(b). The tunneling rate in this
run of 3 x 10 iterations is seen to be dramatically large
when juxtaposed with the fact that the corresponding
unaccelerated run tunneled only once in 1.8 x 10 itera-
tions.

We show in Fig. 2(a) the time evolution for the unac-
celerated method in a case where it did tunnel in a reason-
able length of time. The contrast with the accelerated run
in Fig. 2(b) is striking. The accelerated run, extended to
3x10 iterations, allows accumulation of a balanced his-
togram like that shown in Fig. 1(b), which makes it clear
that h =0 is indeed the site of the transition; the unac-
celerated run gives a messy, unbalanced histogram which
would leave considerable room for doubt. We have found
that the mean time between tunneling events can be es-
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FIG. l. (a) Fourier-accelerated time evolution of the vol-
ume-averaged magnetization (p& for X, -0.4, po -1.6, h -0, with

dt 0.1. Initial conditions were a "cold start, " with p +1.6.
Each point represents an average over ten successive iterations.
(b) A histogram of the iteration-by-iteration values.
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FIG. 2. (a) Unaccelerated evolution for )r, 0.4, pp 1.4,
h -0, with dt -0.1. Initial conditions as in Fig. 1. (b) Ac-
celerated evolution for the same case. Note the change in hor-
izontal scale between (a) and (b).

FIG. 3. (a) Accelerated evolution for it, 0.4, Itrp 1.6,
h-0.005 (asymmetric minima), with dt-0. 1. Initial condi-
tions as in Fig. 1. (b) Histogram of the iteration-by-iteration
values.

timated consistently by taking half the autocorrelation
time of (p). By this measure, Fourier acceleration speeds
up tunneling by two orders of magnitude for the cases we
have studied.

Finally, we show in Fig. 3 the evolution for the theory
with nondegenerate minima, simulated with Fourier ac-
celeration, and the corresponding histogram. The initial
condition for the run was P -+etio, which is near the false
minimum. Two features should be noted: (1) The initial
tunneling to the true vacuum was immediate. A hys-
teresis loop calculated with this algorithm would give the
location of the transition at h 0 with high precision. By
contrast, for this choice of parameters, the unaccelerated
simulation kept the system in the metastable state for
3x10 iterations without tunneling; the corresponding
hysteresis loop would be large. (2) Tunneling back up to
the false minimum was fairly frequent, so that one could
begin to accumulate a realistic histogram. This is clearly
impractical with the unaccelerated algorithm.

A complete comparison of the accelerated with the
unaccelerated algorithm would include a variation of dr.
One condition that should be imposed is that systematic
errors in the two algorithms be the same. As mentioned
above, we have shifted po to eliminate the O(dr) term in
S,tr, but O(dr ) terms remain. In some problems, more-
over, it may be impossible even to eliminate the O(dr)
term. The correction terms all explicitly depend on Q„»,

so that it is conceivable that to reach a given accuracy, the
accelerated algorithm would require a smaller dr than the
unaccelerated one. However, we have not seen a case in
which this would outweigh the factor of —100 gained in
tunneling time. It should also be mentioned that Fourier
acceleration (in our model) increases the computer time
per iteration by 50%-100%. For more complicated mod-
els, evaluation of bS/bp will be considerably more time
consuming, and the time required for Fourier transforms
will be insignificant. Even for our model, the price of ac-
celeration is far from canceling the advantages of the
method.

The application of our method to some simulated an-
nealing problems is straightforward. One multiplies the
Gaussian noise in (4) by a parameter T. The equilibrium
probability is then Po~e, showing that T acts as a
temperature. In simulated annealing, one seeks the global
minimum of S by repeatedly lowering T, hoping that a
sufficiently slow variation of T will allow the system to
tunnel out of "false" minima. The speed with which the
accelerated algorithm finds the true minimum means that
a greatly shortened annealing schedule can be adopted.

We would not like to leave the reader with the impres-
sion that Fourier acceleration is only of use in problems
with spatial homogeneity. In lattice-gauge theory, both
the inversion of the fermion matrix and the problem of
gauge fixing are true random-field problems. Indeed,



5650 BRIEF REPORTS 36

Landau gauge fixing is nothing but the problem of finding
the ground state of a quenched spin glass with non-
Abelian symmetry. ' Fourier acceleration, using free-
field propagators for the kernel (8), has been shown to
give dramatic improvement in convergence speed in both
problems. Equally dramatic was the acceleration in
convergence of the conjugate gradient algorithm applied
to a random resistor network at the percolation thresh-
old. In that problem, the kernel used was Q„y~ ~xd„—df—y ~

" I, where d„and df are, respectively, the random
walk and the fractal dimensions of the current-carrying

backbone. The irregular shape of the network proved to
be no obstacle.
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