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Spin-fracton effects in dilute amorphous alloys

M. B. Salamon
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801

Y. Yeshurun
Department of Physics, Bar Ilan University, 52100 Ramat-gan, Israel
(Received 4 November 1986; revised manuscript received 1 June 1987)

Deviations from the Bloch T%? law, observed in dilute amorphous magnets, are shown to result

from the crossover from magnon to fracton density of states.

Data from a series of amorphous

(CopNil_p)75P16B6Al3 alloys were fitted to an approximate density-of-states function that matches
the two regimes at a frequency w.(p). Both the magnon stiffness constant and o, decrease as
powers of p —p., where p. is the percolation concentration. The exponents are consistent with a
value of #=1.5 used in the fraction density of states and in agreement with percolation theory.

Bloch’s famous 7 ¥? law! provided some of the earliest
evidence for the existence of quantized spin waves in iso-
tropic ferromagnets.! Since each spin excitation reduces
the magnetization of the ferromagnet by one Bohr magne-
ton, the well-known law?

M(T)/M(0)=1—BT>? (1)
follows from a Bose-Einstein integration of
new(w) =(1/47z%)(1/D)*?w'? | )

the spin-wave density of states (DOS) per unit volume.?
These results have been tested experimentally on many
isotropic three-dimensional magnets. In dilute amorphous
alloys, however, significant deviations from Bloch’s law
are observed and were recognized by Bhagat, Spano,
Chen, and Rao? to signal changes in the spin-wave DOS
at a characteristic frequency w,. It is the purpose of this
Brief Report to demonstrate that a crossover of the DOS
from the spin-wave to the so-called* “fracton” regime ex-
plains, in detail, those deviations from Bloch’s law. We
believe this to provide the clearest evidence to date> for
fractal excitation in diluted magnets.

Experimental data for M (7T)/M(0) are usually plotted
versus 72 in order to obtain B, and thus the stiffness con-
stant D. The presence of higher-order terms in the disper-
sion relation and renormalization of D causes such plots to
curve downward at high temperature.? An applied mag-
netic field induces a gap in the spin-wave dispersion curve
and leads to downward curvature at low temperatures as
well.2 The deviations observed in dilute amorphous mag-
nets manifest themselves in an upward-curving plot3 over
a very wide temperature range, often spanning the Curie
point. This effect becomes increasingly more pronounced
as the concentration of the magnetic constituent is de-
creased. A set of such data is shown in Fig. 1 for the sys-
tem (CopNil —p)7sP16BeAls.  Nickel is nonmagnetic in
this amorphous material. The present analysis supercedes
our previous study® of this system, in which disregard of
the curvature led to results in disagreement with the pre-
diction of percolation theory that the stiffness constant D
should vanish as T¢c— 0

In a dilute magnet above the percolation point p., only
those spin excitations with wavelengths longer’ than the
percolation correlation length &, have quadratic disper-
sion. The stiffness constant is a function of concentra-
tion,® and is given by

D(p) =D(&/&,)° , 3)

where
Ep=&llp—p)/(1—p)1""

and 6 is the diffusion exponent.*!® The low-frequency
density of states is, therefore, given by (2). Short-
wavelength excitations, however, must propagate along
the (fractal) pathway provided by the dilute arrangement
of exchange-coupled spins, and consequently obey a
different dispersion law.* The density of states for these
excitations, which have been termed fractons in the analo-
gous situation for lattice vibrations, has the form'°

ni(@)~o™ 1, 4)

where t=3/(2+0) in three dimensions. This value for 7
holds when the contribution of finite clusters is included in
the calculation.!! The crossover between the two regimes
occurs’ at

w.=D(p)Q2r/E,) 2~ O+ (5)

In order to include possible fracton contributions to the
temperature dependence of the magnetization, we intro-
duce an effective DOS which interpolates between (2) and

4),
neg(w) =1/47) [h/D ()1 20?1+ w/w) ™ . (6)

For large values of w.,—the pure limit—we recover the
normal density of states for spin waves. At the other ex-
treme, density of states approaches the fracton limit with
a coefficient that is independent of £,. We use this density
of states to fit the experimental data by treating D(p) and
o, as adjustable parameters at each concentration p.
Correlations between 6 and the other parameters prevent
a simultaneous determination of all three. We fix 6 and
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search for self-consistency in the value of 6 deduced from
Egs. (3) and (5). Consistency can be achieved only by
fixing the exponent in the range 6=1.5=10.1, close to
theoretical prediction. 2

The magnetization is calculated by numerically in-
tegrating over the effective density of states, taking ac-
count? of the measuring field,

neglw)dow
expl(ho+guH)/kpT] —1

M(T)=M(0)— (g#B)f

@)
The solid lines in Fig. 1 are fits of (7) to the data taken in
an applied field of 10 kOe with u=1.6uz,'3 and 6=1.5.
Equation (7) assumes that all finite clusters are aligned
with the applied field, and that all temperature depen-
dence arises from the decrease in the moment of each
cluster (and of the spontaneously magnetized infinite clus-
ter) due to magnon and fracton excitations.
Values of D(p) and w.(p) obtained from the fits in Fig.
1 are plotted versus reduced concentration in Fig. 2. The
critical concentration p, =0.325 gives the best power-law
fit to the data. The concentrations are nominal, but the
transition temperatures are linear in p — p, above p =0.36
as shown in Table I. Close to the percolation point, the
determination of the transition temperature is complicat-
ed by spin-glass-like effects that are important at fields
below 1 kOe. The data are well represented by the follow-
ing power laws:

D(p) =Dol(p—p.)/(1 —p 1% | (8)
with 6v, =1.3+0.1 and Dy=210+ 10 meV A2 and
w.(p) =wol(p—p.)/(1 —p)13TO% ©)

with 2+6)v,=3.0£0.1 and wr=1.6x10" s~!. Note
that these values of the exponents lead to v, =0.85 1+ 0.07
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TABLE 1. Properties of (CopNil-p )75P16BsAl; samples used
in this work. The last column shows that the Curie temperature
is nearly linear in p — p..

Curie
Composition p  temperature M) T.(1—p.)/(p —pc)
(nominal) (K) (G) (X)
0.34 =20 118 ~900
0.36 38 120 732
0.38 53 140 650
0.40 84 160 757
0.50 175 245 676

and 6=1.5%0.1, both of which are consistent with
theory!? for three-dimensional site percolation and with
our assumed value of 6. Equation (8) is very close to the
numerical predictions of Ref. 8 for cubic lattices.

From the definition of w, it is straightforward to show
that hwo=Do(27/&y)2. Using the values of wo and Dy
from the above fits, we estimate & =9 A, which is the
shortest distance over which the system can be regarded
as fractal. This is approximately the diameter of the first
shell of transition atoms surrounding a central transition
atom, and is a reasonable value.

It must be pointed out that the analysis presented here
is restricted to the low-temperature regime, since there is
no Debye cutoff in (7). We have examined this by chang-
ing the upper limit in the numerical integration routine.
The highest energy in the problem is A wo=100 meV.
The integral varied by less than 0.1% when the upper limit
was reduced to half of this limiting energy. Of more seri-
ous concern is the form of the effective density of states,
Eq. (6). A calculation based on the effective-medium ap-
proximation by Yu'# gave a step increase from the spin-
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FIG. 1. Reduced magnetization vs temperature to the 3 power. Upward curvature is anomalous. The solid lines are fits to the

data using the spin-fracton—magnon density of states.
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FIG. 2. Effective spin-wave stiffness D(p) and magnon-
fracton crossover frequency w.(p) vs reduced concentration.
The critical concentration p. is taken to be 0.325. The solid
square is the pure limit value, from the normal Bloch law.

wave density of states (2) to the fracton density of states
(4). Such a step would lead to a plateau in M (T) in the
vicinity of T =hw./kg; none is observed. The shape of
the scaling function [the last factor in Eq. (6)] is less im-
portant in the magnon-fracton problem than it is in the
phonon-fracton case. In the latter, the softening of the
speed of sound and the quadratic phonon density of states
cause a deficit in the density of states at low frequencies,
leading to the conclusion’ that there must be a peak be-
tween phonon and fracton regimes. Here, because of the
square-root density of states, Eq. (2), there is less of a
deficit at low frequencies. The needed extra states can be
accommodated by adjusting the Debye cutoff and do not
demand an additional peak in the magnon-fracton density
of states. Figure 3 shows the effective DOS functions ac-
tually used in the analysis; an alternative form, that fol-
lows (2) up to w. and then (4), gives identical results.

The present analysis resolves a number of long-standing
problems in the magnetization of dilute ferromagnets.
The stiffness constant D(p) is now seen to vanish at the
percolation point. The tendency toward a constant value
reported previously,® and the too-weak dependence on
concentration!’ were the result of the presence of fracton
excitations. Close to the percolation point, the magnetiza-
tion is dominated by the alignment of finite clusters, not

excitations that disorder the clusters, rather than by the
critical-point effects that disorder the spontaneous magne-
tization.

The broadening and downward shift of magnon peaks
at low temperatures, observed by neutron scattering, %!
remain unresolved problems. Aeppli, Shapiro, Birgeneau,
and Chen!” have argued that random-field effects destroy
long-range order, effectively making &, temperature
dependent. If so, then fracton effects would be more evi-
dent at low temperatures, but should cause the inelastic
peaks to shift upward. It may be that the localized nature
of fractons'* makes a determination of their frequency
problematic.

In conclusion, an ad hoc magnon-fracton density of
states consistently fits magnetization data for a series of
magnetically dilute amorphous alloys and yields ex-
ponents that are in good agreement with percolation
theory. The consistency of the picture lends support to the
existence of fracton excitations in percolating magnets
while resolving a number of anomalous features of mag-
netic behavior near the percolation point. It is likely that
both the spin-wave stiffness constant D and the fracton
dispersion are temperature dependent and would lead to a
more rapid decrease of M (T') at higher temperature. We
have ignored this possibility and may, consequently, have
underestimated the importance of fracton effects in dilute
magnets.
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